av1_grain/
create.rs

1// Copyright (c) 2022-2022, The rav1e contributors. All rights reserved
2//
3// This source code is subject to the terms of the BSD 2 Clause License and
4// the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
5// was not distributed with this source code in the LICENSE file, you can
6// obtain it at www.aomedia.org/license/software. If the Alliance for Open
7// Media Patent License 1.0 was not distributed with this source code in the
8// PATENTS file, you can obtain it at www.aomedia.org/license/patent.
9
10// The original work for this formula was implmented in aomenc, and this is
11// an adaptation of that work:
12// https://aomedia.googlesource.com/aom/+/refs/heads/main/examples/photon_noise_table.c
13
14// This implementation creates a film grain table, for use in stills and videos,
15// representing the noise that one would get by shooting with a digital camera
16// at a given light level. Much of the noise in digital images is photon shot
17// noise, which is due to the characteristics of photon arrival and grows in
18// standard deviation as the square root of the expected number of photons
19// captured.
20// https://www.photonstophotos.net/Emil%20Martinec/noise.html#shotnoise
21//
22// The proxy used by this implementation for the amount of light captured
23// is the ISO value such that the focal plane exposure at the time of capture
24// would have been mapped by a 35mm camera to the output lightness observed
25// in the image. That is, if one were to shoot on a 35mm camera (36×24mm sensor)
26// at the nominal exposure for that ISO setting, the resulting image should
27// contain noise of the same order of magnitude as generated by this
28// implementation.
29//
30// The (mostly) square-root relationship between light intensity and noise
31// amplitude holds in linear light, but AV1 streams are most often encoded
32// non-linearly, and the film grain is applied to those non-linear values.
33// Therefore, this implementation must account for the non-linearity, and this
34// is controlled by the transfer function parameter, which specifies the tone
35// response curve that will be used when encoding the actual image. The default
36// for this implementation is BT.1886, which is approximately similar to an
37// encoding gamma of 1/2.8 (i.e. a decoding gamma of 2.8) though not quite
38// identical.
39//
40// As alluded to above, the implementation assumes that the image is taken from
41// the entirety of a 36×24mm (“35mm format”) sensor. If that assumption does not
42// hold, then a “35mm-equivalent ISO value” that can be passed to the
43// implementation can be obtained by multiplying the true ISO value by the ratio
44// of 36×24mm to the area that was actually used. For formats that approximately
45// share the same aspect ratio, this is often expressed as the square of the
46// “equivalence ratio” which is the ratio of their diagonals. For example, APS-C
47// (often ~24×16mm) is said to have an equivalence ratio of 1.5 relative to the
48// 35mm format, and therefore ISO 1000 on APS-C and ISO 1000×1.5² = 2250 on 35mm
49// produce an image of the same lightness from the same amount of light spread
50// onto their respective surface areas (resulting in different focal plane
51// exposures), and those images will thus have similar amounts of noise if the
52// cameras are of similar technology. https://doi.org/10.1117/1.OE.57.11.110801
53//
54// The implementation needs to know the resolution of the images to which its
55// grain tables will be applied so that it can know how the light on the sensor
56// was shared between its pixels. As a general rule, while a higher pixel count
57// will lead to more noise per pixel, when the final image is viewed at the same
58// physical size, that noise will tend to “average out” to the same amount over
59// a given area, since there will be more pixels in it which, in aggregate, will
60// have received essentially as much light. Put differently, the amount of noise
61// depends on the scale at which it is measured, and the decision for this
62// implementation was to make that scale relative to the image instead of its
63// constituent samples. For more on this, see:
64//
65// https://www.photonstophotos.net/Emil%20Martinec/noise-p3.html#pixelsize
66// https://www.dpreview.com/articles/5365920428/the-effect-of-pixel-and-sensor-sizes-on-noise/2
67// https://www.dpreview.com/videos/7940373140/dpreview-tv-why-lower-resolution-sensors-are-not-better-in-low-light
68
69use std::{
70    fs::File,
71    io::{BufWriter, Write},
72    path::Path,
73};
74
75use arrayvec::ArrayVec;
76
77use crate::{GrainTableSegment, ScalingPoints, DEFAULT_GRAIN_SEED, NUM_Y_POINTS};
78
79const PQ_M1: f32 = 2610. / 16384.;
80const PQ_M2: f32 = 128. * 2523. / 4096.;
81const PQ_C1: f32 = 3424. / 4096.;
82const PQ_C2: f32 = 32. * 2413. / 4096.;
83const PQ_C3: f32 = 32. * 2392. / 4096.;
84
85const BT1886_WHITEPOINT: f32 = 203.;
86const BT1886_BLACKPOINT: f32 = 0.1;
87const BT1886_GAMMA: f32 = 2.4;
88
89// BT.1886 formula from https://en.wikipedia.org/wiki/ITU-R_BT.1886.
90//
91// TODO: the inverses, alpha, and beta should all be constants
92// once floats in const fns are stabilized and `powf` is const.
93// Until then, `inline(always)` gets us close enough.
94
95fn bt1886_inv_whitepoint() -> f32 {
96    BT1886_WHITEPOINT.powf(1.0 / BT1886_GAMMA)
97}
98
99fn bt1886_inv_blackpoint() -> f32 {
100    BT1886_BLACKPOINT.powf(1.0 / BT1886_GAMMA)
101}
102
103/// The variable for user gain:
104/// `α = (Lw^(1/λ) - Lb^(1/λ)) ^ λ`
105fn bt1886_alpha() -> f32 {
106    (bt1886_inv_whitepoint() - bt1886_inv_blackpoint()).powf(BT1886_GAMMA)
107}
108
109/// The variable for user black level lift:
110/// `β = Lb^(1/λ) / (Lw^(1/λ) - Lb^(1/λ))`
111fn bt1886_beta() -> f32 {
112    bt1886_inv_blackpoint() / (bt1886_inv_whitepoint() - bt1886_inv_blackpoint())
113}
114
115/// Settings and video data defining how to generate the film grain params.
116#[derive(Debug, Clone, Copy)]
117pub struct NoiseGenArgs {
118    pub iso_setting: u32,
119    pub width: u32,
120    pub height: u32,
121    pub transfer_function: TransferFunction,
122    pub chroma_grain: bool,
123    pub random_seed: Option<u16>,
124}
125
126/// Generates a set of photon noise parameters for a segment of video
127/// given a set of `args`.
128#[must_use]
129#[inline]
130pub fn generate_photon_noise_params(
131    start_time: u64,
132    end_time: u64,
133    args: NoiseGenArgs,
134) -> GrainTableSegment {
135    GrainTableSegment {
136        start_time,
137        end_time,
138        scaling_points_y: generate_luma_noise_points(args),
139        scaling_points_cb: ArrayVec::new(),
140        scaling_points_cr: ArrayVec::new(),
141        scaling_shift: 8,
142        ar_coeff_lag: 0,
143        ar_coeffs_y: ArrayVec::new(),
144        ar_coeffs_cb: ArrayVec::try_from([0].as_slice())
145            .expect("Cannot fail creation from const array"),
146        ar_coeffs_cr: ArrayVec::try_from([0].as_slice())
147            .expect("Cannot fail creation from const array"),
148        ar_coeff_shift: 6,
149        cb_mult: 0,
150        cb_luma_mult: 0,
151        cb_offset: 0,
152        cr_mult: 0,
153        cr_luma_mult: 0,
154        cr_offset: 0,
155        overlap_flag: true,
156        chroma_scaling_from_luma: args.chroma_grain,
157        grain_scale_shift: 0,
158        random_seed: args.random_seed.unwrap_or(DEFAULT_GRAIN_SEED),
159    }
160}
161
162/// Generates a set of film grain parameters for a segment of video
163/// given a set of `args`.
164///
165/// # Panics
166/// - This is not yet implemented, so it will always panic
167#[must_use]
168#[inline]
169#[cfg(feature = "unstable")]
170pub fn generate_film_grain_params(
171    start_time: u64,
172    end_time: u64,
173    args: NoiseGenArgs,
174) -> GrainTableSegment {
175    todo!("SCIENCE");
176    // GrainTableSegment {
177    //     start_time,
178    //     end_time,
179    //     scaling_points_y: generate_luma_noise_points(args),
180    //     scaling_points_cb: ArrayVec::new(),
181    //     scaling_points_cr: ArrayVec::new(),
182    //     scaling_shift: 8,
183    //     ar_coeff_lag: 0,
184    //     ar_coeffs_y: ArrayVec::new(),
185    //     ar_coeffs_cb: ArrayVec::try_from([0].as_slice())
186    //         .expect("Cannot fail creation from const array"),
187    //     ar_coeffs_cr: ArrayVec::try_from([0].as_slice())
188    //         .expect("Cannot fail creation from const array"),
189    //     ar_coeff_shift: 6,
190    //     cb_mult: 0,
191    //     cb_luma_mult: 0,
192    //     cb_offset: 0,
193    //     cr_mult: 0,
194    //     cr_luma_mult: 0,
195    //     cr_offset: 0,
196    //     overlap_flag: true,
197    //     chroma_scaling_from_luma: args.chroma_grain,
198    //     grain_scale_shift: 0,
199    //     random_seed: args.random_seed.unwrap_or(DEFAULT_GRAIN_SEED),
200    // }
201}
202
203/// Write a set of generated film grain params to a table file,
204/// using the standard film grain table format supported by
205/// aomenc, rav1e, and svt-av1.
206///
207/// # Errors
208///
209/// - If the output file cannot be written to
210#[inline]
211pub fn write_grain_table<P: AsRef<Path>>(
212    filename: P,
213    params: &[GrainTableSegment],
214) -> anyhow::Result<()> {
215    let mut file = BufWriter::new(File::create(filename)?);
216    writeln!(&mut file, "filmgrn1")?;
217    for segment in params {
218        write_film_grain_segment(segment, &mut file)?;
219    }
220    file.flush()?;
221
222    Ok(())
223}
224
225fn write_film_grain_segment(
226    params: &GrainTableSegment,
227    output: &mut BufWriter<File>,
228) -> anyhow::Result<()> {
229    writeln!(
230        output,
231        "E {} {} 1 {} 1",
232        params.start_time, params.end_time, params.random_seed,
233    )?;
234    writeln!(
235        output,
236        "\tp {} {} {} {} {} {} {} {} {} {} {} {}",
237        params.ar_coeff_lag,
238        params.ar_coeff_shift,
239        params.grain_scale_shift,
240        params.scaling_shift,
241        u8::from(params.chroma_scaling_from_luma),
242        u8::from(params.overlap_flag),
243        params.cb_mult,
244        params.cb_luma_mult,
245        params.cb_offset,
246        params.cr_mult,
247        params.cr_luma_mult,
248        params.cr_offset
249    )?;
250
251    write!(output, "\tsY {} ", params.scaling_points_y.len())?;
252    for point in &params.scaling_points_y {
253        write!(output, " {} {}", point[0], point[1])?;
254    }
255    writeln!(output)?;
256
257    write!(output, "\tsCb {}", params.scaling_points_cb.len())?;
258    for point in &params.scaling_points_cb {
259        write!(output, " {} {}", point[0], point[1])?;
260    }
261    writeln!(output)?;
262
263    write!(output, "\tsCr {}", params.scaling_points_cr.len())?;
264    for point in &params.scaling_points_cr {
265        write!(output, " {} {}", point[0], point[1])?;
266    }
267    writeln!(output)?;
268
269    write!(output, "\tcY")?;
270    for coeff in &params.ar_coeffs_y {
271        write!(output, " {}", *coeff)?;
272    }
273    writeln!(output)?;
274
275    write!(output, "\tcCb")?;
276    for coeff in &params.ar_coeffs_cb {
277        write!(output, " {}", *coeff)?;
278    }
279    writeln!(output)?;
280
281    write!(output, "\tcCr")?;
282    for coeff in &params.ar_coeffs_cr {
283        write!(output, " {}", *coeff)?;
284    }
285    writeln!(output)?;
286
287    Ok(())
288}
289
290#[allow(clippy::upper_case_acronyms)]
291#[derive(Debug, Clone, Copy, PartialEq, Eq)]
292pub enum TransferFunction {
293    /// For SDR content
294    BT1886,
295    /// For HDR content
296    SMPTE2084,
297}
298
299impl TransferFunction {
300    #[must_use]
301    #[inline]
302    pub fn to_linear(self, x: f32) -> f32 {
303        match self {
304            TransferFunction::BT1886 => {
305                // The screen luminance in cd/m^2:
306                // L = α * (x + β)^λ
307                let luma = bt1886_alpha() * (x + bt1886_beta()).powf(BT1886_GAMMA);
308
309                // Normalize to between 0.0 and 1.0
310                luma / BT1886_WHITEPOINT
311            }
312            TransferFunction::SMPTE2084 => {
313                let pq_pow_inv_m2 = x.powf(1. / PQ_M2);
314                (0_f32.max(pq_pow_inv_m2 - PQ_C1) / PQ_C3.mul_add(-pq_pow_inv_m2, PQ_C2))
315                    .powf(1. / PQ_M1)
316            }
317        }
318    }
319
320    #[allow(clippy::wrong_self_convention)]
321    #[must_use]
322    #[inline]
323    pub fn from_linear(self, x: f32) -> f32 {
324        match self {
325            TransferFunction::BT1886 => {
326                // Scale to a raw cd/m^2 value
327                let luma = x * BT1886_WHITEPOINT;
328
329                // The inverse of the `to_linear` formula:
330                // `(L / α)^(1 / λ) - β = x`
331                (luma / bt1886_alpha()).powf(1.0 / BT1886_GAMMA) - bt1886_beta()
332            }
333            TransferFunction::SMPTE2084 => {
334                if x < f32::EPSILON {
335                    return 0.0;
336                }
337                let linear_pow_m1 = x.powf(PQ_M1);
338                (PQ_C2.mul_add(linear_pow_m1, PQ_C1) / PQ_C3.mul_add(linear_pow_m1, 1.)).powf(PQ_M2)
339            }
340        }
341    }
342
343    #[inline]
344    #[must_use]
345    pub fn mid_tone(self) -> f32 {
346        self.to_linear(0.5)
347    }
348}
349
350fn generate_luma_noise_points(args: NoiseGenArgs) -> ScalingPoints {
351    // Assumes a daylight-like spectrum.
352    // https://www.strollswithmydog.com/effective-quantum-efficiency-of-sensor/#:~:text=11%2C260%20photons/um%5E2/lx-s
353    const PHOTONS_PER_SQ_MICRON_PER_LUX_SECOND: f32 = 11260.;
354
355    // Order of magnitude for cameras in the 2010-2020 decade, taking the CFA into
356    // account.
357    const EFFECTIVE_QUANTUM_EFFICIENCY: f32 = 0.2;
358
359    // Also reasonable values for current cameras. The read noise is typically
360    // higher than this at low ISO settings but it matters less there.
361    const PHOTO_RESPONSE_NON_UNIFORMITY: f32 = 0.005;
362    const INPUT_REFERRED_READ_NOISE: f32 = 1.5;
363
364    // Assumes a 35mm sensor (36mm × 24mm).
365    const SENSOR_AREA: f32 = 36_000. * 24_000.;
366
367    // Focal plane exposure for a mid-tone (typically a 18% reflectance card), in
368    // lx·s.
369    let mid_tone_exposure = 10. / args.iso_setting as f32;
370
371    let pixel_area_microns = SENSOR_AREA / (args.width * args.height) as f32;
372
373    let mid_tone_electrons_per_pixel = EFFECTIVE_QUANTUM_EFFICIENCY
374        * PHOTONS_PER_SQ_MICRON_PER_LUX_SECOND
375        * mid_tone_exposure
376        * pixel_area_microns;
377    let max_electrons_per_pixel = mid_tone_electrons_per_pixel / args.transfer_function.mid_tone();
378
379    let mut scaling_points = ScalingPoints::default();
380    for i in 0..NUM_Y_POINTS {
381        let x = i as f32 / (NUM_Y_POINTS as f32 - 1.);
382        let linear = args.transfer_function.to_linear(x);
383        let electrons_per_pixel = max_electrons_per_pixel * linear;
384
385        // Quadrature sum of the relevant sources of noise, in electrons rms. Photon
386        // shot noise is sqrt(electrons) so we can skip the square root and the
387        // squaring.
388        // https://en.wikipedia.org/wiki/Addition_in_quadrature
389        // https://doi.org/10.1117/3.725073
390        let noise_in_electrons = (PHOTO_RESPONSE_NON_UNIFORMITY
391            * PHOTO_RESPONSE_NON_UNIFORMITY
392            * electrons_per_pixel)
393            .mul_add(
394                electrons_per_pixel,
395                INPUT_REFERRED_READ_NOISE.mul_add(INPUT_REFERRED_READ_NOISE, electrons_per_pixel),
396            )
397            .sqrt();
398        let linear_noise = noise_in_electrons / max_electrons_per_pixel;
399        let linear_range_start = 0_f32.max(2.0f32.mul_add(-linear_noise, linear));
400        let linear_range_end = 1_f32.min(2_f32.mul_add(linear_noise, linear));
401        let tf_slope = (args.transfer_function.from_linear(linear_range_end)
402            - args.transfer_function.from_linear(linear_range_start))
403            / (linear_range_end - linear_range_start);
404        let encoded_noise = linear_noise * tf_slope;
405
406        let x = (255. * x).round() as u8;
407        let encoded_noise = 255_f32.min((255. * 7.88 * encoded_noise).round()) as u8;
408
409        scaling_points.push([x, encoded_noise]);
410    }
411
412    scaling_points
413}
414
415#[cfg(test)]
416mod tests {
417    use quickcheck::TestResult;
418    use quickcheck_macros::quickcheck;
419
420    use super::*;
421
422    #[quickcheck]
423    fn bt1886_to_linear_within_range(x: f32) -> TestResult {
424        if !(0.0..=1.0).contains(&x) || x.is_nan() {
425            return TestResult::discard();
426        }
427
428        let tx = TransferFunction::BT1886;
429        let res = tx.to_linear(x);
430        TestResult::from_bool((0.0..=1.0).contains(&res))
431    }
432
433    #[quickcheck]
434    fn bt1886_to_linear_reverts_correctly(x: f32) -> TestResult {
435        if !(0.0..=1.0).contains(&x) || x.is_nan() {
436            return TestResult::discard();
437        }
438
439        let tx = TransferFunction::BT1886;
440        let res = tx.to_linear(x);
441        let res = tx.from_linear(res);
442        TestResult::from_bool((x - res).abs() < f32::EPSILON)
443    }
444
445    #[quickcheck]
446    fn smpte2084_to_linear_within_range(x: f32) -> TestResult {
447        if !(0.0..=1.0).contains(&x) || x.is_nan() {
448            return TestResult::discard();
449        }
450
451        let tx = TransferFunction::SMPTE2084;
452        let res = tx.to_linear(x);
453        TestResult::from_bool((0.0..=1.0).contains(&res))
454    }
455
456    #[quickcheck]
457    fn smpte2084_to_linear_reverts_correctly(x: f32) -> TestResult {
458        if !(0.0..=1.0).contains(&x) || x.is_nan() {
459            return TestResult::discard();
460        }
461
462        let tx = TransferFunction::SMPTE2084;
463        let res = tx.to_linear(x);
464        let res = tx.from_linear(res);
465        TestResult::from_bool((x - res).abs() < f32::EPSILON)
466    }
467}