augurs_prophet/
features.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
//! Features used by Prophet, such as seasonality, regressors and holidays.
use std::num::NonZeroU32;

use crate::{positive_float::PositiveFloat, Error, TimestampSeconds};

/// The mode of a seasonality, regressor, or holiday.
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq)]
pub enum FeatureMode {
    /// Additive mode.
    #[default]
    Additive,
    /// Multiplicative mode.
    Multiplicative,
}

/// A holiday to be considered by the Prophet model.
#[derive(Debug, Clone)]
pub struct Holiday {
    pub(crate) ds: Vec<TimestampSeconds>,
    pub(crate) lower_window: Option<Vec<i32>>,
    pub(crate) upper_window: Option<Vec<i32>>,
    pub(crate) prior_scale: Option<PositiveFloat>,
}

impl Holiday {
    /// Create a new holiday.
    pub fn new(ds: Vec<TimestampSeconds>) -> Self {
        Self {
            ds,
            lower_window: None,
            upper_window: None,
            prior_scale: None,
        }
    }

    /// Set the lower window for the holiday.
    ///
    /// The lower window is the number of days before the holiday
    /// that it is observed. For example, if the holiday is on
    /// 2023-01-01 and the lower window is -1, then the holiday will
    /// _also_ be observed on 2022-12-31.
    pub fn with_lower_window(mut self, lower_window: Vec<i32>) -> Result<Self, Error> {
        if self.ds.len() != lower_window.len() {
            return Err(Error::MismatchedLengths {
                a_name: "ds".to_string(),
                a: self.ds.len(),
                b_name: "lower_window".to_string(),
                b: lower_window.len(),
            });
        }
        self.lower_window = Some(lower_window);
        Ok(self)
    }

    /// Set the upper window for the holiday.
    ///
    /// The upper window is the number of days after the holiday
    /// that it is observed. For example, if the holiday is on
    /// 2023-01-01 and the upper window is 1, then the holiday will
    /// _also_ be observed on 2023-01-02.
    pub fn with_upper_window(mut self, upper_window: Vec<i32>) -> Result<Self, Error> {
        if self.ds.len() != upper_window.len() {
            return Err(Error::MismatchedLengths {
                a_name: "ds".to_string(),
                a: self.ds.len(),
                b_name: "upper_window".to_string(),
                b: upper_window.len(),
            });
        }
        self.upper_window = Some(upper_window);
        Ok(self)
    }

    /// Add a prior scale for the holiday.
    pub fn with_prior_scale(mut self, prior_scale: PositiveFloat) -> Self {
        self.prior_scale = Some(prior_scale);
        self
    }
}

/// Whether or not to standardize a regressor.
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq)]
pub enum Standardize {
    /// Automatically determine whether to standardize.
    ///
    /// Numeric regressors will be standardized while
    /// binary regressors will not.
    #[default]
    Auto,
    /// Standardize this regressor.
    Yes,
    /// Do not standardize this regressor.
    No,
}

impl From<bool> for Standardize {
    fn from(b: bool) -> Self {
        if b {
            Standardize::Yes
        } else {
            Standardize::No
        }
    }
}

/// Scales for a regressor.
///
/// This will be inserted into [`Scales::extra_regressors`]
/// if the regressor is standardized.
#[derive(Debug, Clone)]
pub(crate) struct RegressorScale {
    /// Whether to standardize this regressor.
    ///
    /// This is a `bool` rather than a `Standardize`
    /// because we'll have decided whether to automatically
    /// standardize by the time this is constructed.
    pub(crate) standardize: bool,
    /// The mean of the regressor.
    pub(crate) mu: f64,
    /// The standard deviation of the regressor.
    pub(crate) std: f64,
}

impl Default for RegressorScale {
    fn default() -> Self {
        Self {
            standardize: false,
            mu: 0.0,
            std: 1.0,
        }
    }
}

/// An exogynous regressor.
///
/// By default, regressors inherit the `seasonality_prior_scale`
/// configured on the Prophet model as their prior scale.
#[derive(Debug, Clone, Default)]
pub struct Regressor {
    pub(crate) mode: FeatureMode,
    pub(crate) prior_scale: Option<PositiveFloat>,
    pub(crate) standardize: Standardize,
}

impl Regressor {
    /// Create a new additive regressor.
    pub fn additive() -> Self {
        Self {
            mode: FeatureMode::Additive,
            ..Default::default()
        }
    }

    /// Create a new multiplicative regressor.
    pub fn multiplicative() -> Self {
        Self {
            mode: FeatureMode::Multiplicative,
            ..Default::default()
        }
    }

    /// Set the prior scale of this regressor.
    ///
    /// By default, regressors inherit the `seasonality_prior_scale`
    /// configured on the Prophet model as their prior scale.
    pub fn with_prior_scale(mut self, prior_scale: PositiveFloat) -> Self {
        self.prior_scale = Some(prior_scale);
        self
    }

    /// Set whether to standardize this regressor.
    pub fn with_standardize(mut self, standardize: Standardize) -> Self {
        self.standardize = standardize;
        self
    }
}

/// A seasonality to include in the model.
#[derive(Debug, Clone)]
pub struct Seasonality {
    pub(crate) period: PositiveFloat,
    pub(crate) fourier_order: NonZeroU32,
    pub(crate) prior_scale: Option<PositiveFloat>,
    pub(crate) mode: Option<FeatureMode>,
    pub(crate) condition_name: Option<String>,
}

impl Seasonality {
    /// Create a new `Seasonality` with the given period and fourier order.
    ///
    /// By default, the prior scale and mode will be inherited from the
    /// Prophet model config, and the seasonality is assumed to be
    /// non-conditional.
    pub fn new(period: PositiveFloat, fourier_order: NonZeroU32) -> Self {
        Self {
            period,
            fourier_order,
            prior_scale: None,
            mode: None,
            condition_name: None,
        }
    }

    /// Set the prior scale of this seasonality.
    ///
    /// By default, seasonalities inherit the prior scale
    /// configured on the Prophet model; this allows the
    /// prior scale to be customised for each seasonality.
    pub fn with_prior_scale(mut self, prior_scale: PositiveFloat) -> Self {
        self.prior_scale = Some(prior_scale);
        self
    }

    /// Set the mode of this seasonality.
    ///
    /// By default, seasonalities inherit the mode
    /// configured on the Prophet model; this allows the
    /// mode to be customised for each seasonality.
    pub fn with_mode(mut self, mode: FeatureMode) -> Self {
        self.mode = Some(mode);
        self
    }

    /// Set this seasonality as conditional.
    ///
    /// A column with the provided condition name must be
    /// present in the data passed to Prophet otherwise
    /// training will fail. This can be added with
    /// [`TrainingData::with_seasonality_conditions`](crate::TrainingData::with_seasonality_conditions).
    pub fn with_condition(mut self, condition_name: String) -> Self {
        self.condition_name = Some(condition_name);
        self
    }
}