use core;
#[cfg(feature = "serde1")] use serde::{Serialize, Deserialize};
use super::{MeanWithError, Estimate, Merge};
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct WeightedMean {
weight_sum: f64,
weighted_avg: f64,
}
impl WeightedMean {
pub fn new() -> WeightedMean {
WeightedMean {
weight_sum: 0., weighted_avg: 0.,
}
}
#[inline]
pub fn add(&mut self, sample: f64, weight: f64) {
self.weight_sum += weight;
let prev_avg = self.weighted_avg;
self.weighted_avg = prev_avg + (weight / self.weight_sum) * (sample - prev_avg);
}
#[inline]
pub fn is_empty(&self) -> bool {
self.weight_sum == 0.
}
#[inline]
pub fn sum_weights(&self) -> f64 {
self.weight_sum
}
#[inline]
pub fn mean(&self) -> f64 {
self.weighted_avg
}
}
impl core::default::Default for WeightedMean {
fn default() -> WeightedMean {
WeightedMean::new()
}
}
impl core::iter::FromIterator<(f64, f64)> for WeightedMean {
fn from_iter<T>(iter: T) -> WeightedMean
where T: IntoIterator<Item=(f64, f64)>
{
let mut a = WeightedMean::new();
for (i, w) in iter {
a.add(i, w);
}
a
}
}
impl<'a> core::iter::FromIterator<&'a (f64, f64)> for WeightedMean {
fn from_iter<T>(iter: T) -> WeightedMean
where T: IntoIterator<Item=&'a (f64, f64)>
{
let mut a = WeightedMean::new();
for &(i, w) in iter {
a.add(i, w);
}
a
}
}
impl Merge for WeightedMean {
#[inline]
fn merge(&mut self, other: &WeightedMean) {
let total_weight_sum = self.weight_sum + other.weight_sum;
self.weighted_avg = (self.weight_sum * self.weighted_avg
+ other.weight_sum * other.weighted_avg)
/ total_weight_sum;
self.weight_sum = total_weight_sum;
}
}
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct WeightedMeanWithError {
weight_sum_sq: f64,
weighted_avg: WeightedMean,
unweighted_avg: MeanWithError,
}
impl WeightedMeanWithError {
#[inline]
pub fn new() -> WeightedMeanWithError {
WeightedMeanWithError {
weight_sum_sq: 0.,
weighted_avg: WeightedMean::new(),
unweighted_avg: MeanWithError::new(),
}
}
#[inline]
pub fn add(&mut self, sample: f64, weight: f64) {
self.weight_sum_sq += weight*weight;
self.weighted_avg.add(sample, weight);
self.unweighted_avg.add(sample);
}
#[inline]
pub fn is_empty(&self) -> bool {
self.unweighted_avg.is_empty()
}
#[inline]
pub fn sum_weights(&self) -> f64 {
self.weighted_avg.sum_weights()
}
#[inline]
pub fn sum_weights_sq(&self) -> f64 {
self.weight_sum_sq
}
#[inline]
pub fn weighted_mean(&self) -> f64 {
self.weighted_avg.mean()
}
#[inline]
pub fn unweighted_mean(&self) -> f64 {
self.unweighted_avg.mean()
}
#[inline]
pub fn len(&self) -> u64 {
self.unweighted_avg.len()
}
#[inline]
pub fn effective_len(&self) -> f64 {
if self.is_empty() {
return 0.
}
let weight_sum = self.weighted_avg.sum_weights();
weight_sum * weight_sum / self.weight_sum_sq
}
#[inline]
pub fn population_variance(&self) -> f64 {
self.unweighted_avg.population_variance()
}
#[inline]
pub fn sample_variance(&self) -> f64 {
self.unweighted_avg.sample_variance()
}
#[inline]
pub fn error(&self) -> f64 {
let weight_sum = self.weighted_avg.sum_weights();
if weight_sum == 0. {
return 0.;
}
let inv_effective_len = self.weight_sum_sq / (weight_sum * weight_sum);
(self.sample_variance() * inv_effective_len).sqrt()
}
}
impl Merge for WeightedMeanWithError {
#[inline]
fn merge(&mut self, other: &WeightedMeanWithError) {
self.weight_sum_sq += other.weight_sum_sq;
self.weighted_avg.merge(&other.weighted_avg);
self.unweighted_avg.merge(&other.unweighted_avg);
}
}
impl core::default::Default for WeightedMeanWithError {
fn default() -> WeightedMeanWithError {
WeightedMeanWithError::new()
}
}
impl core::iter::FromIterator<(f64, f64)> for WeightedMeanWithError {
fn from_iter<T>(iter: T) -> WeightedMeanWithError
where T: IntoIterator<Item=(f64, f64)>
{
let mut a = WeightedMeanWithError::new();
for (i, w) in iter {
a.add(i, w);
}
a
}
}
impl<'a> core::iter::FromIterator<&'a (f64, f64)> for WeightedMeanWithError {
fn from_iter<T>(iter: T) -> WeightedMeanWithError
where T: IntoIterator<Item=&'a (f64, f64)>
{
let mut a = WeightedMeanWithError::new();
for &(i, w) in iter {
a.add(i, w);
}
a
}
}