# Axum Web Tools
General purpose tools for axum web framework.
## Usage example with some features
* `with_tx` function to run SQLX transactions in Axum web framework.
* `Claims` struct to extract authenticated user from JWT token.
* `HttpError` struct to return error responses.
* `ok` function to return successful responses.
```toml
[dependencies]
axum = { version = "xxx" }
axum-webtools = { version = "xxx" }
axum-webtools-macros = { version = "xxx" }
sqlx = { version = "xxxx"}
```
```rust
use axum::extract::State;
use axum::response::Response;
use axum::routing::{get, post};
use axum::Router;
use axum_webtools::db::sqlx::with_tx;
use axum_webtools::http::response::{ok, HttpError};
use axum_webtools::security::jwt::Claims;
use log::info;
use scoped_futures::ScopedFutureExt;
use serde::Serialize;
use sqlx::postgres::PgPoolOptions;
use sqlx::PgPool;
use std::net::{IpAddr, SocketAddr};
use std::str::FromStr;
use axum_webtools_macros::endpoint;
pub type Tx<'a> = sqlx::Transaction<'a, sqlx::Postgres>;
#[derive(Debug, Serialize)]
struct CreateNewUserResponse {
id: i32,
email: String,
}
struct User {
id: i32,
email: String,
password: String,
}
async fn create_new_user<'a>(email: &str, password: &str, transaction: &mut Tx<'a>) -> sqlx::Result<User> {
let user = sqlx::query_as!(
User,
r#"
INSERT INTO users (email, password)
VALUES ($1, $2)
RETURNING *
"#,
email,
password
)
.fetch_one(&mut **transaction)
.await?;
Ok(user)
}
async fn create_new_user_handler(
State(pool): State<PgPool>,
) -> Result<Response, HttpError> {
// with_tx is a helper function that wraps the transaction logic
// if the closure returns an error, the transaction will be rolled back
with_tx(&pool, |tx| async move {
let user = create_new_user("someemail", "somepassword", tx).await?;
ok(CreateNewUserResponse {
id: user.id,
email: user.email,
})
}.scope_boxed())
.await
}
async fn authenticated_handler(
//inject claims into handler to require and get the authenticated user
claims: Claims,
) -> Result<Response, HttpError> {
let subject = claims.sub;
info!("Authenticated user: {}", subject);
ok(())
}
#[tokio::main]
async fn main() -> Result<(), std::io::Error> {
//jwt integration needs these environment variables
std::env::set_var("JWT_SECRET", "yoursecret");
std::env::set_var("JWT_ISSUER", "yourissuer");
std::env::set_var("JWT_AUDIENCE", "youraudience");
let pool = PgPoolOptions::new()
.max_connections(10)
.connect("postgres://username:password@pgsql:5432/dbname")
.await
.expect("Failed to create pool");
let router = Router::new()
.route(
"/api/v1/users",
post(create_new_user_handler),
)
.route(
"/api/v1/authenticated",
get(authenticated_handler),
)
.with_state(pool);
let ip_addr = IpAddr::from_str("0.0.0.0").unwrap();
let addr = SocketAddr::from((ip_addr, 8080));
axum_server::bind(addr)
.serve(router.into_make_service())
.await
}
```
## PgSQL Migrate
A powerful PostgreSQL migration tool included with axum-webtools that provides database schema management with advanced features for complex operations.
### Installation
Install the migration tool binary:
```bash
cargo install axum-webtools-pgsql-migrate
```
### Basic Usage
```bash
# Create a new migration
pgsql-migrate create -s "create_users_table"
# Run all pending migrations
pgsql-migrate up -d "postgres://user:pass@localhost/db"
# Run migrations with specific environment (default: prod)
pgsql-migrate up -d "postgres://user:pass@localhost/db" -e dev
# Rollback migrations (rollback 1 migration by default)
pgsql-migrate down -d "postgres://user:pass@localhost/db"
# Rollback specific number of migrations
pgsql-migrate down -d "postgres://user:pass@localhost/db" 3
# Rollback with specific environment
pgsql-migrate down -d "postgres://user:pass@localhost/db" -e dev 3
# Baseline existing migrations (mark as applied without running)
pgsql-migrate baseline -d "postgres://user:pass@localhost/db" -v 5
```
### Migration Files
Migrations are created as pairs of `.up.sql` and `.down.sql` files:
```
migrations/
├── 000001_create_users_table.up.sql
├── 000001_create_users_table.down.sql
├── 000002_add_indexes.up.sql
├── 000002_add_indexes.down.sql
└── 000003_create_materialized_views.up.sql
└── 000003_create_materialized_views.down.sql
```
### Advanced Features
#### 1. No Transaction Feature (`no-tx`)
Some PostgreSQL operations cannot run within transactions. Use the `no-tx` feature for operations like:
- `CREATE INDEX CONCURRENTLY`
- `CREATE MATERIALIZED VIEW`
- `ALTER TYPE ADD VALUE`
**Example:**
```sql
-- features: no-tx
-- This migration runs without a transaction wrapper
CREATE INDEX CONCURRENTLY idx_users_email ON users(email);
-- Multiple materialized views in the same script
CREATE MATERIALIZED VIEW user_stats AS
SELECT
DATE(created_at) as date,
COUNT(*) as user_count
FROM users
GROUP BY DATE(created_at);
CREATE MATERIALIZED VIEW daily_activity AS
SELECT
DATE(last_login) as login_date,
COUNT(*) as active_users
FROM users
WHERE last_login IS NOT NULL
GROUP BY DATE(last_login);
```
#### 2. Split Statements Feature (`split-statements`)
When you need to execute multiple complex operations that require separate execution contexts, use the `split-statements` feature with markers:
**Example:**
```sql
-- features: split-statements
-- First block: Create base tables
-- split-start
CREATE TABLE categories (
id SERIAL PRIMARY KEY,
name VARCHAR(100) NOT NULL
);
INSERT INTO categories (name) VALUES
('Electronics'),
('Books'),
('Clothing');
-- split-end
-- Second block: Create dependent materialized view
-- split-start
CREATE MATERIALIZED VIEW category_stats AS
SELECT
c.name,
COUNT(p.id) as product_count
FROM categories c
LEFT JOIN products p ON p.category_id = c.id
GROUP BY c.id, c.name;
-- Create indexes on the materialized view
CREATE INDEX idx_category_stats_name ON category_stats(name);
-- split-end
-- Third block: Grant permissions
-- split-start
GRANT SELECT ON category_stats TO readonly_user;
GRANT ALL ON categories TO app_user;
-- split-end
```
#### 3. Skip On Environment Feature (`skip-on-env`)
Skip specific SQL blocks based on the current environment. This feature works at the **block level** within split statements, allowing fine-grained control over which blocks execute in different environments.
Use the `--env` or `-e` CLI parameter to specify the current environment (default: `prod`).
**Example: Skip seed data blocks in production**
```sql
-- features: split-statements
-- Block 1: Schema changes (runs in all environments)
-- split-start
CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) NOT NULL
);
-- split-end
-- Block 2: Seed data (skip in production)
-- split-start
-- skip-on-env prod
INSERT INTO users (email) VALUES
('dev@example.com'),
('test@example.com');
-- split-end
-- Block 3: More schema changes (runs in all environments)
-- split-start
CREATE INDEX idx_users_email ON users(email);
-- split-end
```
**Example: Skip performance optimizations in dev/homolog**
```sql
-- features: no-tx, split-statements
-- Block 1: Basic index (runs everywhere)
-- split-start
CREATE INDEX CONCURRENTLY idx_orders_user ON orders(user_id);
-- split-end
-- Block 2: Heavy index (skip in dev and homolog)
-- split-start
-- skip-on-env dev,homolog
CREATE INDEX CONCURRENTLY idx_orders_complex ON orders(created_at, status, total);
-- split-end
```
**Running with environment:**
```bash
# Run in dev environment - blocks with "-- skip-on-env dev" will be skipped
pgsql-migrate up -d "postgres://user:pass@localhost/db" -e dev
# Run in production (default) - blocks with "-- skip-on-env prod" will be skipped
pgsql-migrate up -d "postgres://user:pass@localhost/db"
# Run in homolog environment
pgsql-migrate up -d "postgres://user:pass@localhost/db" -e homolog
```
#### 4. Combined Features
You can combine features for complex scenarios:
**Example: Multiple materialized views without transactions**
```sql
-- features: no-tx, split-statements
-- First materialized view block
-- split-start
CREATE MATERIALIZED VIEW hourly_sales AS
SELECT
DATE_TRUNC('hour', created_at) as hour,
SUM(total_amount) as total_sales,
COUNT(*) as order_count
FROM orders
GROUP BY DATE_TRUNC('hour', created_at);
-- split-end
-- Second materialized view block
-- split-start
CREATE MATERIALIZED VIEW product_performance AS
SELECT
p.id,
p.name,
COUNT(oi.id) as times_sold,
SUM(oi.quantity) as total_quantity
FROM products p
LEFT JOIN order_items oi ON oi.product_id = p.id
GROUP BY p.id, p.name;
-- split-end
-- Concurrent indexes block
-- split-start
CREATE INDEX CONCURRENTLY idx_hourly_sales_hour ON hourly_sales(hour);
CREATE INDEX CONCURRENTLY idx_product_performance_times_sold ON product_performance(times_sold DESC);
-- split-end
```
### Migration Tracking
The tool automatically:
- Creates a `pgsql_migrate_schema_migrations` table to track applied migrations
- Stores content hashes to detect changes in already-applied migrations
- Marks migrations as "dirty" during execution to handle failed migrations
- Validates migration integrity before execution
### Error Handling
- **Dirty migrations**: If a migration fails, it's marked as dirty and must be manually resolved
- **Content changes**: Warns when applied migration content has changed
- **Validation**: Ensures proper marker pairing in split-statements feature
- **Transaction safety**: Automatically handles transaction wrapping based on features
### Use Cases
**Perfect for:**
- **Database schema evolution** with complex dependencies
- **Creating multiple materialized views** that need separate execution contexts
- **Concurrent index creation** without blocking operations
- **Data migrations** that require multi-step processing
- **Permission management** across multiple database objects
- **Performance optimizations** that need specific execution patterns
**Example: Complex E-commerce Migration**
```sql
-- features: no-tx, split-statements
-- Create core product tables
-- split-start
CREATE TABLE product_categories (
id SERIAL PRIMARY KEY,
name VARCHAR(100) NOT NULL,
parent_id INTEGER REFERENCES product_categories(id)
);
CREATE TABLE products (
id SERIAL PRIMARY KEY,
category_id INTEGER NOT NULL REFERENCES product_categories(id),
name VARCHAR(255) NOT NULL,
price DECIMAL(10,2) NOT NULL,
created_at TIMESTAMP DEFAULT NOW()
);
-- split-end
-- Create performance materialized views
-- split-start
CREATE MATERIALIZED VIEW category_hierarchy AS
WITH RECURSIVE cat_tree AS (
SELECT id, name, parent_id, 0 as level, ARRAY[id] as path
FROM product_categories WHERE parent_id IS NULL
UNION ALL
SELECT c.id, c.name, c.parent_id, t.level + 1, t.path || c.id
FROM product_categories c
JOIN cat_tree t ON c.parent_id = t.id
)
SELECT * FROM cat_tree;
-- split-end
-- Create concurrent indexes for performance
-- split-start
CREATE INDEX CONCURRENTLY idx_products_category_price ON products(category_id, price DESC);
CREATE INDEX CONCURRENTLY idx_products_created_at ON products(created_at DESC);
-- split-end
```
This comprehensive migration system ensures reliable, trackable, and flexible database schema management for complex applications.
## DLQ Redrive
A Kafka Dead Letter Queue (DLQ) redrive tool that helps you reprocess failed messages or move old messages to poison topics. This tool is particularly useful for managing error handling workflows in Kafka-based systems.
### Installation
Install the DLQ redrive tool binary:
```bash
cargo install axum-webtools-dlq-redrive
```
### Features
- **Message Redriving**: Moves messages from DLQ topics back to target topics for reprocessing
- **Age-based Filtering**: Automatically routes messages older than a threshold to poison topics
- **Status Checking**: View DLQ topic status, partition info, consumer group lag, and watermarks
- **Offset Management**: Tracks consumer group offsets to enable resumable processing
- **Safe Processing**: Commits offsets only after successful message production
### Basic Usage
#### Check DLQ Status
View the current state of a DLQ topic and consumer group:
```bash
dlq-redrive status \
-b "localhost:9092" \
-s "my-dlq-topic" \
-g "dlq-consumer-group"
```
Output includes:
- Partition count and details
- Low and high watermarks per partition
- Committed offsets per partition
- Consumer lag (total messages waiting)
#### Redrive Messages
Move messages from DLQ to target topic, with automatic poison routing for old messages:
```bash
dlq-redrive redrive \
-b "localhost:9092" \
-s "my-dlq-topic" \
-t "my-main-topic" \
-p "my-poison-topic" \
-g "dlq-consumer-group" \
--max-age-days 5 \
--max-messages 1000
```
**Parameters:**
- `-b, --bootstrap-server`: Kafka bootstrap servers
- `-s, --source`: Source DLQ topic
- `-t, --target`: Target topic for redriving messages
- `-p, --poison`: Poison topic for old messages
- `-g, --group`: Consumer group ID
- `--max-age-days`: Maximum message age in days (default: 5). Messages older than this go to poison topic
- `--max-messages`: Maximum number of messages to process (default: 0 = all)
### How It Works
1. **Status Command**:
- Connects to Kafka and fetches metadata for the specified topic
- Retrieves watermarks (low/high offsets) for each partition
- Fetches committed offsets for the consumer group
- Calculates lag per partition and total lag
2. **Redrive Command**:
- Subscribes to the source DLQ topic using the specified consumer group
- Polls messages from Kafka with automatic offset tracking
- Checks message age using `created_at` field in JSON payload
- Routes messages based on age:
- **Recent messages** (≤ max-age-days): Sent to target topic for reprocessing
- **Old messages** (> max-age-days): Sent to poison topic
- Commits offsets only after successful production
- Stops when max-messages is reached or no new messages for 5 seconds
### Message Format Requirements
For age-based filtering to work, messages must contain a `created_at` field in ISO 8601 format:
```json
{
"created_at": "2026-01-31T10:30:00Z",
"content": "your message data"
}
```
Messages without `created_at` or invalid timestamps are treated as recent messages and sent to the target topic.
### Use Cases
**Perfect for:**
- **DLQ Management**: Reprocess failed messages after fixing bugs
- **Age-based Cleanup**: Archive or discard messages that are too old to process
- **Resumable Processing**: Process large DLQs in batches using max-messages
- **Monitoring**: Check DLQ lag and health before redriving
- **Safe Redriving**: Automatic offset commit ensures messages aren't lost
### Example Workflow
```bash
# 1. Check how many messages are waiting
dlq-redrive status \
-b "kafka:9092" \
-s "orders-dlq" \
-g "orders-dlq-redrive"
# Output:
# Checking DLQ status...
# Source topic: orders-dlq
# Consumer group: orders-dlq-redrive
# Found 3 partitions in orders-dlq
# Partition 0: Low=0, High=150, Committed=0, Lag=150
# Partition 1: Low=0, High=200, Committed=0, Lag=200
# Partition 2: Low=0, High=100, Committed=0, Lag=100
# Total lag: 450 messages
# 2. Redrive first 100 messages as a test
dlq-redrive redrive \
-b "kafka:9092" \
-s "orders-dlq" \
-t "orders" \
-p "orders-poison" \
-g "orders-dlq-redrive" \
--max-age-days 7 \
--max-messages 100
# Output:
# DLQ redrive process completed successfully!
# Redrove 85 messages from orders-dlq to orders
# Sent 15 messages to orders-poison (older than 7 days)
# Messages will be automatically deleted based on topic retention policies
# 3. After verification, process remaining messages
dlq-redrive redrive \
-b "kafka:9092" \
-s "orders-dlq" \
-t "orders" \
-p "orders-poison" \
-g "orders-dlq-redrive" \
--max-age-days 7
```
### Error Handling
- **Production Failures**: If message production fails, offset is NOT committed, ensuring no message loss
- **Consumer Errors**: Errors are logged to stderr, processing continues
- **Idle Timeout**: Automatically exits after 5 seconds (10 polls) with no new messages
- **Partition EOF**: Gracefully handles reaching end of partitions
### Advanced Features
#### Message Key Preservation
The tool automatically preserves Kafka message keys when redriving, maintaining partitioning behavior:
```rust
// Original message key is preserved in redriven message
if let Some(key) = msg.key() {
record = record.key(key);
}
```
#### Resumable Processing
Using consumer groups enables resumable processing:
- Run redrive with `--max-messages 1000`
- Stop and verify results
- Run again with same consumer group to continue from last committed offset
#### Monitoring Integration
The status command output can be parsed for monitoring:
```bash
# Get total lag for alerting
This tool provides a robust solution for managing Kafka DLQs with safety, flexibility, and operational visibility.