1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.

/// <p>Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.</p>
#[non_exhaustive]
#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::fmt::Debug)]
pub struct InputConfig {
    /// <p>The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).</p>
    pub s3_uri: ::std::option::Option<::std::string::String>,
    /// <p>Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are <code>Framework</code> specific. </p>
    /// <ul>
    /// <li> <p> <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.</p>
    /// <ul>
    /// <li> <p>Examples for one input:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input":[1,1024,1024,3]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input\":[1,1024,1024,3]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Examples for two inputs:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"data1": [1,28,28,1], "data2":[1,28,28,1]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}</code> </p> </li>
    /// </ul> </li>
    /// </ul> </li>
    /// <li> <p> <code>KERAS</code>: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, <code>DataInputConfig</code> should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.</p>
    /// <ul>
    /// <li> <p>Examples for one input:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input_1":[1,3,224,224]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input_1\":[1,3,224,224]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Examples for two inputs:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input_1": [1,3,224,224], "input_2":[1,3,224,224]} </code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}</code> </p> </li>
    /// </ul> </li>
    /// </ul> </li>
    /// <li> <p> <code>MXNET/ONNX/DARKNET</code>: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.</p>
    /// <ul>
    /// <li> <p>Examples for one input:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"data":[1,3,1024,1024]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"data\":[1,3,1024,1024]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Examples for two inputs:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"var1": [1,1,28,28], "var2":[1,1,28,28]} </code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}</code> </p> </li>
    /// </ul> </li>
    /// </ul> </li>
    /// <li> <p> <code>PyTorch</code>: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.</p>
    /// <ul>
    /// <li> <p>Examples for one input in dictionary format:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input0":[1,3,224,224]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Example for one input in list format: <code>[[1,3,224,224]]</code> </p> </li>
    /// <li> <p>Examples for two inputs in dictionary format:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input0":[1,3,224,224], "input1":[1,3,224,224]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]} </code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Example for two inputs in list format: <code>[[1,3,224,224], [1,3,224,224]]</code> </p> </li>
    /// </ul> </li>
    /// <li> <p> <code>XGBOOST</code>: input data name and shape are not needed.</p> </li>
    /// </ul>
    /// <p> <code>DataInputConfig</code> supports the following parameters for <code>CoreML</code> <code>TargetDevice</code> (ML Model format):</p>
    /// <ul>
    /// <li> <p> <code>shape</code>: Input shape, for example <code>{"input_1": {"shape": [1,224,224,3]}}</code>. In addition to static input shapes, CoreML converter supports Flexible input shapes:</p>
    /// <ul>
    /// <li> <p>Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: <code>{"input_1": {"shape": ["1..10", 224, 224, 3]}}</code> </p> </li>
    /// <li> <p>Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: <code>{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p> <code>default_shape</code>: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example <code>{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}</code> </p> </li>
    /// <li> <p> <code>type</code>: Input type. Allowed values: <code>Image</code> and <code>Tensor</code>. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as <code>bias</code> and <code>scale</code>.</p> </li>
    /// <li> <p> <code>bias</code>: If the input type is an Image, you need to provide the bias vector.</p> </li>
    /// <li> <p> <code>scale</code>: If the input type is an Image, you need to provide a scale factor.</p> </li>
    /// </ul>
    /// <p>CoreML <code>ClassifierConfig</code> parameters can be specified using <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html">OutputConfig</a> <code>CompilerOptions</code>. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:</p>
    /// <ul>
    /// <li> <p>Tensor type input:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Tensor type input without input name (PyTorch):</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Image type input:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Image type input without input name (PyTorch):</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}</code> </p> </li>
    /// </ul> </li>
    /// </ul>
    /// <p>Depending on the model format, <code>DataInputConfig</code> requires the following parameters for <code>ml_eia2</code> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice">OutputConfig:TargetDevice</a>.</p>
    /// <ul>
    /// <li> <p>For TensorFlow models saved in the SavedModel format, specify the input names from <code>signature_def_key</code> and the input model shapes for <code>DataInputConfig</code>. Specify the <code>signature_def_key</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions"> <code>OutputConfig:CompilerOptions</code> </a> if the model does not use TensorFlow's default signature def key. For example:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"inputs": [1, 224, 224, 3]}</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"signature_def_key": "serving_custom"}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in <code>DataInputConfig</code> and the output tensor names for <code>output_names</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions"> <code>OutputConfig:CompilerOptions</code> </a>. For example:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"output_names": ["output_tensor:0"]}</code> </p> </li>
    /// </ul> </li>
    /// </ul>
    pub data_input_config: ::std::option::Option<::std::string::String>,
    /// <p>Identifies the framework in which the model was trained. For example: TENSORFLOW.</p>
    pub framework: ::std::option::Option<crate::types::Framework>,
    /// <p>Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.</p>
    /// <p>For information about framework versions supported for cloud targets and edge devices, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html">Cloud Supported Instance Types and Frameworks</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html">Edge Supported Frameworks</a>.</p>
    pub framework_version: ::std::option::Option<::std::string::String>,
}
impl InputConfig {
    /// <p>The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).</p>
    pub fn s3_uri(&self) -> ::std::option::Option<&str> {
        self.s3_uri.as_deref()
    }
    /// <p>Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are <code>Framework</code> specific. </p>
    /// <ul>
    /// <li> <p> <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.</p>
    /// <ul>
    /// <li> <p>Examples for one input:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input":[1,1024,1024,3]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input\":[1,1024,1024,3]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Examples for two inputs:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"data1": [1,28,28,1], "data2":[1,28,28,1]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}</code> </p> </li>
    /// </ul> </li>
    /// </ul> </li>
    /// <li> <p> <code>KERAS</code>: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, <code>DataInputConfig</code> should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.</p>
    /// <ul>
    /// <li> <p>Examples for one input:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input_1":[1,3,224,224]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input_1\":[1,3,224,224]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Examples for two inputs:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input_1": [1,3,224,224], "input_2":[1,3,224,224]} </code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}</code> </p> </li>
    /// </ul> </li>
    /// </ul> </li>
    /// <li> <p> <code>MXNET/ONNX/DARKNET</code>: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.</p>
    /// <ul>
    /// <li> <p>Examples for one input:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"data":[1,3,1024,1024]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"data\":[1,3,1024,1024]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Examples for two inputs:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"var1": [1,1,28,28], "var2":[1,1,28,28]} </code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}</code> </p> </li>
    /// </ul> </li>
    /// </ul> </li>
    /// <li> <p> <code>PyTorch</code>: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.</p>
    /// <ul>
    /// <li> <p>Examples for one input in dictionary format:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input0":[1,3,224,224]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Example for one input in list format: <code>[[1,3,224,224]]</code> </p> </li>
    /// <li> <p>Examples for two inputs in dictionary format:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input0":[1,3,224,224], "input1":[1,3,224,224]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]} </code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Example for two inputs in list format: <code>[[1,3,224,224], [1,3,224,224]]</code> </p> </li>
    /// </ul> </li>
    /// <li> <p> <code>XGBOOST</code>: input data name and shape are not needed.</p> </li>
    /// </ul>
    /// <p> <code>DataInputConfig</code> supports the following parameters for <code>CoreML</code> <code>TargetDevice</code> (ML Model format):</p>
    /// <ul>
    /// <li> <p> <code>shape</code>: Input shape, for example <code>{"input_1": {"shape": [1,224,224,3]}}</code>. In addition to static input shapes, CoreML converter supports Flexible input shapes:</p>
    /// <ul>
    /// <li> <p>Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: <code>{"input_1": {"shape": ["1..10", 224, 224, 3]}}</code> </p> </li>
    /// <li> <p>Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: <code>{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p> <code>default_shape</code>: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example <code>{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}</code> </p> </li>
    /// <li> <p> <code>type</code>: Input type. Allowed values: <code>Image</code> and <code>Tensor</code>. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as <code>bias</code> and <code>scale</code>.</p> </li>
    /// <li> <p> <code>bias</code>: If the input type is an Image, you need to provide the bias vector.</p> </li>
    /// <li> <p> <code>scale</code>: If the input type is an Image, you need to provide a scale factor.</p> </li>
    /// </ul>
    /// <p>CoreML <code>ClassifierConfig</code> parameters can be specified using <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html">OutputConfig</a> <code>CompilerOptions</code>. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:</p>
    /// <ul>
    /// <li> <p>Tensor type input:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Tensor type input without input name (PyTorch):</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Image type input:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Image type input without input name (PyTorch):</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}</code> </p> </li>
    /// </ul> </li>
    /// </ul>
    /// <p>Depending on the model format, <code>DataInputConfig</code> requires the following parameters for <code>ml_eia2</code> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice">OutputConfig:TargetDevice</a>.</p>
    /// <ul>
    /// <li> <p>For TensorFlow models saved in the SavedModel format, specify the input names from <code>signature_def_key</code> and the input model shapes for <code>DataInputConfig</code>. Specify the <code>signature_def_key</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions"> <code>OutputConfig:CompilerOptions</code> </a> if the model does not use TensorFlow's default signature def key. For example:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"inputs": [1, 224, 224, 3]}</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"signature_def_key": "serving_custom"}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in <code>DataInputConfig</code> and the output tensor names for <code>output_names</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions"> <code>OutputConfig:CompilerOptions</code> </a>. For example:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"output_names": ["output_tensor:0"]}</code> </p> </li>
    /// </ul> </li>
    /// </ul>
    pub fn data_input_config(&self) -> ::std::option::Option<&str> {
        self.data_input_config.as_deref()
    }
    /// <p>Identifies the framework in which the model was trained. For example: TENSORFLOW.</p>
    pub fn framework(&self) -> ::std::option::Option<&crate::types::Framework> {
        self.framework.as_ref()
    }
    /// <p>Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.</p>
    /// <p>For information about framework versions supported for cloud targets and edge devices, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html">Cloud Supported Instance Types and Frameworks</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html">Edge Supported Frameworks</a>.</p>
    pub fn framework_version(&self) -> ::std::option::Option<&str> {
        self.framework_version.as_deref()
    }
}
impl InputConfig {
    /// Creates a new builder-style object to manufacture [`InputConfig`](crate::types::InputConfig).
    pub fn builder() -> crate::types::builders::InputConfigBuilder {
        crate::types::builders::InputConfigBuilder::default()
    }
}

/// A builder for [`InputConfig`](crate::types::InputConfig).
#[non_exhaustive]
#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::default::Default, ::std::fmt::Debug)]
pub struct InputConfigBuilder {
    pub(crate) s3_uri: ::std::option::Option<::std::string::String>,
    pub(crate) data_input_config: ::std::option::Option<::std::string::String>,
    pub(crate) framework: ::std::option::Option<crate::types::Framework>,
    pub(crate) framework_version: ::std::option::Option<::std::string::String>,
}
impl InputConfigBuilder {
    /// <p>The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).</p>
    /// This field is required.
    pub fn s3_uri(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.s3_uri = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).</p>
    pub fn set_s3_uri(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.s3_uri = input;
        self
    }
    /// <p>The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).</p>
    pub fn get_s3_uri(&self) -> &::std::option::Option<::std::string::String> {
        &self.s3_uri
    }
    /// <p>Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are <code>Framework</code> specific. </p>
    /// <ul>
    /// <li> <p> <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.</p>
    /// <ul>
    /// <li> <p>Examples for one input:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input":[1,1024,1024,3]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input\":[1,1024,1024,3]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Examples for two inputs:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"data1": [1,28,28,1], "data2":[1,28,28,1]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}</code> </p> </li>
    /// </ul> </li>
    /// </ul> </li>
    /// <li> <p> <code>KERAS</code>: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, <code>DataInputConfig</code> should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.</p>
    /// <ul>
    /// <li> <p>Examples for one input:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input_1":[1,3,224,224]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input_1\":[1,3,224,224]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Examples for two inputs:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input_1": [1,3,224,224], "input_2":[1,3,224,224]} </code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}</code> </p> </li>
    /// </ul> </li>
    /// </ul> </li>
    /// <li> <p> <code>MXNET/ONNX/DARKNET</code>: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.</p>
    /// <ul>
    /// <li> <p>Examples for one input:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"data":[1,3,1024,1024]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"data\":[1,3,1024,1024]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Examples for two inputs:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"var1": [1,1,28,28], "var2":[1,1,28,28]} </code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}</code> </p> </li>
    /// </ul> </li>
    /// </ul> </li>
    /// <li> <p> <code>PyTorch</code>: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.</p>
    /// <ul>
    /// <li> <p>Examples for one input in dictionary format:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input0":[1,3,224,224]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Example for one input in list format: <code>[[1,3,224,224]]</code> </p> </li>
    /// <li> <p>Examples for two inputs in dictionary format:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input0":[1,3,224,224], "input1":[1,3,224,224]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]} </code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Example for two inputs in list format: <code>[[1,3,224,224], [1,3,224,224]]</code> </p> </li>
    /// </ul> </li>
    /// <li> <p> <code>XGBOOST</code>: input data name and shape are not needed.</p> </li>
    /// </ul>
    /// <p> <code>DataInputConfig</code> supports the following parameters for <code>CoreML</code> <code>TargetDevice</code> (ML Model format):</p>
    /// <ul>
    /// <li> <p> <code>shape</code>: Input shape, for example <code>{"input_1": {"shape": [1,224,224,3]}}</code>. In addition to static input shapes, CoreML converter supports Flexible input shapes:</p>
    /// <ul>
    /// <li> <p>Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: <code>{"input_1": {"shape": ["1..10", 224, 224, 3]}}</code> </p> </li>
    /// <li> <p>Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: <code>{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p> <code>default_shape</code>: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example <code>{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}</code> </p> </li>
    /// <li> <p> <code>type</code>: Input type. Allowed values: <code>Image</code> and <code>Tensor</code>. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as <code>bias</code> and <code>scale</code>.</p> </li>
    /// <li> <p> <code>bias</code>: If the input type is an Image, you need to provide the bias vector.</p> </li>
    /// <li> <p> <code>scale</code>: If the input type is an Image, you need to provide a scale factor.</p> </li>
    /// </ul>
    /// <p>CoreML <code>ClassifierConfig</code> parameters can be specified using <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html">OutputConfig</a> <code>CompilerOptions</code>. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:</p>
    /// <ul>
    /// <li> <p>Tensor type input:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Tensor type input without input name (PyTorch):</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Image type input:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Image type input without input name (PyTorch):</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}</code> </p> </li>
    /// </ul> </li>
    /// </ul>
    /// <p>Depending on the model format, <code>DataInputConfig</code> requires the following parameters for <code>ml_eia2</code> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice">OutputConfig:TargetDevice</a>.</p>
    /// <ul>
    /// <li> <p>For TensorFlow models saved in the SavedModel format, specify the input names from <code>signature_def_key</code> and the input model shapes for <code>DataInputConfig</code>. Specify the <code>signature_def_key</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions"> <code>OutputConfig:CompilerOptions</code> </a> if the model does not use TensorFlow's default signature def key. For example:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"inputs": [1, 224, 224, 3]}</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"signature_def_key": "serving_custom"}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in <code>DataInputConfig</code> and the output tensor names for <code>output_names</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions"> <code>OutputConfig:CompilerOptions</code> </a>. For example:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"output_names": ["output_tensor:0"]}</code> </p> </li>
    /// </ul> </li>
    /// </ul>
    pub fn data_input_config(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.data_input_config = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are <code>Framework</code> specific. </p>
    /// <ul>
    /// <li> <p> <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.</p>
    /// <ul>
    /// <li> <p>Examples for one input:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input":[1,1024,1024,3]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input\":[1,1024,1024,3]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Examples for two inputs:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"data1": [1,28,28,1], "data2":[1,28,28,1]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}</code> </p> </li>
    /// </ul> </li>
    /// </ul> </li>
    /// <li> <p> <code>KERAS</code>: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, <code>DataInputConfig</code> should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.</p>
    /// <ul>
    /// <li> <p>Examples for one input:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input_1":[1,3,224,224]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input_1\":[1,3,224,224]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Examples for two inputs:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input_1": [1,3,224,224], "input_2":[1,3,224,224]} </code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}</code> </p> </li>
    /// </ul> </li>
    /// </ul> </li>
    /// <li> <p> <code>MXNET/ONNX/DARKNET</code>: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.</p>
    /// <ul>
    /// <li> <p>Examples for one input:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"data":[1,3,1024,1024]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"data\":[1,3,1024,1024]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Examples for two inputs:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"var1": [1,1,28,28], "var2":[1,1,28,28]} </code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}</code> </p> </li>
    /// </ul> </li>
    /// </ul> </li>
    /// <li> <p> <code>PyTorch</code>: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.</p>
    /// <ul>
    /// <li> <p>Examples for one input in dictionary format:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input0":[1,3,224,224]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Example for one input in list format: <code>[[1,3,224,224]]</code> </p> </li>
    /// <li> <p>Examples for two inputs in dictionary format:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input0":[1,3,224,224], "input1":[1,3,224,224]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]} </code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Example for two inputs in list format: <code>[[1,3,224,224], [1,3,224,224]]</code> </p> </li>
    /// </ul> </li>
    /// <li> <p> <code>XGBOOST</code>: input data name and shape are not needed.</p> </li>
    /// </ul>
    /// <p> <code>DataInputConfig</code> supports the following parameters for <code>CoreML</code> <code>TargetDevice</code> (ML Model format):</p>
    /// <ul>
    /// <li> <p> <code>shape</code>: Input shape, for example <code>{"input_1": {"shape": [1,224,224,3]}}</code>. In addition to static input shapes, CoreML converter supports Flexible input shapes:</p>
    /// <ul>
    /// <li> <p>Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: <code>{"input_1": {"shape": ["1..10", 224, 224, 3]}}</code> </p> </li>
    /// <li> <p>Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: <code>{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p> <code>default_shape</code>: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example <code>{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}</code> </p> </li>
    /// <li> <p> <code>type</code>: Input type. Allowed values: <code>Image</code> and <code>Tensor</code>. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as <code>bias</code> and <code>scale</code>.</p> </li>
    /// <li> <p> <code>bias</code>: If the input type is an Image, you need to provide the bias vector.</p> </li>
    /// <li> <p> <code>scale</code>: If the input type is an Image, you need to provide a scale factor.</p> </li>
    /// </ul>
    /// <p>CoreML <code>ClassifierConfig</code> parameters can be specified using <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html">OutputConfig</a> <code>CompilerOptions</code>. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:</p>
    /// <ul>
    /// <li> <p>Tensor type input:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Tensor type input without input name (PyTorch):</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Image type input:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Image type input without input name (PyTorch):</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}</code> </p> </li>
    /// </ul> </li>
    /// </ul>
    /// <p>Depending on the model format, <code>DataInputConfig</code> requires the following parameters for <code>ml_eia2</code> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice">OutputConfig:TargetDevice</a>.</p>
    /// <ul>
    /// <li> <p>For TensorFlow models saved in the SavedModel format, specify the input names from <code>signature_def_key</code> and the input model shapes for <code>DataInputConfig</code>. Specify the <code>signature_def_key</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions"> <code>OutputConfig:CompilerOptions</code> </a> if the model does not use TensorFlow's default signature def key. For example:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"inputs": [1, 224, 224, 3]}</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"signature_def_key": "serving_custom"}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in <code>DataInputConfig</code> and the output tensor names for <code>output_names</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions"> <code>OutputConfig:CompilerOptions</code> </a>. For example:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"output_names": ["output_tensor:0"]}</code> </p> </li>
    /// </ul> </li>
    /// </ul>
    pub fn set_data_input_config(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.data_input_config = input;
        self
    }
    /// <p>Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are <code>Framework</code> specific. </p>
    /// <ul>
    /// <li> <p> <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.</p>
    /// <ul>
    /// <li> <p>Examples for one input:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input":[1,1024,1024,3]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input\":[1,1024,1024,3]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Examples for two inputs:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"data1": [1,28,28,1], "data2":[1,28,28,1]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}</code> </p> </li>
    /// </ul> </li>
    /// </ul> </li>
    /// <li> <p> <code>KERAS</code>: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, <code>DataInputConfig</code> should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.</p>
    /// <ul>
    /// <li> <p>Examples for one input:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input_1":[1,3,224,224]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input_1\":[1,3,224,224]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Examples for two inputs:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input_1": [1,3,224,224], "input_2":[1,3,224,224]} </code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}</code> </p> </li>
    /// </ul> </li>
    /// </ul> </li>
    /// <li> <p> <code>MXNET/ONNX/DARKNET</code>: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.</p>
    /// <ul>
    /// <li> <p>Examples for one input:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"data":[1,3,1024,1024]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"data\":[1,3,1024,1024]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Examples for two inputs:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"var1": [1,1,28,28], "var2":[1,1,28,28]} </code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}</code> </p> </li>
    /// </ul> </li>
    /// </ul> </li>
    /// <li> <p> <code>PyTorch</code>: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.</p>
    /// <ul>
    /// <li> <p>Examples for one input in dictionary format:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input0":[1,3,224,224]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224]}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Example for one input in list format: <code>[[1,3,224,224]]</code> </p> </li>
    /// <li> <p>Examples for two inputs in dictionary format:</p>
    /// <ul>
    /// <li> <p>If using the console, <code>{"input0":[1,3,224,224], "input1":[1,3,224,224]}</code> </p> </li>
    /// <li> <p>If using the CLI, <code>{\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]} </code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Example for two inputs in list format: <code>[[1,3,224,224], [1,3,224,224]]</code> </p> </li>
    /// </ul> </li>
    /// <li> <p> <code>XGBOOST</code>: input data name and shape are not needed.</p> </li>
    /// </ul>
    /// <p> <code>DataInputConfig</code> supports the following parameters for <code>CoreML</code> <code>TargetDevice</code> (ML Model format):</p>
    /// <ul>
    /// <li> <p> <code>shape</code>: Input shape, for example <code>{"input_1": {"shape": [1,224,224,3]}}</code>. In addition to static input shapes, CoreML converter supports Flexible input shapes:</p>
    /// <ul>
    /// <li> <p>Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: <code>{"input_1": {"shape": ["1..10", 224, 224, 3]}}</code> </p> </li>
    /// <li> <p>Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: <code>{"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p> <code>default_shape</code>: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example <code>{"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}</code> </p> </li>
    /// <li> <p> <code>type</code>: Input type. Allowed values: <code>Image</code> and <code>Tensor</code>. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as <code>bias</code> and <code>scale</code>.</p> </li>
    /// <li> <p> <code>bias</code>: If the input type is an Image, you need to provide the bias vector.</p> </li>
    /// <li> <p> <code>scale</code>: If the input type is an Image, you need to provide a scale factor.</p> </li>
    /// </ul>
    /// <p>CoreML <code>ClassifierConfig</code> parameters can be specified using <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html">OutputConfig</a> <code>CompilerOptions</code>. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:</p>
    /// <ul>
    /// <li> <p>Tensor type input:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Tensor type input without input name (PyTorch):</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Image type input:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>Image type input without input name (PyTorch):</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}</code> </p> </li>
    /// </ul> </li>
    /// </ul>
    /// <p>Depending on the model format, <code>DataInputConfig</code> requires the following parameters for <code>ml_eia2</code> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice">OutputConfig:TargetDevice</a>.</p>
    /// <ul>
    /// <li> <p>For TensorFlow models saved in the SavedModel format, specify the input names from <code>signature_def_key</code> and the input model shapes for <code>DataInputConfig</code>. Specify the <code>signature_def_key</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions"> <code>OutputConfig:CompilerOptions</code> </a> if the model does not use TensorFlow's default signature def key. For example:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"inputs": [1, 224, 224, 3]}</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"signature_def_key": "serving_custom"}</code> </p> </li>
    /// </ul> </li>
    /// <li> <p>For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in <code>DataInputConfig</code> and the output tensor names for <code>output_names</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions"> <code>OutputConfig:CompilerOptions</code> </a>. For example:</p>
    /// <ul>
    /// <li> <p> <code>"DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}</code> </p> </li>
    /// <li> <p> <code>"CompilerOptions": {"output_names": ["output_tensor:0"]}</code> </p> </li>
    /// </ul> </li>
    /// </ul>
    pub fn get_data_input_config(&self) -> &::std::option::Option<::std::string::String> {
        &self.data_input_config
    }
    /// <p>Identifies the framework in which the model was trained. For example: TENSORFLOW.</p>
    /// This field is required.
    pub fn framework(mut self, input: crate::types::Framework) -> Self {
        self.framework = ::std::option::Option::Some(input);
        self
    }
    /// <p>Identifies the framework in which the model was trained. For example: TENSORFLOW.</p>
    pub fn set_framework(mut self, input: ::std::option::Option<crate::types::Framework>) -> Self {
        self.framework = input;
        self
    }
    /// <p>Identifies the framework in which the model was trained. For example: TENSORFLOW.</p>
    pub fn get_framework(&self) -> &::std::option::Option<crate::types::Framework> {
        &self.framework
    }
    /// <p>Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.</p>
    /// <p>For information about framework versions supported for cloud targets and edge devices, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html">Cloud Supported Instance Types and Frameworks</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html">Edge Supported Frameworks</a>.</p>
    pub fn framework_version(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
        self.framework_version = ::std::option::Option::Some(input.into());
        self
    }
    /// <p>Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.</p>
    /// <p>For information about framework versions supported for cloud targets and edge devices, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html">Cloud Supported Instance Types and Frameworks</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html">Edge Supported Frameworks</a>.</p>
    pub fn set_framework_version(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
        self.framework_version = input;
        self
    }
    /// <p>Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.</p>
    /// <p>For information about framework versions supported for cloud targets and edge devices, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html">Cloud Supported Instance Types and Frameworks</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html">Edge Supported Frameworks</a>.</p>
    pub fn get_framework_version(&self) -> &::std::option::Option<::std::string::String> {
        &self.framework_version
    }
    /// Consumes the builder and constructs a [`InputConfig`](crate::types::InputConfig).
    pub fn build(self) -> crate::types::InputConfig {
        crate::types::InputConfig {
            s3_uri: self.s3_uri,
            data_input_config: self.data_input_config,
            framework: self.framework,
            framework_version: self.framework_version,
        }
    }
}