# axonml-distributed
<p align="center">
<img src="https://raw.githubusercontent.com/AutomataNexus/AxonML/main/AxonML-logo.png" alt="AxonML Logo" width="200" height="200" />
</p>
<p align="center">
<a href="https://opensource.org/licenses/Apache-2.0"><img src="https://img.shields.io/badge/License-Apache_2.0-blue.svg" alt="License: Apache-2.0"></a>
<a href="https://opensource.org/licenses/MIT"><img src="https://img.shields.io/badge/License-MIT-yellow.svg" alt="License: MIT"></a>
<img src="https://img.shields.io/badge/Rust-1.75%2B-orange.svg" alt="Rust 1.75+">
<img src="https://img.shields.io/badge/version-0.1.0-green.svg" alt="Version 0.1.0">
<img src="https://img.shields.io/badge/part%20of-AxonML-purple.svg" alt="Part of AxonML">
</p>
## Overview
`axonml-distributed` provides distributed training utilities for the AxonML machine learning framework. It includes backend abstractions for communication, process group management, DistributedDataParallel (DDP) wrappers for multi-GPU training, and high-level communication primitives like all-reduce, broadcast, and gather operations.
## Features
- **Backend Abstraction** - Pluggable communication backend trait with mock implementation for testing
- **Process Groups** - Manage distributed processes with rank and world size information
- **DistributedDataParallel (DDP)** - Wrap models for automatic gradient synchronization across processes
- **Collective Operations** - All-reduce, broadcast, all-gather, reduce-scatter, and barrier primitives
- **Gradient Bucketing** - Efficient gradient accumulation and synchronization with configurable bucket sizes
- **Multiple Reduce Operations** - Sum, product, min, max, and average reduction strategies
- **Model Parallel Utilities** - Tensor scattering and gathering for model parallelism
## Modules
| `backend` | Communication backend trait and MockBackend implementation for testing |
| `process_group` | ProcessGroup and World abstractions for managing distributed processes |
| `ddp` | DistributedDataParallel wrapper, GradientBucket, and GradientSynchronizer |
| `comm` | High-level communication utilities (all_reduce, broadcast, gather, etc.) |
## Usage
Add the dependency to your `Cargo.toml`:
```toml
[dependencies]
axonml-distributed = "0.1.0"
```
### Basic DDP Training
```rust
use axonml_distributed::prelude::*;
use axonml_nn::Linear;
// Initialize distributed world
let world = World::mock(); // Use mock for testing
// Create model and wrap in DDP
let model = Linear::new(10, 5);
let mut ddp = DistributedDataParallel::new(model, world.default_group().clone());
// Synchronize parameters from rank 0 at start of training
ddp.sync_parameters();
// Training loop
ddp.train();
for batch in data_loader.iter() {
let output = ddp.forward(&input);
// ... compute loss and backward ...
// Synchronize gradients across all processes
ddp.sync_gradients();
// ... optimizer step ...
}
```
### Communication Primitives
```rust
use axonml_distributed::prelude::*;
let pg = ProcessGroup::mock();
// All-reduce operations
let mut tensor = Tensor::from_vec(vec![1.0, 2.0, 3.0], &[3]).unwrap();
all_reduce_sum(&mut tensor, &pg);
all_reduce_mean(&mut tensor, &pg);
// Broadcast from rank 0
broadcast(&mut tensor, &pg);
// All-gather across processes
let gathered = all_gather(&tensor, &pg);
// Barrier synchronization
barrier(&pg);
// Query process information
let my_rank = rank(&pg);
let total_processes = world_size(&pg);
let is_main = is_main_process(&pg);
```
### Gradient Synchronization
```rust
use axonml_distributed::prelude::*;
let pg = ProcessGroup::mock();
// Synchronize multiple gradients
let mut gradients = vec![
Tensor::from_vec(vec![0.1, 0.2], &[2]).unwrap(),
Tensor::from_vec(vec![0.3, 0.4, 0.5], &[3]).unwrap(),
];
sync_gradients(&mut gradients, &pg);
// Or synchronize a single gradient
let mut grad = Tensor::from_vec(vec![1.0, 2.0], &[2]).unwrap();
sync_gradient(&mut grad, &pg);
```
### Gradient Bucketing
```rust
use axonml_distributed::prelude::*;
// Create gradient bucket for efficient all-reduce
let mut bucket = GradientBucket::new(1000); // 1000 element capacity
let grad1 = Tensor::from_vec(vec![0.1, 0.2], &[2]).unwrap();
let grad2 = Tensor::from_vec(vec![0.3, 0.4, 0.5], &[3]).unwrap();
bucket.add(&grad1);
bucket.add(&grad2);
// All-reduce the flattened bucket data
let pg = ProcessGroup::mock();
pg.backend().all_reduce(bucket.data_mut(), ReduceOp::Average);
// Extract synchronized gradients
let synced_grads = bucket.extract();
```
### Custom Synchronization Strategy
```rust
use axonml_distributed::prelude::*;
let mut sync = GradientSynchronizer::new(
GradSyncStrategy::Synchronous,
25_000_000 // ~100MB bucket size for f32
);
sync.prepare(10); // 10 parameters
// Add gradients during backward pass
let grad = Tensor::from_vec(vec![1.0, 2.0], &[2]).unwrap();
sync.add_gradient(0, &grad);
// Synchronize all buckets
let pg = ProcessGroup::mock();
sync.sync_all(&pg);
sync.clear();
```
### Multi-Backend Setup
```rust
use axonml_distributed::prelude::*;
use std::sync::Arc;
// Create multiple mock backends (simulates multi-process)
let backends = MockBackend::create_world(4);
// Each process creates its ProcessGroup
for backend in backends {
let pg = ProcessGroup::new(Arc::new(backend));
println!("Rank {} of {}", pg.rank(), pg.world_size());
}
```
### Process Subgroups
```rust
use axonml_distributed::prelude::*;
let world = World::mock();
// Create a subgroup with specific ranks
let subgroup = world.new_group(vec![0, 1]);
assert!(subgroup.contains(0));
assert_eq!(subgroup.size(), 2);
```
## Tests
Run the test suite:
```bash
cargo test -p axonml-distributed
```
## License
Licensed under either of:
- MIT License ([LICENSE-MIT](../../LICENSE-MIT) or http://opensource.org/licenses/MIT)
- Apache License, Version 2.0 ([LICENSE-APACHE](../../LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
at your option.