1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
use alloc::alloc::{alloc, alloc_zeroed, dealloc, realloc, Layout};
use core::{
    borrow::{Borrow, BorrowMut},
    cmp::max,
    fmt,
    hash::{Hash, Hasher},
    marker::PhantomData,
    mem,
    num::NonZeroUsize,
    ops::{Deref, DerefMut, Index, IndexMut, RangeFull},
    ptr,
    ptr::NonNull,
};

use awint_core::{Bits, InlAwi};
use const_fn::const_fn;

use crate::awint_internals::*;

/// We use a `union` so that we can handle any difference in size and alignment
/// between a `Digit` and `*const Digit`. In the common case on most
/// architectures, this is simply `usize` sized and aligned which eliminates
/// overhead. We do not use a `NonNull` for `_ext` since it is in a union with
/// something that can be zero.
union InlOrExt {
    _inl: Digit,
    _ext: *const Digit,
}

/// An arbitrary width integer with manually controlled bitwidth. This is
/// different from [ExtAwi](crate::ExtAwi) and [InlAwi](awint_core::InlAwi) in
/// that it has a capacity, meaning that its bitwidth can be changed without
/// reallocation if the capacity is large enough.
///
/// Small bitwidths (`usize::BITS` on most platforms) can be stored inline by
/// this struct without any allocation, which greatly helps cases where only a
/// few of the `Awi`s are large.
///
/// This struct implements `Deref<Target = Bits>`, see the main documentation of
/// [Bits](awint_core::Bits) for more. There are also some functions that
/// `InlAwi` and `ExtAwi` do not implement, namely some bitwidth changing
/// functions.
///
/// See the crate level documentation of `awint_macros` for more macros and
/// information.
#[repr(C)]
pub struct Awi {
    /// # Design
    ///
    /// In any possible design we need `_cap` to keep information about the
    /// allocation layout. `_cap` is in units of bytes so that `Layout`s can use
    /// its value directly. We differentiate between inline and external
    /// allocation mode by setting `_cap` to zero when in inline mode. This
    /// is both semantically ideal and is the fastest kind of comparison to
    /// make on almost all architectures.
    ///
    /// `_inl_or_ext` stores either an inline `Digit` (and not `usize` for cases
    /// where `BITS > USIZE_BITS`) or a `*const Digit` pointing to an external
    /// allocation
    ///
    /// The `_nzbw` gives the actual bitwidth within the capacity and supplies
    /// the `NonZero` we want for nich optimizations.
    ///
    /// `_boo` is just insurance that we have the right covariance and stuff
    ///
    /// Invariants:
    ///
    /// - If `_cap == 0`, only `_inl_or_ext._inl` is used, `_nzbw <= BITS`, and
    ///   `_cap == BITS`
    /// - If `_cap != 0`, only `_inl_or_ext._ext` is used, pointing to an
    ///   allocation with `_cap` bytes and an aligned array of `Digit`s. `_cap *
    ///   8` must not overflow. `_nzbw <= _cap * 8`. The allocation must always
    ///   be fully initialized
    _inl_or_ext: InlOrExt,
    _nzbw: NonZeroUsize,
    _cap: usize,
    _boo: PhantomData<NonNull<Digit>>,
}

/// `Awi` is safe to send between threads since it does not own aliasing memory
/// and has no reference counting mechanism like `Rc`.
unsafe impl Send for Awi {}

/// `Awi` is safe to share between threads since it does not own aliasing memory
/// and has no mutable internal state like `Cell` or `RefCell`.
unsafe impl Sync for Awi {}

impl<'a> Awi {
    /// This stores up to a `BITS` bitwidth integer as represented by
    /// `digit` inline. Unused bits clearing is _not_ performed.
    ///
    /// # Safety
    ///
    /// `nzbw.get() <= BITS` must hold.
    #[doc(hidden)]
    #[inline]
    #[const_fn(cfg(feature = "const_support"))]
    pub const unsafe fn inl_from_raw_parts(digit: Digit, nzbw: NonZeroUsize) -> Awi {
        debug_assert!(nzbw.get() <= BITS);
        Awi {
            _inl_or_ext: InlOrExt { _inl: digit },
            _nzbw: nzbw,
            _cap: 0,
            _boo: PhantomData,
        }
    }

    /// This uses `digits` as externally allocated bits for the `Awi`. Unused
    /// bits clearing is _not_ performed.
    ///
    /// # Safety
    ///
    /// `digits` and `nzbw` together as a pointer to a `Digit` array and a
    /// bitwidth must satisfy the raw invariants of `Bits`, except that there
    /// can be more than the minimum number of `Digit`s needed to store all bits
    /// (see bits.rs). `cap_in_bytes * 8` must not overflow.
    /// `(cap_in_bytes * 8) >= nzbw.get()` must hold so that there are at least
    /// as many capacity bits as bitwidth.
    #[doc(hidden)]
    #[inline]
    #[const_fn(cfg(feature = "const_support"))]
    pub const unsafe fn ext_from_raw_parts(
        digits: *const Digit,
        nzbw: NonZeroUsize,
        cap_in_bytes: usize,
    ) -> Awi {
        debug_assert!(cap_in_bytes.checked_mul(8).is_some());
        // this also implies that `cap_in_bytes != 0`
        debug_assert!((cap_in_bytes * 8) >= nzbw.get());
        Awi {
            _inl_or_ext: InlOrExt { _ext: digits },
            _nzbw: nzbw,
            _cap: cap_in_bytes,
            _boo: PhantomData,
        }
    }

    /// Returns a reference to `self` in the form of `&Bits`
    #[inline]
    #[const_fn(cfg(feature = "const_support"))]
    #[must_use]
    const fn internal_as_ref(&'a self) -> &'a Bits {
        if self._cap == 0 {
            // Safety: for inline storage we get a reference to the `_inl` field of the
            // union. Since it is exactly one `Digit` and `_nzbw <= BITS`, we have something
            // that satisfies the invariants for `RawBits` and `Bits`.
            unsafe {
                let tmp: &Digit = &self._inl_or_ext._inl;
                let tmp: *const Digit = tmp;
                let tmp = tmp as *mut Digit;
                Bits::from_raw_parts(RawBits::from_raw_parts(
                    NonNull::new_unchecked(tmp),
                    self._nzbw,
                ))
            }
        } else {
            // Safety: for external storage we get a reference to the `_ext` field of the
            // union. By the invariants, it satisfies the raw invariants of `Bits`.
            unsafe {
                let tmp = self._inl_or_ext._ext;
                let tmp = tmp as *mut Digit;
                Bits::from_raw_parts(RawBits::from_raw_parts(
                    NonNull::new_unchecked(tmp),
                    self._nzbw,
                ))
            }
        }
    }

    /// Returns a reference to `self` in the form of `&mut Bits`
    #[inline]
    #[const_fn(cfg(feature = "const_support"))]
    #[must_use]
    const fn internal_as_mut(&'a mut self) -> &'a mut Bits {
        if self._cap == 0 {
            // Safety: for inline storage we get a reference to the `_inl` field of the
            // union. Since it is exactly one `Digit` and `_nzbw <= BITS`, we have something
            // that satisfies the invariants for `RawBits` and `Bits`.
            unsafe {
                let tmp: &mut Digit = &mut self._inl_or_ext._inl;
                let tmp: *const Digit = tmp;
                let tmp = tmp as *mut Digit;
                Bits::from_raw_parts_mut(RawBits::from_raw_parts(
                    NonNull::new_unchecked(tmp),
                    self._nzbw,
                ))
            }
        } else {
            // Safety: for external storage we get a reference to the `_ext` field of the
            // union. By the invariants, it satisfies the raw invariants of `Bits`.
            unsafe {
                let tmp = self._inl_or_ext._ext;
                let tmp = tmp as *mut Digit;
                Bits::from_raw_parts_mut(RawBits::from_raw_parts(
                    NonNull::new_unchecked(tmp),
                    self._nzbw,
                ))
            }
        }
    }

    /// Returns the bitwidth of this `Awi` as a `NonZeroUsize`
    #[inline]
    #[const_fn(cfg(feature = "const_support"))]
    #[must_use]
    pub const fn nzbw(&self) -> NonZeroUsize {
        self._nzbw
    }

    /// Returns the bitwidth of this `Awi` as a `usize`
    #[inline]
    #[const_fn(cfg(feature = "const_support"))]
    #[must_use]
    pub const fn bw(&self) -> usize {
        self._nzbw.get()
    }

    /// Returns the capacity of this `Awi` in bits
    #[const_fn(cfg(feature = "const_support"))]
    #[must_use]
    pub const fn capacity(&self) -> NonZeroUsize {
        if self._cap == 0 {
            // Safety: `BITS` is nonzero
            unsafe { NonZeroUsize::new_unchecked(BITS) }
        } else {
            // Safety: `self._cap * 8` is nonzero and cannot overflow to zero because of the
            // invariants
            unsafe { NonZeroUsize::new_unchecked(self._cap * 8) }
        }
    }

    /// Returns the `Layout` of the allocation if this `Awi` is externally
    /// allocated, otherwise returns `None` when inline.
    #[doc(hidden)]
    #[inline]
    #[const_fn(cfg(feature = "const_support"))]
    #[must_use]
    pub const fn layout(&self) -> Option<Layout> {
        if self._cap == 0 {
            None
        } else {
            // Safety: `_cap` has the exact number of bytes of the allocation
            unsafe {
                Some(Layout::from_size_align_unchecked(
                    self._cap,
                    mem::align_of::<Digit>(),
                ))
            }
        }
    }

    /// Creates an `Awi` from copying a `Bits` reference. The same
    /// functionality is provided by an `From<&Bits>` implementation for
    /// `Awi`.
    pub fn from_bits(bits: &Bits) -> Awi {
        let mut tmp = Awi::zero(bits.nzbw());
        tmp.const_as_mut().copy_(bits).unwrap();
        tmp
    }

    /// Zero-value construction with bitwidth `w`
    pub fn zero(w: NonZeroUsize) -> Self {
        if w.get() <= BITS {
            // Safety: the bitwidth is no larger than `BITS`
            unsafe { Awi::inl_from_raw_parts(0, w) }
        } else {
            // Safety: we allocate for a capacity that can store `w`. We use `size_in_bytes`
            // for `cap_in_bytes`. `alloc_zeroed` initializes the allocation.
            unsafe {
                let size_in_digits = total_digits(w).get();
                let size_in_bytes = size_in_digits * mem::size_of::<Digit>();
                let layout =
                    Layout::from_size_align_unchecked(size_in_bytes, mem::align_of::<Digit>());
                let ptr: *mut Digit = alloc_zeroed(layout).cast();
                Awi::ext_from_raw_parts(ptr, w, size_in_bytes)
            }
        }
    }

    /// Unsigned-maximum-value construction with bitwidth `w`
    pub fn umax(w: NonZeroUsize) -> Self {
        let mut res = if w.get() <= BITS {
            // Safety: the bitwidth is no larger than `BITS`
            unsafe { Awi::inl_from_raw_parts(MAX, w) }
        } else {
            // Safety: we allocate for a capacity that can store `w`. We use `size_in_bytes`
            // for `cap_in_bytes`. The allocation is initialized with `write_bytes`.
            unsafe {
                let size_in_digits = total_digits(w).get();
                let size_in_bytes = size_in_digits * mem::size_of::<Digit>();
                let layout =
                    Layout::from_size_align_unchecked(size_in_bytes, mem::align_of::<Digit>());
                let ptr: *mut Digit = alloc(layout).cast();
                ptr.write_bytes(u8::MAX, size_in_digits);
                Awi::ext_from_raw_parts(ptr, w, size_in_bytes)
            }
        };
        res.const_as_mut().clear_unused_bits();
        res
    }

    /// Signed-maximum-value construction with bitwidth `w`
    pub fn imax(w: NonZeroUsize) -> Self {
        let mut val = Self::umax(w);
        *val.const_as_mut().last_mut() = (MAX >> 1) >> val.unused();
        val
    }

    /// Signed-minimum-value construction with bitwidth `w`
    pub fn imin(w: NonZeroUsize) -> Self {
        let mut val = Self::zero(w);
        *val.const_as_mut().last_mut() = (IDigit::MIN as Digit) >> val.unused();
        val
    }

    /// Unsigned-one-value construction with bitwidth `w`
    pub fn uone(w: NonZeroUsize) -> Self {
        let mut val = Self::zero(w);
        *val.const_as_mut().first_mut() = 1;
        val
    }

    /// Creates an `Awi` from copying a `Bits` reference. The result is created
    /// to have a minimum bit capacity of `min_capacity`.
    pub fn from_bits_with_capacity(bits: &Bits, min_capacity: NonZeroUsize) -> Awi {
        let mut tmp = Awi::zero_with_capacity(bits.nzbw(), min_capacity);
        tmp.const_as_mut().copy_(bits).unwrap();
        tmp
    }

    /// Zero-value construction with bitwidth `w` and minimum bit capacity
    /// `min_capacity`
    pub fn zero_with_capacity(w: NonZeroUsize, min_capacity: NonZeroUsize) -> Self {
        let min_capacity = max(w, min_capacity);
        if min_capacity.get() <= BITS {
            // Safety: the bitwidth is no larger than `BITS`
            unsafe { Awi::inl_from_raw_parts(0, w) }
        } else {
            // Safety: we allocate for a capacity that can store `w`. We use `size_in_bytes`
            // for `cap_in_bytes`. `alloc_zeroed` initializes the allocation.
            unsafe {
                let size_in_digits = total_digits(min_capacity).get();
                let size_in_bytes = size_in_digits * mem::size_of::<Digit>();
                let layout =
                    Layout::from_size_align_unchecked(size_in_bytes, mem::align_of::<Digit>());
                let ptr: *mut Digit = alloc_zeroed(layout).cast();
                Awi::ext_from_raw_parts(ptr, w, size_in_bytes)
            }
        }
    }

    /// Unsigned-maximum-value construction with bitwidth `w` and minimum bit
    /// capacity `min_capacity`
    pub fn umax_with_capacity(w: NonZeroUsize, min_capacity: NonZeroUsize) -> Self {
        let min_capacity = max(w, min_capacity);
        let mut res = if min_capacity.get() <= BITS {
            // Safety: the bitwidth is no larger than `BITS`
            unsafe { Awi::inl_from_raw_parts(MAX, w) }
        } else {
            // Safety: we allocate for a capacity that can store `w`. We use `size_in_bytes`
            // for `cap_in_bytes`. The allocation is initialized with `write_bytes`.
            unsafe {
                let size_in_digits = total_digits(min_capacity).get();
                let size_in_bytes = size_in_digits * mem::size_of::<Digit>();
                let layout =
                    Layout::from_size_align_unchecked(size_in_bytes, mem::align_of::<Digit>());
                let ptr: *mut Digit = alloc(layout).cast();
                ptr.write_bytes(u8::MAX, size_in_digits);
                Awi::ext_from_raw_parts(ptr, w, size_in_bytes)
            }
        };
        res.const_as_mut().clear_unused_bits();
        res
    }

    /// Signed-maximum-value construction with bitwidth `w` and minimum bit
    /// capacity `min_capacity`
    pub fn imax_with_capacity(w: NonZeroUsize, min_capacity: NonZeroUsize) -> Self {
        let mut val = Self::umax_with_capacity(w, min_capacity);
        *val.const_as_mut().last_mut() = (MAX >> 1) >> val.unused();
        val
    }

    /// Signed-minimum-value construction with bitwidth `w` and minimum bit
    /// capacity `min_capacity`
    pub fn imin_with_capacity(w: NonZeroUsize, min_capacity: NonZeroUsize) -> Self {
        let mut val = Self::zero_with_capacity(w, min_capacity);
        *val.const_as_mut().last_mut() = (IDigit::MIN as Digit) >> val.unused();
        val
    }

    /// Unsigned-one-value construction with bitwidth `w` and minimum bit
    /// capacity `min_capacity`
    pub fn uone_with_capacity(w: NonZeroUsize, min_capacity: NonZeroUsize) -> Self {
        let mut val = Self::zero_with_capacity(w, min_capacity);
        *val.const_as_mut().first_mut() = 1;
        val
    }

    /// Changes the capacity to a minimum of `min_new_capacity`, first seeing if
    /// inlining is possible, then trying to do nothing if `min_new_capacity`
    /// gives the same number of digits of capacity, then allocating or
    /// reallocating otherwise. If `init`, any new digits are set to all `MAX`,
    /// else they are set to zero.
    ///
    /// # Safety
    ///
    /// This function does not change `_nzbw`, which may need to be changed
    /// afterwards if the new capacity is less than that. Note also that if
    /// inlining state changes, then the first digit can be clobbered.
    unsafe fn internal_capacity_change(&mut self, min_new_capacity: NonZeroUsize, init: bool) {
        if min_new_capacity.get() <= BITS {
            // we can switch to inline mode
            if let Some(layout) = self.layout() {
                // Safety: deallocates our layout at the right pointer, and sets capacity to 0
                unsafe {
                    dealloc(self._inl_or_ext._ext as *mut u8, layout);
                    self._cap = 0;
                }
            } // else the inlining state is already correct
        } else if self._cap == 0 {
            // we are currently inlined and need to change to external mode

            let size_in_digits = total_digits(min_new_capacity).get();
            let size_in_bytes = size_in_digits * mem::size_of::<Digit>();
            // Safety: we allocate for a capacity that can store `min_new_capacity`. We use
            // `size_in_bytes` for `_cap`. `alloc_zeroed` initializes the
            // allocation.
            unsafe {
                let layout =
                    Layout::from_size_align_unchecked(size_in_bytes, mem::align_of::<Digit>());
                let ptr: *mut Digit = if init {
                    let ptr = alloc(layout);
                    ptr.write_bytes(u8::MAX, size_in_bytes);
                    ptr
                } else {
                    alloc_zeroed(layout)
                }
                .cast();
                self._inl_or_ext._ext = ptr;
                self._cap = size_in_bytes;
            }
        } else {
            let size_in_digits = total_digits(min_new_capacity).get();
            let size_in_bytes = size_in_digits * mem::size_of::<Digit>();
            if size_in_bytes != self._cap {
                // reallocate

                // Safety: We first get the old values for reallocation of the old layout. We
                // use the `new_ptr` always and do not use `old_ptr` even if the reallocation
                // turns out to be in-place. `size_in_bytes` is nonzero and can't cause bit
                // capacity overflow. If the capacity increased, we initialize all the new
                // bytes.
                unsafe {
                    let old_ptr = self._inl_or_ext._ext as *mut u8;
                    let old_size_in_bytes = self._cap;
                    let old_layout = Layout::from_size_align_unchecked(
                        old_size_in_bytes,
                        mem::align_of::<Digit>(),
                    );
                    let new_ptr: *mut Digit = realloc(old_ptr, old_layout, size_in_bytes).cast();
                    self._inl_or_ext._ext = new_ptr;
                    self._cap = size_in_bytes;
                    if size_in_bytes > old_size_in_bytes {
                        let start_ptr = (new_ptr as *mut u8).add(old_size_in_bytes);
                        if init {
                            start_ptr.write_bytes(u8::MAX, size_in_bytes - old_size_in_bytes);
                        } else {
                            start_ptr.write_bytes(0u8, size_in_bytes - old_size_in_bytes);
                        }
                    }
                }
            } // else no capacity change needed
        }
    }

    /// Reserves capacity for at least `additional` more bits. More bits than
    /// requested may be allocated.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity exceeds `usize::MAX` bits
    pub fn reserve(&mut self, additional: usize) {
        let new_cap = self
            .capacity()
            .get()
            .checked_add(additional)
            .expect("new capacity exceeds `usize::MAX`");
        let old_digit = if self._cap == 0 {
            // Safety: we are in inline mode
            Some(unsafe { self._inl_or_ext._inl })
        } else {
            None
        };
        // Safety: the capacity does not decrease, so we do not need to set `_nzbw`
        unsafe {
            self.internal_capacity_change(NonZeroUsize::new(new_cap).unwrap(), false);
        }
        if let Some(old_digit) = old_digit {
            if self._cap != 0 {
                // we have changed to external

                // Safety: write the guaranteed first digit
                unsafe {
                    let ptr = self._inl_or_ext._ext as *mut Digit;
                    ptr.write(old_digit);
                }
            }
        }
    }

    /// Shrinks capacity to a minimum of `min_capacity` bits
    pub fn shrink_to(&mut self, min_capacity: NonZeroUsize) {
        let new_cap = max(self._nzbw, min_capacity);
        let old_digit = self.to_digit();
        let old_internal = self._cap == 0;
        // Safety: the capacity does not decrease below `_nzbw`, so we do not need to
        // set `_nzbw`
        unsafe {
            self.internal_capacity_change(new_cap, false);
        }
        if (!old_internal) && (self._cap == 0) {
            // we have changed to internal
            // Safety: we write to the internal digit
            self._inl_or_ext._inl = old_digit;
        } else if old_internal && (self._cap != 0) {
            // we have changed to external
            // Safety: we write the guaranteed first digit
            unsafe {
                let ptr = self._inl_or_ext._ext as *mut Digit;
                ptr.write(old_digit);
            }
        }
    }

    /// Shrinks capacity to fit a minimum of `self.nzbw()` bits
    pub fn shrink_to_fit(&mut self) {
        let old_digit = if self._cap != 0 {
            // Safety: read the guaranteed first digit
            Some(unsafe {
                let ptr = self._inl_or_ext._ext as *mut Digit;
                ptr.read()
            })
        } else {
            None
        };
        // Safety: the capacity does not decrease below `_nzbw`, so we do not need to
        // set `_nzbw`
        unsafe {
            self.internal_capacity_change(self._nzbw, false);
        }
        if let Some(old_digit) = old_digit {
            if self._cap == 0 {
                // we have changed to internal
                // Safety: we write to the internal digit
                self._inl_or_ext._inl = old_digit;
            }
        }
        // we cannot change from internal to external
    }

    /// Increases capacity if necessary, otherwise just changes the bitwidth and
    /// overwrites nothing (meaning that previously set bits in the capacity can
    /// appear in the available bits). Increases capacity to at least the next
    /// power of two if it needs to increase. Does not fix any new bits.
    fn internal_resize(&mut self, new_nzbw: NonZeroUsize, init: bool) {
        let old_capacity = self.capacity();
        // note that `old_capacity` is at least `BITS`
        if new_nzbw <= old_capacity {
            // Safety: this is within the current capacity
            self._nzbw = new_nzbw;
        } else if self._cap == 0 {
            // remember to copy the inline bits for writing later to the allocation

            // Safety: we are in inline mode
            let old_digit = unsafe { self._inl_or_ext._inl };
            // if the `new_nzbw` is more than the next power of two of capacity, go to it
            // instead
            let minimum = max(
                old_capacity
                    .checked_next_power_of_two()
                    .expect("reallocation failure"),
                new_nzbw,
            );
            // Safety: we fix the `_nzbw`, and write the guaranteed first digit
            unsafe {
                self.internal_capacity_change(minimum, init);
                self._nzbw = new_nzbw;
                let ptr = self._inl_or_ext._ext as *mut Digit;
                ptr.write(old_digit);
            }
        } else {
            // reallocate
            let minimum = max(
                old_capacity
                    .checked_next_power_of_two()
                    .expect("reallocation failure"),
                new_nzbw,
            );
            // Safety: we fix the `_nzbw`
            unsafe {
                self.internal_capacity_change(minimum, init);
                self._nzbw = new_nzbw;
            }
        }
    }

    /// Resizes the bitwidth of `self` inplace, reusing capacity if possible. If
    /// `new_bitwidth.get() > self.bw()`, new bits will be set to `extension`.
    /// If `new_bitwidth.bw() < self.bw()`, the upper `self.bw() -
    /// new_bitwidth.get()` bits will be truncated.
    pub fn resize(&mut self, new_bitwidth: NonZeroUsize, extension: bool) {
        let original_bw = self.bw();
        self.internal_resize(new_bitwidth, extension);
        if new_bitwidth.get() > original_bw {
            // Safety: `new_bitwidth.get() > original_bw` so `digits_u(original_bw)` is in
            // bounds
            unsafe {
                let original_extra = extra_u(original_bw);
                let start = if original_extra != 0 {
                    if extension {
                        // there are unset bits in `self`s original end digit
                        *self.get_unchecked_mut(digits_u(original_bw)) |= MAX << original_extra;
                    }
                    digits_u(original_bw).wrapping_add(1)
                } else {
                    digits_u(original_bw)
                };
                let end = self.total_digits();
                self.digit_set(extension, start..end, extension)
            }
        }
        self.clear_unused_bits();
    }

    /// Zero-resizes the bitwidth of `self` inplace, reusing capacity if
    /// possible. This is the same as `self.resize(false)`, but returns `true`
    /// if the unsigned meaning of the integer is changed.
    pub fn zero_resize(&mut self, new_bitwidth: NonZeroUsize) -> bool {
        let overflow = if new_bitwidth.get() < self.bw() {
            // Safety: we stay in bounds
            unsafe {
                // check if there are set bits that would be truncated
                if (extra(new_bitwidth) != 0)
                    && ((self.get_unchecked(digits(new_bitwidth)) >> extra(new_bitwidth)) != 0)
                {
                    true
                } else {
                    let mut overflow = false;
                    const_for!(i in {total_digits(new_bitwidth).get()..self.total_digits()} {
                        if self.get_unchecked(i) != 0 {
                            overflow = true;
                            break
                        }
                    });
                    overflow
                }
            }
        } else {
            false
        };
        self.resize(new_bitwidth, false);
        overflow
    }

    /// Sign-resizes the bitwidth of `self` inplace, reusing capacity if
    /// possible. This is the same as `self.resize(self.msb())`, but returns
    /// `true` if the signed meaning of the integer is changed.
    pub fn sign_resize(&mut self, new_bitwidth: NonZeroUsize) -> bool {
        let old_msb = self.msb();
        let old_len = self.total_digits();
        let old_extra = self.extra();
        let new_len = total_digits(new_bitwidth).get();
        let new_extra = extra(new_bitwidth);
        let mut overflow = false;
        if new_bitwidth.get() < self.bw() {
            // Safety: we stay in bounds
            unsafe {
                if old_msb {
                    // check if there are unset bits that would be truncated
                    if new_len == old_len {
                        // first and only digit
                        if old_extra != 0 {
                            //  old extra mask and new cutoff mask
                            let expected = (MAX >> (BITS - old_extra)) & (MAX << new_extra);
                            if (self.last() & expected) != expected {
                                overflow = true;
                            }
                        } else {
                            let expected = MAX << new_extra;
                            if (self.last() & expected) != expected {
                                overflow = true;
                            }
                        }
                        self.resize(new_bitwidth, old_msb);
                        // avoid the other tests if this is the only digit

                        if !self.msb() {
                            overflow = true;
                        }
                        overflow
                    } else {
                        // first digit
                        if new_extra != 0 {
                            let expected = MAX << new_extra;
                            if (self.get_unchecked(new_len - 1) & expected) != expected {
                                overflow = true;
                            }
                        }
                        // middle digits
                        if !overflow {
                            const_for!(i in {new_len..(old_len - 1)} {
                                if self.get_unchecked(i) != MAX {
                                    overflow = true;
                                }
                            });
                        }
                        // last digit
                        if old_extra != 0 {
                            let expected = MAX >> (BITS - old_extra);
                            if (self.last() & expected) != expected {
                                overflow = true;
                            }
                        } else if self.last() != MAX {
                            overflow = true;
                        }
                        self.resize(new_bitwidth, old_msb);
                        // check if the new most significant bit is unset (which would mean overflow
                        // from negative to positive)
                        if !self.msb() {
                            overflow = true;
                        }
                        overflow
                    }
                } else {
                    // check if there are set bits that would be truncated
                    if (new_extra != 0) && ((self.get_unchecked(new_len - 1) >> new_extra) != 0) {
                        overflow = true;
                    } else {
                        const_for!(i in {new_len..old_len} {
                            if self.get_unchecked(i) != 0 {
                                overflow = true;
                                break
                            }
                        });
                    }
                    self.resize(new_bitwidth, old_msb);
                    // check if the new most significant bit is set (which would mean overflow from
                    // positive to negative)
                    if self.msb() {
                        overflow = true;
                    }
                    overflow
                }
            }
        } else {
            self.resize(new_bitwidth, old_msb);
            false
        }
    }

    /// Used by `awint_macros` in avoiding a `NonZeroUsize` dependency
    #[doc(hidden)]
    pub fn panicking_zero(w: usize) -> Self {
        Self::zero(NonZeroUsize::new(w).unwrap())
    }

    /// Used by `awint_macros` in avoiding a `NonZeroUsize` dependency
    #[doc(hidden)]
    pub fn panicking_umax(w: usize) -> Self {
        Self::umax(NonZeroUsize::new(w).unwrap())
    }

    /// Used by `awint_macros` in avoiding a `NonZeroUsize` dependency
    #[doc(hidden)]
    pub fn panicking_imax(w: usize) -> Self {
        Self::imax(NonZeroUsize::new(w).unwrap())
    }

    /// Used by `awint_macros` in avoiding a `NonZeroUsize` dependency
    #[doc(hidden)]
    pub fn panicking_imin(w: usize) -> Self {
        Self::imin(NonZeroUsize::new(w).unwrap())
    }

    /// Used by `awint_macros` in avoiding a `NonZeroUsize` dependency
    #[doc(hidden)]
    pub fn panicking_uone(w: usize) -> Self {
        Self::uone(NonZeroUsize::new(w).unwrap())
    }
}

impl Drop for Awi {
    fn drop(&mut self) {
        if let Some(layout) = self.layout() {
            // Safety: deallocates our layout at the right pointer. The `_cap` and `_nzbw`
            // are going to be invalidated, but the whole struct is being dropped and will
            // not be used again.
            unsafe {
                dealloc(self._inl_or_ext._ext as *mut u8, layout);
            }
        }
    }
}

impl Clone for Awi {
    /// The capacity of the cloned `Awi` can be reduced to the minimum required
    /// for `self.nzbw()`
    fn clone(&self) -> Awi {
        if self._cap == 0 {
            // Safety: we copy the inline digit
            unsafe {
                Awi::inl_from_raw_parts(self._inl_or_ext._inl, self._nzbw)
                // we do not have to clear unused bits since `_inl` is a single
                // `Digit` and should already be cleared.
            }
        } else if self._nzbw.get() <= BITS {
            // we already checked for `self._cap == 0`, so we must read from the allocation
            // and switch to being inline

            // Safety: we use a digit and a bitwidth no more than `BITS` in size
            unsafe {
                let digit = self.internal_as_ref().to_digit();
                Awi::inl_from_raw_parts(digit, self._nzbw)
            }
        } else {
            // Safety: We create enough capacity, use the right alignment, initialize the
            // whole allocation, and use `size_in_bytes`.
            unsafe {
                let size_in_digits = total_digits(self._nzbw).get();
                let size_in_bytes = size_in_digits * mem::size_of::<Digit>();
                let layout =
                    Layout::from_size_align_unchecked(size_in_bytes, mem::align_of::<Digit>());
                let dst: *mut Digit = alloc(layout).cast();
                ptr::copy_nonoverlapping(self._inl_or_ext._ext, dst, size_in_digits);
                Awi::ext_from_raw_parts(dst, self._nzbw, size_in_bytes)
            }
        }
    }
}

/// If `self` and `other` have unmatching bit widths, `false` will be returned.
impl PartialEq for Awi {
    fn eq(&self, rhs: &Self) -> bool {
        self.as_ref() == rhs.as_ref()
    }
}

/// If `self` and `other` have unmatching bit widths, `false` will be returned.
impl Eq for Awi {}

#[cfg(feature = "zeroize_support")]
impl zeroize::Zeroize for Awi {
    fn zeroize(&mut self) {
        self.as_mut().zeroize()
    }
}

macro_rules! impl_fmt {
    ($($ty:ident)*) => {
        $(
            /// Forwards to the corresponding impl for `Bits`
            impl fmt::$ty for Awi {
                fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                    fmt::$ty::fmt(self.as_ref(), f)
                }
            }
        )*
    };
}

impl_fmt!(Debug Display LowerHex UpperHex Octal Binary);

impl Hash for Awi {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.as_ref().hash(state);
    }
}

impl Deref for Awi {
    type Target = Bits;

    #[inline]
    fn deref(&self) -> &Self::Target {
        self.internal_as_ref()
    }
}

impl DerefMut for Awi {
    #[inline]
    fn deref_mut(&mut self) -> &mut Bits {
        self.internal_as_mut()
    }
}

impl Index<RangeFull> for Awi {
    type Output = Bits;

    #[inline]
    fn index(&self, _i: RangeFull) -> &Bits {
        self
    }
}

impl Borrow<Bits> for Awi {
    #[inline]
    fn borrow(&self) -> &Bits {
        self
    }
}

impl AsRef<Bits> for Awi {
    #[inline]
    fn as_ref(&self) -> &Bits {
        self
    }
}

impl IndexMut<RangeFull> for Awi {
    #[inline]
    fn index_mut(&mut self, _i: RangeFull) -> &mut Bits {
        self
    }
}

impl BorrowMut<Bits> for Awi {
    #[inline]
    fn borrow_mut(&mut self) -> &mut Bits {
        self
    }
}

impl AsMut<Bits> for Awi {
    #[inline]
    fn as_mut(&mut self) -> &mut Bits {
        self
    }
}

// we unfortunately can't do something like `impl<B: Borrow<Bits>> From<B>`
// because specialization is not stabilized

/// Creates an `Awi` from copying a `Bits` reference
impl From<&Bits> for Awi {
    fn from(bits: &Bits) -> Awi {
        let mut tmp = Awi::zero(bits.nzbw());
        tmp.const_as_mut().copy_(bits).unwrap();
        tmp
    }
}

/// Creates an `Awi` from copying an `InlAwi`
impl<const BW: usize, const LEN: usize> From<InlAwi<BW, LEN>> for Awi {
    fn from(awi: InlAwi<BW, LEN>) -> Awi {
        let mut tmp = Awi::zero(awi.nzbw());
        tmp.const_as_mut().copy_(&awi).unwrap();
        tmp
    }
}

macro_rules! awi_from_ty {
    ($($ty:ident $from:ident $assign:ident);*;) => {
        $(
            /// Creates an `Awi` with the same bitwidth and bits as the integer
            pub fn $from(x: $ty) -> Self {
                let mut tmp = Awi::zero(bw($ty::BITS as usize));
                tmp.$assign(x);
                tmp
            }
        )*
    };
}

impl Awi {
    awi_from_ty!(
        u8 from_u8 u8_;
        u16 from_u16 u16_;
        u32 from_u32 u32_;
        u64 from_u64 u64_;
        u128 from_u128 u128_;
        usize from_usize usize_;
        i8 from_i8 i8_;
        i16 from_i16 i16_;
        i32 from_i32 i32_;
        i64 from_i64 i64_;
        i128 from_i128 i128_;
        isize from_isize isize_;
    );

    /// Creates an `Awi` with one bit set to this `bool`
    pub fn from_bool(x: bool) -> Self {
        let mut tmp = Awi::zero(bw(1));
        tmp.bool_(x);
        tmp
    }

    /// Creates an `Awi` with the same bitwidth and bits as the integer
    pub fn from_digit(x: Digit) -> Self {
        let mut tmp = Awi::zero(bw(BITS));
        tmp.digit_(x);
        tmp
    }
}

impl From<bool> for Awi {
    fn from(x: bool) -> Awi {
        let mut tmp = Awi::zero(bw(1));
        tmp.bool_(x);
        tmp
    }
}

macro_rules! awi_from {
    ($($ty:ident, $assign:ident);*;) => {
        $(
            impl From<$ty> for Awi {
                fn from(x: $ty) -> Self {
                    let mut tmp = Awi::zero(bw($ty::BITS as usize));
                    tmp.$assign(x);
                    tmp
                }
            }
        )*
    };
}

awi_from!(
    u8, u8_;
    u16, u16_;
    u32, u32_;
    u64, u64_;
    u128, u128_;
    usize, usize_;
    i8, i8_;
    i16, i16_;
    i32, i32_;
    i64, i64_;
    i128, i128_;
    isize, isize_;
);