audio-blocks 0.6.0

Traits to handle all audio data layouts in real-time processes
Documentation

audio-blocks

Real-time safe abstractions over audio data with support for all common layouts.

Quick Start

Install:

cargo add audio-blocks

Basic planar usage (most common for DSP):

use audio_blocks::*;

// Create a planar block - each channel gets its own buffer
let mut block = AudioBlockPlanar::<f32>::new(2, 512); // 2 channels, 512 frames

// Process per channel
for channel in block.channels_mut() {
    for sample in channel {
        *sample *= 0.5;
    }
}

Generic function that accepts any layout:

fn process(block: &mut impl AudioBlockMut<f32>) {
    for channel in block.channels_iter_mut() {
        for sample in channel {
            *sample *= 0.5;
        }
    }
}

Block Types

Three multi-channel layouts supported:

Planar - [[ch0, ch0, ch0], [ch1, ch1, ch1]] Each channel has its own separate buffer. Standard for real-time DSP. Optimal for SIMD/vectorization.

Sequential - [ch0, ch0, ch0, ch1, ch1, ch1] Single contiguous buffer with all samples for channel 0, then all samples for channel 1. Channel-contiguous in one allocation.

Interleaved - [ch0, ch1, ch0, ch1, ch0, ch1] Channels alternate sample-by-sample. Common in audio APIs and hardware interfaces.

Plus a dedicated mono type:

Mono - [sample0, sample1, sample2, ...] Simplified single-channel block with a streamlined API that doesn't require channel indexing.

Core Traits

Write functions that accept any layout:

fn process(block: &mut impl AudioBlockMut<f32>) {
    // Works with planar, sequential, or interleaved
}

Generic across float types:

fn process<F: num::Float + 'static>(block: &mut impl AudioBlockMut<F>) {
    let gain = F::from(0.5).unwrap();
    for channel in block.channels_iter_mut() {
        for sample in channel {
            *sample *= gain;
        }
    }
}

Creating Blocks

Owned Blocks

// Allocate with default values (zero)
let mut block = AudioBlockPlanar::new(2, 512);       // 2 channels, 512 frames
let mut block = AudioBlockSequential::new(2, 512);  // 2 channels, 512 frames
let mut block = AudioBlockInterleaved::new(2, 512); // 2 channels, 512 frames
let mut block = AudioBlockMono::new(512);           // 512 frames

// Copy from existing data
let mut block = AudioBlockPlanar::from_slice(&channel_data);  // channels derived from slice
let mut block = AudioBlockSequential::from_slice(&data, 2);   // 2 channels
let mut block = AudioBlockInterleaved::from_slice(&data, 2);  // 2 channels
let mut block = AudioBlockMono::from_slice(&data);

Allocation only happens when creating owned blocks. Never do that in real-time contexts.

Views (zero-allocation, borrows data)

let block = AudioBlockPlanarView::from_slice(&channel_data);  // channels derived from slice
let block = AudioBlockSequentialView::from_slice(&data, 2);  // 2 channels
let block = AudioBlockInterleavedView::from_slice(&data, 2); // 2 channels
let block = AudioBlockMonoView::from_slice(&data);

From raw pointers:

let block = unsafe { AudioBlockInterleavedView::from_ptr(ptr, 2, 512) }; // 2 channels, 512 frames

Planar requires adapter:

let mut adapter = unsafe { PlanarPtrAdapter::<_, 16>::from_ptr(data, 2, 512) }; // 2 channels, 512 frames
let block = adapter.planar_view();

Common Operations

use audio_blocks::AudioBlockOps;

block.copy_from_block(&other_block);
block.fill_with(0.0);
block.clear();
block.for_each(|sample| *sample *= 0.5);

Working with Slices

Convert generic blocks to concrete types for slice access:

fn process(block: &mut impl AudioBlockMut<f32>) {
    if block.layout() == BlockLayout::Planar {
        let mut view = block.as_planar_view_mut().unwrap();
        let ch0: &mut [f32] = view.channel_mut(0);
        let ch1: &mut [f32] = view.channel_mut(1);
    }
}

Direct slice access on concrete types:

let mut block = AudioBlockPlanar::new(2, 512); // 2 channels, 512 frames
let channel: &[f32] = block.channel(0);
let raw_data: &[Box<[f32]>] = block.raw_data();

let mut block = AudioBlockInterleaved::new(2, 512); // 2 channels, 512 frames
let frame: &[f32] = block.frame(0);
let raw_data: &[f32] = block.raw_data();

Trait API Reference

AudioBlock

Size and layout:

fn num_channels(&self) -> u16;
fn num_frames(&self) -> usize;
fn layout(&self) -> BlockLayout;

Sample access:

fn sample(&self, channel: u16, frame: usize) -> S;

Iteration:

fn channel_iter(&self, channel: u16) -> impl Iterator<Item = &S>;
fn channels_iter(&self) -> impl Iterator<Item = impl Iterator<Item = &S> + '_>;
fn frame_iter(&self, frame: usize) -> impl Iterator<Item = &S>;
fn frames_iter(&self) -> impl Iterator<Item = impl Iterator<Item = &S> + '_>;

Generic view (zero-allocation):

fn as_view(&self) -> impl AudioBlock<S>;

Downcast to concrete type:

fn as_interleaved_view(&self) -> Option<AudioBlockInterleavedView<'_, S>>;
fn as_planar_view(&self) -> Option<AudioBlockPlanarView<'_, S, Self::PlanarView>>;
fn as_sequential_view(&self) -> Option<AudioBlockSequentialView<'_, S>>;

AudioBlockMut

Everything from AudioBlock plus:

Resizing:

fn set_visible(&mut self, num_channels: u16, num_frames: usize);
fn set_num_channels_visible(&mut self, num_channels: u16);
fn set_num_frames_visible(&mut self, num_frames: usize);

Mutable access:

fn sample_mut(&mut self, channel: u16, frame: usize) -> &mut S;
fn channel_iter_mut(&mut self, channel: u16) -> impl Iterator<Item = &mut S>;
fn channels_iter_mut(&mut self) -> impl Iterator<Item = impl Iterator<Item = &mut S> + '_> + '_;
fn frame_iter_mut(&mut self, frame: usize) -> impl Iterator<Item = &mut S>;
fn frames_iter_mut(&mut self) -> impl Iterator<Item = impl Iterator<Item = &mut S> + '_> + '_;

Generic view (zero-allocation):

fn as_view_mut(&mut self) -> impl AudioBlockMut<S>;

Downcast to concrete type:

fn as_interleaved_view_mut(&mut self) -> Option<AudioBlockInterleavedViewMut<'_, S>>;
fn as_planar_view_mut(&mut self) -> Option<AudioBlockPlanarViewMut<'_, S, Self::PlanarView>>;
fn as_sequential_view_mut(&mut self) -> Option<AudioBlockSequentialViewMut<'_, S>>;

Operations:

fn copy_from_block(&mut self, block: &impl AudioBlock<S>);
fn copy_from_block_resize(&mut self, block: &impl AudioBlock<S>);
fn for_each(&mut self, f: impl FnMut(&mut S));
fn enumerate(&mut self, f: impl FnMut(u16, usize, &mut S));
fn fill_with(&mut self, sample: S);
fn clear(&mut self);

Advanced: Variable Buffer Sizes

Blocks separate allocated capacity from visible size. Resize visible portion without reallocation:

let mut block = AudioBlockPlanar::new(2, 512); // 2 channels, 512 frames
block.set_num_frames_visible(256); // use only 256 frames

Create views with limited visibility:

let view = AudioBlockInterleavedView::from_slice_limited(
    &data,
    2,   // num_channels_visible
    256, // num_frames_visible
    2,   // num_channels_allocated
    512  // num_frames_allocated
);

Auto-resize when copying:

fn process(&mut self, input: &impl AudioBlock<f32>) {
    self.block.copy_from_block_resize(input);  // Adapts to input size
}

Query allocation:

block.num_channels_allocated();
block.num_frames_allocated();

Advanced: Access Non-Visible Samples

For operations that can safely process all allocated memory:

block.for_each_including_non_visible(|sample| *sample *= 0.5);
block.enumerate_including_non_visible(|ch, frame, sample| {
    // Process including allocated but non-visible samples
});

Direct memory access:

let data: &[f32] = block.raw_data();  // Includes non-visible samples

Performance

Iterator performance varies by layout:

  • Sequential/Planar: Channel iteration faster
  • Interleaved (many channels): Frame iteration faster

raw_data() access is fastest but exposes non-visible samples. For simple operations like gain, processing all samples (including non-visible) can be more efficient.

Check layout before optimization:

match block.layout() {
    BlockLayout::Planar => { /* channel-wise processing */ }
    BlockLayout::Interleaved => { /* frame-wise processing */ }
    BlockLayout::Sequential => { /* channel-wise processing */ }
}

no_std Support

Disable default features. Owned blocks require alloc or std feature.