use core;
use conv::ApproxFrom;
#[derive(Debug, Clone)]
pub struct WeightedAverage {
weight_sum: f64,
weight_sum_sq: f64,
weighted_avg: f64,
n: u64,
unweighted_avg: f64,
v: f64,
}
impl WeightedAverage {
pub fn new() -> WeightedAverage {
WeightedAverage {
weight_sum: 0., weight_sum_sq: 0., weighted_avg: 0.,
n: 0, unweighted_avg: 0., v: 0.,
}
}
pub fn add(&mut self, sample: f64, weight: f64) {
self.weight_sum += weight;
self.weight_sum_sq += weight*weight;
let prev_avg = self.weighted_avg;
self.weighted_avg = prev_avg + (weight / self.weight_sum) * (sample - prev_avg);
self.n += 1;
let delta = sample - self.unweighted_avg;
self.unweighted_avg += delta / f64::approx_from(self.n).unwrap();
self.v += delta * (sample - self.unweighted_avg);
}
pub fn is_empty(&self) -> bool {
self.n == 0
}
pub fn sum_weights(&self) -> f64 {
self.weight_sum
}
pub fn sum_weights_sq(&self) -> f64 {
self.weight_sum_sq
}
pub fn weighted_mean(&self) -> f64 {
self.weighted_avg
}
pub fn unweighted_mean(&self) -> f64 {
self.unweighted_avg
}
pub fn len(&self) -> u64 {
self.n
}
pub fn effective_len(&self) -> f64 {
if self.is_empty() {
return 0.
}
self.weight_sum * self.weight_sum / self.weight_sum_sq
}
pub fn population_variance(&self) -> f64 {
if self.n < 2 {
return 0.;
}
self.v / f64::approx_from(self.n).unwrap()
}
pub fn sample_variance(&self) -> f64 {
if self.n < 2 {
return 0.;
}
self.v / f64::approx_from(self.n - 1).unwrap()
}
pub fn error(&self) -> f64 {
if self.weight_sum_sq == 0. || self.weight_sum == 0. {
return 0.;
}
let effective_base = self.weight_sum * self.weight_sum / self.weight_sum_sq;
(self.sample_variance() / effective_base).sqrt()
}
pub fn merge(&mut self, other: &WeightedAverage) {
{
let total_weight_sum = self.weight_sum + other.weight_sum;
self.weighted_avg = (self.weight_sum * self.weighted_avg
+ other.weight_sum * other.weighted_avg)
/ (self.weight_sum + other.weight_sum);
self.weight_sum = total_weight_sum;
self.weight_sum_sq += other.weight_sum_sq;
}
{
let delta = other.unweighted_avg - self.unweighted_avg;
let len_self = f64::approx_from(self.n).unwrap();
let len_other = f64::approx_from(other.n).unwrap();
let len_total = len_self + len_other;
self.n += other.n;
self.unweighted_avg = (len_self * self.unweighted_avg
+ len_other * other.unweighted_avg)
/ len_total;
self.v += other.v + delta*delta * len_self * len_other / len_total;
}
}
}
impl core::default::Default for WeightedAverage {
fn default() -> WeightedAverage {
WeightedAverage::new()
}
}
impl core::iter::FromIterator<(f64, f64)> for WeightedAverage {
fn from_iter<T>(iter: T) -> WeightedAverage
where T: IntoIterator<Item=(f64, f64)>
{
let mut a = WeightedAverage::new();
for (i, w) in iter {
a.add(i, w);
}
a
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn merge_unweighted() {
let sequence: &[f64] = &[1., 2., 3., 4., 5., 6., 7., 8., 9.];
for mid in 0..sequence.len() {
let (left, right) = sequence.split_at(mid);
let avg_total: WeightedAverage = sequence.iter().map(|x| (*x, 1.)).collect();
let mut avg_left: WeightedAverage = left.iter().map(|x| (*x, 1.)).collect();
let avg_right: WeightedAverage = right.iter().map(|x| (*x, 1.)).collect();
avg_left.merge(&avg_right);
assert_eq!(avg_total.n, avg_left.n);
assert_eq!(avg_total.weight_sum, avg_left.weight_sum);
assert_eq!(avg_total.weight_sum_sq, avg_left.weight_sum_sq);
assert_eq!(avg_total.weighted_avg, avg_left.weighted_avg);
assert_eq!(avg_total.unweighted_avg, avg_left.unweighted_avg);
assert_eq!(avg_total.v, avg_left.v);
}
}
#[test]
fn merge_weighted() {
let sequence: &[(f64, f64)] = &[
(1., 0.1), (2., 0.2), (3., 0.3), (4., 0.4), (5., 0.5),
(6., 0.6), (7., 0.7), (8., 0.8), (9., 0.)];
for mid in 0..sequence.len() {
let (left, right) = sequence.split_at(mid);
let avg_total: WeightedAverage = sequence.iter().map(|&(x, w)| (x, w)).collect();
let mut avg_left: WeightedAverage = left.iter().map(|&(x, w)| (x, w)).collect();
let avg_right: WeightedAverage = right.iter().map(|&(x, w)| (x, w)).collect();
avg_left.merge(&avg_right);
assert_eq!(avg_total.n, avg_left.n);
assert_almost_eq!(avg_total.weight_sum, avg_left.weight_sum, 1e-15);
assert_eq!(avg_total.weight_sum_sq, avg_left.weight_sum_sq);
assert_almost_eq!(avg_total.weighted_avg, avg_left.weighted_avg, 1e-15);
assert_almost_eq!(avg_total.unweighted_avg, avg_left.unweighted_avg, 1e-15);
assert_almost_eq!(avg_total.v, avg_left.v, 1e-14);
}
}
}