# Axonml
A complete, PyTorch-equivalent machine learning framework in pure Rust.
## Features
- **Tensors** - N-dimensional arrays with broadcasting
- **Autograd** - Automatic differentiation
- **Neural Networks** - Linear, Conv, RNN, LSTM, Attention
- **Optimizers** - SGD, Adam, AdamW, RMSprop
- **Data Loading** - Dataset, DataLoader, transforms
- **Vision** - ResNet, VGG, ViT architectures
- **LLM** - BERT, GPT-2 architectures
- **Serialization** - Save/load models, ONNX export
- **Quantization** - INT8/INT4 compression
## Quick Start
```rust
use axonml::prelude::*;
let model = Sequential::new()
.add(Linear::new(784, 256))
.add(ReLU)
.add(Linear::new(256, 10));
let mut optimizer = Adam::new(model.parameters(), 0.001);
for batch in dataloader.iter() {
let output = model.forward(&batch.data);
let loss = output.cross_entropy(&batch.targets);
optimizer.zero_grad();
loss.backward();
optimizer.step();
}
```
## Documentation
- [GitHub](https://github.com/AutomataNexus/AxonML)
- [API Docs](https://docs.rs/axonml)
## License
MIT OR Apache-2.0