1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
//! Structs for converting SoundSource parameters, like number of channels and sample rate.

use super::SoundSource;
use std::vec;

#[cfg(test)]
mod test {
    use crate::SoundSource;

    use super::SampleRateConverter;

    struct BufferSource {
        sample_rate: u32,
        channels: u16,
        buffer: Vec<i16>,
        i: usize,
    }
    impl SoundSource for BufferSource {
        fn channels(&self) -> u16 {
            self.channels
        }

        fn sample_rate(&self) -> u32 {
            self.sample_rate
        }

        fn reset(&mut self) {
            self.i = 0;
        }

        fn write_samples(&mut self, buffer: &mut [i16]) -> usize {
            let i = self.i;
            let len = (self.buffer.len() - i).min(buffer.len());
            buffer[0..len].copy_from_slice(&self.buffer[i..i + len]);
            self.i += len;
            len
        }
    }

    #[test]
    fn sample_rate_1_3() {
        let inner = BufferSource {
            sample_rate: 10,
            channels: 1,
            buffer: vec![0, 3, 6, 9, 12],
            i: 0,
        };
        let mut outer = SampleRateConverter::new(inner, 30);

        let mut output = [0; 3];
        let len = outer.write_samples(&mut output[..]);

        assert_eq!(len, output.len());
        assert_eq!(output, [0, 1, 2]);

        let mut output = [0; 4];

        let len = outer.write_samples(&mut output[..]);
        assert_eq!(len, output.len());
        assert_eq!(output, [3, 4, 5, 6]);

        let len = outer.write_samples(&mut output[..]);
        assert_eq!(len, output.len());
        assert_eq!(output, [7, 8, 9, 10]);

        let len = outer.write_samples(&mut output[..]);
        assert_eq!(len, 2);
        assert_eq!(output[..len], [11, 12]);

        let len = outer.write_samples(&mut output[..]);
        assert_eq!(len, 0);
    }

    #[test]
    fn sample_rate_2_3() {
        let inner = BufferSource {
            sample_rate: 20,
            channels: 1,
            buffer: vec![0, 3, 6, 9, 12, 15],
            i: 0,
        };
        let mut outer = SampleRateConverter::new(inner, 30);

        let mut output = [0; 3];
        let len = outer.write_samples(&mut output[..]);

        assert_eq!(len, output.len());
        assert_eq!(output, [0, 2, 4]);

        let mut output = [0; 4];

        let len = outer.write_samples(&mut output[..]);
        assert_eq!(len, output.len());
        assert_eq!(output, [6, 8, 10, 12]);

        let len = outer.write_samples(&mut output[..]);
        assert_eq!(len, 1);
        assert_eq!(output[..len], [14]);

        let len = outer.write_samples(&mut output[..]);
        assert_eq!(len, 0);
    }

    #[test]
    fn sample_rate_3_2() {
        let inner = BufferSource {
            sample_rate: 30,
            channels: 1,
            buffer: vec![0, 2, 4, 6, 8, 10, 12, 14, 16, 18],
            i: 0,
        };
        let mut outer = SampleRateConverter::new(inner, 20);

        let mut output = [0; 2];
        let len = outer.write_samples(&mut output[..]);

        assert_eq!(len, output.len());
        assert_eq!(output, [0, 3]);

        let mut output = [0; 4];

        let len = outer.write_samples(&mut output[..]);
        assert_eq!(len, output.len());
        assert_eq!(output, [6, 9, 12, 15]);

        let len = outer.write_samples(&mut output[..]);
        assert_eq!(len, 1);
        assert_eq!(output[..len], [18]);

        let len = outer.write_samples(&mut output[..]);
        assert_eq!(len, 0);
    }
}

/// Convert a SoundSource to a diferent number of channels.
///
/// This struct is able to convert from 1 channel to many (by duplicating the signal), or from many
/// channels to 1 (by averaging all channels). This panics for any other combination.
pub struct ChannelConverter<T: SoundSource> {
    inner: T,
    channels: u16,
}
impl<T: SoundSource> ChannelConverter<T> {
    /// Create a new ChannelConverter.
    ///
    /// This will convert from the number of channels of `inner`, outputing the given number of
    /// `channels`.
    pub fn new(inner: T, channels: u16) -> Self {
        Self { inner, channels }
    }
}
impl<T: SoundSource> SoundSource for ChannelConverter<T> {
    fn channels(&self) -> u16 {
        self.channels
    }
    fn sample_rate(&self) -> u32 {
        self.inner.sample_rate()
    }
    fn reset(&mut self) {
        self.inner.reset()
    }
    fn write_samples(&mut self, buffer: &mut [i16]) -> usize {
        if self.inner.channels() == 1 {
            let len = buffer.len() / self.channels as usize;
            let len = self.inner.write_samples(&mut buffer[0..len]);

            for i in (0..len).rev() {
                for c in 0..self.channels as usize {
                    buffer[i * self.channels as usize + c] = buffer[i];
                }
            }
            len * self.channels as usize
        } else if self.channels == 1 {
            let mut in_buffer = vec![0i16; buffer.len() * self.inner.channels() as usize];
            let len = self.inner.write_samples(&mut in_buffer);
            let mut sum: i32 = 0;
            for i in 0..len {
                sum += in_buffer[i] as i32;
                if (i + 1) % self.inner.channels() as usize == 0 {
                    buffer[i / self.inner.channels() as usize] =
                        (sum / self.inner.channels() as i32) as i16;
                    sum = 0;
                }
            }
            len / self.inner.channels() as usize
        } else {
            unimplemented!("ChannelConventer only convert from 1 channel, or to 1 channel")
        }
    }
}

/// Do a sample rate convertion using linear interpolation.
pub struct SampleRateConverter<T: SoundSource> {
    inner: T,
    /// The output sample_rate
    output_sample_rate: u32,
    /// a buffer contained a `in_len` of input samples, that will be completelly converted in
    /// `out_len` of ouput samples.
    in_buffer: Box<[i16]>,
    out_len: usize,
    /// The current length of valid samples in `in_buffer`.
    len: usize,
    /// The index of the next sample to be generated in the `out_buffer`. `out_buffer` don't exist
    /// in fact, and it samples are directly outputed in `write_samples`.
    iter: usize,
}
impl<T: SoundSource> SampleRateConverter<T> {
    /// Create a new SampleRateConverter.
    ///
    /// This will convert from the sample rate of `inner`, outputing with the given `sample_rate`.
    pub fn new(inner: T, output_sample_rate: u32) -> Self {
        use gcd::Gcd;

        // divide the input sample_rate and the ouput sample_rate by its gcd, to find to smallest
        // pair of input/output buffers that can be fully converted between.
        let gcd = inner.sample_rate().gcd(output_sample_rate) as usize;
        let in_len = inner.sample_rate() as usize / gcd * inner.channels() as usize;
        let out_len = output_sample_rate as usize / gcd * inner.channels() as usize;

        let channels = inner.channels() as usize;

        // in_buffer also contains the first sample of the next buffer.
        let in_buffer = vec![0; in_len + channels].into_boxed_slice();

        let mut this = Self {
            len: in_buffer.len() - 1,
            in_buffer,
            iter: out_len,
            out_len,
            inner,
            output_sample_rate,
        };

        this.reset();

        this
    }
}
impl<T: SoundSource> SoundSource for SampleRateConverter<T> {
    fn channels(&self) -> u16 {
        self.inner.channels()
    }
    fn sample_rate(&self) -> u32 {
        self.output_sample_rate
    }
    fn reset(&mut self) {
        self.inner.reset();

        let channels = self.inner.channels() as usize;
        self.len = self.inner.write_samples(&mut self.in_buffer[..]) - channels;
        self.iter = 0;
    }
    fn write_samples(&mut self, buffer: &mut [i16]) -> usize {
        let channels = self.inner.channels() as usize;

        if self.output_sample_rate == self.inner.sample_rate() {
            return self.inner.write_samples(buffer);
        }

        let mut i = 0;
        while i < buffer.len() {
            let in_len = self.in_buffer.len() - channels;
            fn div_up(a: usize, b: usize) -> usize {
                a / b + (a % b != 0) as usize
            }
            let curr_out_len = div_up(self.out_len * self.len, in_len) / channels * channels;

            // if next sample is out of bounds, reset in_buffer
            if self.iter >= curr_out_len {
                // if self.len is smaller than in_len, the inner sound already finished.
                if self.len < in_len {
                    return i;
                }

                // the last sample of the last buffer is the start sample of this buffer.
                self.in_buffer.copy_within(self.len.., 0);

                self.len = self.inner.write_samples(&mut self.in_buffer[channels..]);
                self.iter = 0;
            }

            // j is the float position in in_buffer.
            let j = ((self.iter / channels) * in_len) as f32 / self.out_len as f32;

            let t = j.fract();
            let j = j as usize * channels;

            for c in 0..channels {
                // interpolate by t, curr and next sample
                buffer[i + c] = (self.in_buffer[j + c] as f32 * (1.0 - t)
                    + self.in_buffer[j + c + channels] as f32 * t)
                    as i16;
            }

            self.iter += channels;
            i += channels;
        }

        buffer.len()
    }
}