1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
//! Byte-wise atomic memcpy.
//!
//! This is an attempt to implement equivalent of C++ ["P1478R1: Byte-wise atomic memcpy"][p1478r1] in Rust.
//!
//! This is expected to allow algorithms such as Seqlock and Chase-Lev deque to be implemented without UB of data races.
//! See [P1478R1][p1478r1] for more.
//!
//! [p1478r1]: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1478r1.html

#![no_std]
#![doc(test(
    no_crate_inject,
    attr(
        deny(warnings, rust_2018_idioms, single_use_lifetimes),
        allow(dead_code, unused_variables)
    )
))]
#![warn(
    missing_debug_implementations,
    missing_docs,
    rust_2018_idioms,
    single_use_lifetimes,
    unreachable_pub
)]
#![cfg_attr(test, warn(unsafe_op_in_unsafe_fn))] // unsafe_op_in_unsafe_fn requires Rust 1.52
#![cfg_attr(not(test), allow(unused_unsafe))]
#![warn(
    clippy::exhaustive_enums,
    clippy::exhaustive_structs,
    clippy::missing_inline_in_public_items,
    clippy::pedantic,
    clippy::undocumented_unsafe_blocks
)]
#![allow(clippy::too_many_lines)]
#![cfg_attr(feature = "inline-always", allow(clippy::inline_always))]

// This crate should work on targets with power-of-two pointer widths,
// but it is not clear how it will work on targets without them.
// There are currently no 8-bit, 128-bit, or higher builtin targets.
#[cfg(not(any(
    target_pointer_width = "16",
    target_pointer_width = "32",
    target_pointer_width = "64",
)))]
compile_error!(
    "atomic-memcpy currently only supports targets with {16,32,64}-bit pointer width; \
     if you need support for 8-bit or others, \
     please submit an issue at <https://github.com/taiki-e/atomic-memcpy>"
);

use core::sync::atomic::{self, Ordering};

/// Byte-wise atomic load.
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// - `src` must be valid for reads.
/// - `src` must be properly aligned.
/// - `src` must go through [`UnsafeCell::get`](core::cell::UnsafeCell::get).
/// - There are no concurrent non-atomic write operations.
/// - There are no concurrent atomic write operations of different
///   granularity. The granularity of atomic operations is an implementation
///   detail, so the concurrent write operation that can always
///   safely be used is only [`atomic_store`].
///
/// Like [`ptr::read`](core::ptr::read), `atomic_load` creates a bitwise copy of `T`, regardless of
/// whether `T` is [`Copy`]. If `T` is not [`Copy`], using both the returned
/// value and the value at `*src` can [violate memory safety][read-ownership].
///
/// Note that even if `T` has size `0`, the pointer must be non-null.
///
/// ## Returned value
///
/// This function returns [`MaybeUninit<T>`](core::mem::MaybeUninit) instead of `T`.
///
/// - All bits in the returned value are guaranteed to be copied from `src`.
/// - There is *no* guarantee that all bits in the return have been copied at
///   the same time, so if `src` is updated by a concurrent write operation,
///   it is up to the caller to make sure that the returned value is valid as `T`.
///
/// [read-ownership]: core::ptr::read#ownership-of-the-returned-value
/// [valid]: core::ptr#safety
///
/// # Panics
///
/// Panics if `order` is [`Release`](Ordering::Release) or [`AcqRel`](Ordering::AcqRel).
///
/// # Examples
///
/// ```rust
/// use std::{cell::UnsafeCell, sync::atomic::Ordering};
///
/// let v = UnsafeCell::new([0_u8; 64]);
/// let result = unsafe { atomic_memcpy::atomic_load(v.get(), Ordering::Acquire) };
/// // SAFETY: there was no concurrent write operations during load.
/// assert_eq!(unsafe { result.assume_init() }, [0; 64]);
/// ```
#[cfg_attr(all(feature = "no-panic", not(debug_assertions)), no_panic::no_panic)]
#[cfg_attr(feature = "inline-always", inline(always))]
#[cfg_attr(not(feature = "inline-always"), inline)]
pub unsafe fn atomic_load<T>(src: *const T, order: Ordering) -> core::mem::MaybeUninit<T> {
    match order {
        Ordering::Release => panic!("there is no such thing as a release load"),
        Ordering::AcqRel => panic!("there is no such thing as an acquire/release load"),
        _ => {}
    }
    // clippy bug that does not recognize safety comments inside macros.
    #[allow(clippy::undocumented_unsafe_blocks)]
    // SAFETY: the caller must uphold the safety contract for `atomic_load`.
    let val = unsafe { imp::atomic_load(src) };
    match order {
        Ordering::Relaxed => { /* no-op */ }
        _ => atomic::fence(order),
    }
    val
}

/// Byte-wise atomic store.
///
/// # Safety
///
/// Behavior is undefined if any of the following conditions are violated:
///
/// - `dst` must be [valid] for writes.
/// - `dst` must be properly aligned.
/// - `dst` must go through [`UnsafeCell::get`](core::cell::UnsafeCell::get).
/// - There are no concurrent non-atomic operations.
/// - There are no concurrent atomic operations of different
///   granularity. The granularity of atomic operations is an implementation
///   detail, so the concurrent operation that can always
///   safely be used is only [`atomic_load`].
///
/// If there are concurrent write operations, the resulting value at `*dst` may
/// contain a mixture of bytes written by this thread and bytes written by
/// another thread. If `T` is not valid for all bit patterns, using the value at
/// `*dst` can violate memory safety.
///
/// Note that even if `T` has size `0`, the pointer must be non-null.
///
/// [valid]: core::ptr#safety
///
/// # Panics
///
/// Panics if `order` is [`Acquire`](Ordering::Acquire) or [`AcqRel`](Ordering::AcqRel).
///
/// # Examples
///
/// ```rust
/// use std::{cell::UnsafeCell, sync::atomic::Ordering};
///
/// let v = UnsafeCell::new([0_u8; 64]);
/// unsafe {
///     atomic_memcpy::atomic_store(v.get(), [1; 64], Ordering::Release);
/// }
/// let result = unsafe { atomic_memcpy::atomic_load(v.get(), Ordering::Acquire) };
/// // SAFETY: there was no concurrent write operations during load.
/// assert_eq!(unsafe { result.assume_init() }, [1; 64]);
/// ```
#[cfg_attr(all(feature = "no-panic", not(debug_assertions)), no_panic::no_panic)]
#[cfg_attr(feature = "inline-always", inline(always))]
#[cfg_attr(not(feature = "inline-always"), inline)]
pub unsafe fn atomic_store<T>(dst: *mut T, val: T, order: Ordering) {
    match order {
        Ordering::Acquire => panic!("there is no such thing as an acquire store"),
        Ordering::AcqRel => panic!("there is no such thing as an acquire/release store"),
        Ordering::Relaxed => { /* no-op */ }
        _ => atomic::fence(order),
    }
    // clippy bug that does not recognize safety comments inside macros.
    #[allow(clippy::undocumented_unsafe_blocks)]
    // SAFETY: the caller must uphold the safety contract for `atomic_store`.
    unsafe {
        imp::atomic_store(dst, val);
    }
}

/// Since `#[cfg(target_has_atomic_load_store = "ptr")]` is not available on
/// stable, the following heuristic is used.
///
/// - 16-bit targets (e.g., avr, msp430) don't support atomic load/store.
///     msp430 can actually support atomic load/store, but the LLVM backend does not support it yet.
///   - <https://github.com/rust-lang/rust/blob/788b1fe5b79a8b74215022f9df49b0eae68a50b9/compiler/rustc_target/src/spec/msp430_none_elf.rs#L22-L30>
///   - <https://github.com/rust-lang/rust/issues/45085#issuecomment-385090816>
///   - <https://github.com/rust-lang/rust/pull/55450>
/// - riscv32 targets without the A extension (e.g., riscv32i, riscv32imc) don't support atomic load/store.
///   However, if OS is available, atomic operations are supported: <https://github.com/rust-lang/rust/blob/788b1fe5b79a8b74215022f9df49b0eae68a50b9/compiler/rustc_target/src/spec/riscv32imc_esp_espidf.rs#L20-L26>
///
/// This heuristic is based on a list of builtin targets that currently do no support
/// atomic load/store, so it should be quite accurate, at least for builtin targets.
/// The addition of new builtin targets that do not support atomic load/store is
/// being tracked by CI. See `tools/no_atomic.sh` for more.
///
/// In addition to the above cfg, there is `cfg(atomic_memcpy_unsafe_volatile)`
/// to force the use of volatile read/write instead of atomic load/store.
/// Note that the use of `--cfg atomic_memcpy_unsafe_volatile` is
/// undefined behavior in the multi-threaded environment, since volatile
/// read/write does not guarantee anything about data race.
#[cfg(not(any(
    target_pointer_width = "16",
    all(target_arch = "riscv32", not(target_feature = "a"), target_os = "none"),
    atomic_memcpy_unsafe_volatile,
)))]
mod imp {
    #[cfg(not(target_pointer_width = "16"))]
    use core::sync::atomic::AtomicU32;
    #[cfg(not(any(target_pointer_width = "16", target_pointer_width = "32")))]
    use core::sync::atomic::AtomicU64;
    use core::{
        mem::{self, ManuallyDrop, MaybeUninit},
        ops::Range,
        sync::atomic::{AtomicU16, AtomicUsize, Ordering},
    };

    #[cfg(not(atomic_memcpy_symbolic_alignment_check_compat))]
    #[cfg(target_pointer_width = "32")]
    type Half = u16;
    #[cfg(not(atomic_memcpy_symbolic_alignment_check_compat))]
    #[cfg(target_pointer_width = "32")]
    type AtomicHalf = AtomicU16;

    #[cfg(not(atomic_memcpy_symbolic_alignment_check_compat))]
    #[cfg(target_pointer_width = "64")]
    type Half = u32;
    #[cfg(not(atomic_memcpy_symbolic_alignment_check_compat))]
    #[cfg(target_pointer_width = "64")]
    type AtomicHalf = AtomicU32;

    // Boundary to make the fields of LoadState private.
    //
    // Note that this is not a complete safe/unsafe boundary[1], since it is still
    // possible to pass an invalid pointer to the constructor.
    //
    // [1]: https://www.ralfj.de/blog/2016/01/09/the-scope-of-unsafe.html
    mod load {
        use core::{
            mem,
            sync::atomic::{AtomicU8, AtomicUsize, Ordering},
        };

        // Invariant: `src` and `result` will never change.
        // Invariant: Only the `advance` method can advance offset and counter.
        pub(super) struct LoadState {
            src: *const u8,
            // Note: This is a pointer from MaybeUninit.
            result: *mut u8,
            /// Counter to track remaining bytes in `T`.
            remaining: usize,
            offset: usize,
        }

        impl LoadState {
            #[cfg_attr(feature = "inline-always", inline(always))]
            #[cfg_attr(not(feature = "inline-always"), inline)]
            pub(super) fn new<T>(result: *mut T, src: *const T) -> Self {
                Self {
                    src: src as *const u8,
                    result: result as *mut u8,
                    remaining: mem::size_of::<T>(),
                    offset: 0,
                }
            }

            /// Advances pointers by `size` **bytes**.
            ///
            /// # Safety
            ///
            /// - The remaining bytes must be greater than or equal to `size`.
            /// - The range of `self.dst..self.dst.add(size)` must be filled.
            #[cfg_attr(feature = "inline-always", inline(always))]
            #[cfg_attr(not(feature = "inline-always"), inline)]
            unsafe fn advance(&mut self, size: usize) {
                debug_assert!(self.remaining >= size);
                self.remaining -= size;
                self.offset += size;
            }

            #[cfg_attr(feature = "inline-always", inline(always))]
            #[cfg_attr(not(feature = "inline-always"), inline)]
            pub(super) fn remaining(&self) -> usize {
                self.remaining
            }

            #[cfg_attr(feature = "inline-always", inline(always))]
            #[cfg_attr(not(feature = "inline-always"), inline)]
            unsafe fn src<T>(&self) -> &T {
                // SAFETY: the caller must uphold the safety contract.
                unsafe { &*(self.src.add(self.offset) as *const T) }
            }

            #[cfg_attr(feature = "inline-always", inline(always))]
            #[cfg_attr(not(feature = "inline-always"), inline)]
            unsafe fn result<T>(&self) -> *mut T {
                // SAFETY: the caller must uphold the safety contract.
                unsafe { self.result.add(self.offset) as *mut T }
            }

            #[cfg_attr(feature = "inline-always", inline(always))]
            #[cfg_attr(not(feature = "inline-always"), inline)]
            pub(super) fn atomic_load_u8(&mut self, count: usize) {
                // This condition is also checked by the caller, so the compiler
                // will remove this assertion by optimization.
                assert!(self.remaining() >= count);
                for _ in 0..count {
                    // SAFETY:
                    // - we've checked that the remaining bytes is greater than or equal to `count`
                    // Therefore, due to `LoadState`'s invariant:
                    // - `src` is valid to atomic read of `count` of u8.
                    // - `result` is valid to write of `count` of u8.
                    unsafe {
                        let val = self.src::<AtomicU8>().load(Ordering::Relaxed);
                        self.result::<u8>().write(val);
                        // SAFETY: we've filled 1 byte.
                        self.advance(1);
                    }
                }
            }

            /// Note: The remaining bytes smaller than usize are ignored.
            ///
            /// # Safety
            ///
            /// - `self.src` must be properly aligned for `usize`.
            ///
            /// There is no alignment requirement for `self.result`.
            #[cfg_attr(feature = "inline-always", inline(always))]
            #[cfg_attr(not(feature = "inline-always"), inline)]
            pub(super) unsafe fn atomic_load_usize_to_end(&mut self) {
                while self.remaining() >= mem::size_of::<usize>() {
                    // SAFETY:
                    // - the caller must guarantee that `src` is properly aligned for `usize`.
                    // - we've checked that the remaining bytes is greater than
                    //   or equal to `size_of::<usize>()`.
                    // Therefore, due to `LoadState`'s invariant:
                    // - `src` is valid to atomic read of `usize`.
                    // - `result` is valid to *unaligned* write of `usize`.
                    unsafe {
                        let val = self.src::<AtomicUsize>().load(Ordering::Relaxed);
                        self.result::<usize>().write_unaligned(val);
                        // SAFETY: we've filled `size_of::<usize>()` bytes.
                        self.advance(mem::size_of::<usize>());
                    }
                }
            }

            /// # Safety
            ///
            /// - both `self.src` and `self.result` must be properly aligned for `Half`.
            /// - the remaining bytes is greater than or equal to `size_of::<Half>()`.
            #[cfg(not(atomic_memcpy_symbolic_alignment_check_compat))]
            #[cfg(not(target_pointer_width = "16"))]
            #[cfg_attr(feature = "inline-always", inline(always))]
            #[cfg_attr(not(feature = "inline-always"), inline)]
            pub(super) unsafe fn atomic_load_half(&mut self) {
                use super::{AtomicHalf, Half};
                debug_assert!(self.remaining() >= mem::size_of::<Half>());
                // SAFETY:
                // - the caller must guarantee that both `src` and `dst` are properly aligned for `Half`.
                // - the caller must guarantee that the remaining bytes is greater than
                //   or equal to `size_of::<Half>()`.
                // Therefore, due to `LoadState`'s invariant:
                // - `src` is valid to atomic read of `Half`.
                // - `result` is valid to write of `Half`.
                unsafe {
                    let val = self.src::<AtomicHalf>().load(Ordering::Relaxed);
                    self.result::<Half>().write(val);
                    // SAFETY: we've filled `size_of::<Half>()` bytes.
                    self.advance(mem::size_of::<Half>());
                }
            }
        }
    }

    /// Byte-wise atomic load.
    ///
    /// # Safety
    ///
    /// See the documentation of [crate root's `atomic_load`](crate::atomic_load) for safety requirements.
    /**
    # Implementation

    It is implemented based on the assumption that atomic operations at a granularity greater than bytes is not a problem, as stated by [p1478r1].

    > Note that on standard hardware, it should be OK to actually perform the copy at larger than byte granularity. Copying multiple bytes as part of one operation is indistinguishable from running them so quickly that the intermediate state is not observed. In fact, we expect that existing assembly memcpy implementations will suffice when suffixed with the required fence.

    And it turns out that the granularity of the atomic operations is very important for performance.

    - Loading/storing all bytes in bytes is very slow at least on x86/x86_64.
    - The pointer width atomic operation is the fastest at least on x86/x86_64.
    - Atomic operations with a granularity larger than the pointer width are slow at least on x86/x86_64 (cmpxchg8b/cmpxchg16b).

    Note that the following additional safety requirements.

    - The granularity of the atomic operations in load and store must be the same.
    - When performing an atomic operation as a type with alignment greater than 1, the pointer must be properly aligned.

    The caller of `atomic_load` guarantees that the `src` is properly aligned.
    So, we can avoid calling align_offset or read at a granularity greater than u8 in some cases.

    The following is what this implementation is currently `atomic_load` using (Note: `atomic_store` also uses exactly the same way to determine the granularity of atomic operations):

    Branch | Granularity of atomic operations | Conditions
    ------ | -------------------------------- | ----------
    1      | u8 ..., usize ..., u8 ...        | `size_of::<T>() >= size_of::<usize>() * 4`, `align_of::<T>() < align_of::<usize>()`
    2      | usize ...                        | `align_of::<T>() >= align_of::<usize>()`
    3      | u32 ...                          | `align_of::<T>() >= align_of::<u32>()`, 64-bit or higher
    4      | u16 ...                          | `align_of::<T>() >= align_of::<u16>()`, 32-bit or higher
    5      | u8 ...                           |

    - Branch 1: If the alignment of `T` is less than usize, but `T` can be read as at least a few numbers of usize, compute the align offset and read it like `(&[AtomicU8], &[AtomicUsize], &[AtomicU8])`.
    - Branch 2: If the alignment of `T` is greater than or equal to usize, we can read it as a chunk of usize from the first byte.
    - Branch 3, 4: If the alignment of `T` is greater than 1, we can read it as a chunk of smaller integers (u32 or u16). This is basically the same strategy as Branch 2.
    - Branch 5: Otherwise, we read it per byte.

    Note that only Branch 1 requires to compute align offset dynamically.
    Note that which branch is chosen is evaluated at compile time.

    - The fastest is Branch 2, which can read all bytes as a chunk of usize.
    - If the size of `T` is not too small, Branch 1 is the next fastest to Branch 2.
    - If the size of `T` is small, Branch 3/4/5 can be faster than Branch 1.

    Whether to choose Branch 1 or Branch 3/4/5 when `T` is small is currently based on a rough heuristic based on simple benchmarks on x86_64.

    TODO: Update description to include additional optimization in Branch 1.

    [p1478r1]: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1478r1.html
    */
    #[cfg_attr(feature = "inline-always", inline(always))]
    #[cfg_attr(not(feature = "inline-always"), inline)]
    pub(crate) unsafe fn atomic_load<T>(src: *const T) -> MaybeUninit<T> {
        // Safety requirements guaranteed by the caller:
        // - `src` is valid for atomic reads.
        // - `src` is properly aligned for `T`.
        // - `src` go through `UnsafeCell::get`.
        // - there are no concurrent non-atomic write operations.
        // - there are no concurrent atomic write operations of different granularity.
        // Note that the safety of the code in this function relies on these guarantees,
        // whether or not they are explicitly mentioned in the each safety comment.
        debug_assert!(!src.is_null());
        debug_assert!(src as usize % mem::align_of::<T>() == 0);
        static_assert_atomic_alignment();

        let mut result = MaybeUninit::<T>::uninit();

        if mem::size_of::<T>() == 0 {
            return result;
        }

        // Branch 1: If the alignment of `T` is less than usize, but `T` can be read as
        // at least one or more usize, compute the align offset and read it
        // like `(&[AtomicU8], &[AtomicUsize], &[AtomicU8])`.
        if mem::align_of::<T>() < mem::align_of::<AtomicUsize>()
            && mem::size_of::<T>() >= mem::size_of::<usize>() * 4
        {
            let mut state = load::LoadState::new(result.as_mut_ptr(), src);
            // -Zmiri-symbolic-alignment-check is incompatible with the code that does manual integer arithmetic to ensure alignment.
            #[cfg(not(atomic_memcpy_symbolic_alignment_check_compat))]
            #[cfg(not(target_pointer_width = "16"))]
            {
                // Since the caller guarantees that the pointer is properly aligned,
                // if `T` has an alignment of half of usize, there are only two
                // patterns: read as usize from the first byte, or read as usize
                // after reading `usize / 2` bytes.
                //
                // on 64-bit:
                // | 8 | 8 | 8 | 4 |
                // | 4 | 8 | 8 | 8 |
                // or
                // | 8 | 8 | 8 |
                // | 4 | 8 | 8 | 4 |
                //
                // Handling this case manually can reduce the number of instructions
                // significantly compared to using align_offset.
                //
                // TODO: This may not be necessary if the call is well inlined.
                if mem::align_of::<T>() >= mem::align_of::<Half>() {
                    if src as usize % mem::size_of::<usize>() == 0 {
                        // SAFETY:
                        // - we've checked that `src` is properly aligned for `usize`.
                        // - the remaining bytes is greater than or equal to `size_of::<usize>()`.
                        unsafe { state.atomic_load_usize_to_end() }
                    } else {
                        debug_assert_eq!(
                            src as usize % mem::size_of::<usize>(),
                            mem::size_of::<Half>()
                        );
                        // SAFETY:
                        // - the caller must guarantee that `src` is properly aligned for `T`.
                        // - `T` has an alignment greater than or equal to `Half`.
                        // - the remaining bytes is greater than or equal to `size_of::<usize>()`.
                        unsafe {
                            state.atomic_load_half();
                            // SAFETY: we've advanced `size_of::<Half>()` bytes,
                            // so now `state.src` is definitely aligned.
                            state.atomic_load_usize_to_end();
                        }
                    }
                    // Load remaining bytes.
                    if state.remaining() != 0 {
                        debug_assert_eq!(state.remaining(), mem::size_of::<Half>());
                        // SAFETY:
                        // - the caller must guarantee that `src` is properly aligned for `T`.
                        // - `T` has an alignment greater than or equal to `Half`.
                        // - the remaining bytes is equal to `size_of::<Half>()`.
                        unsafe { state.atomic_load_half() }
                    }
                    return result;
                }
            }
            let offset = (src as *const u8).align_offset(mem::align_of::<AtomicUsize>());
            // Note: align_offset may returns usize::MAX: https://github.com/rust-lang/rust/issues/62420
            if state.remaining() >= offset {
                // Load `offset` bytes per byte to align `state.src`.
                state.atomic_load_u8(offset);
                debug_assert!(state.remaining() >= mem::size_of::<usize>());
                // SAFETY:
                // - align_offset succeeds and the `offset` bytes have been
                //   filled, so now `state.src` is definitely aligned.
                // - we've checked that the remaining bytes is greater than
                //   or equal to `size_of::<usize>()`.
                //
                // In this branch, the pointer to `state.result` is usually
                // not properly aligned, so we use `atomic_load_usize_to_end`,
                // which has no requirement for alignment of `state.result`.
                unsafe { state.atomic_load_usize_to_end() }
                // Load remaining bytes per byte.
                state.atomic_load_u8(state.remaining());
                debug_assert_eq!(state.remaining(), 0);
                return result;
            }
        }

        // Branch 2: If the alignment of `T` is greater than or equal to usize,
        // we can read it as a chunk of usize from the first byte.
        if mem::align_of::<T>() >= mem::align_of::<AtomicUsize>() {
            let src = src as *const AtomicUsize;
            let dst = result.as_mut_ptr() as *mut usize;
            for i in range(0..mem::size_of::<T>() / mem::size_of::<usize>()) {
                // SAFETY:
                // - the caller must guarantee that `src` is properly aligned for `T`.
                // - `T` has an alignment greater than or equal to usize.
                // - the remaining bytes is greater than or equal to `size_of::<usize>()`.
                unsafe {
                    let val: usize = (*src.add(i)).load(Ordering::Relaxed);
                    dst.add(i).write(val);
                }
            }
            return result;
        }

        #[cfg(not(target_pointer_width = "16"))]
        {
            // Branch 3: If the alignment of `T` is greater than or equal to u32,
            // we can read it as a chunk of u32 from the first byte.
            if mem::size_of::<usize>() > 4 && mem::align_of::<T>() >= mem::align_of::<AtomicU32>() {
                let src = src as *const AtomicU32;
                let dst = result.as_mut_ptr() as *mut u32;
                for i in range(0..mem::size_of::<T>() / mem::size_of::<u32>()) {
                    // SAFETY:
                    // - the caller must guarantee that `src` is properly aligned for `T`.
                    // - `T` has an alignment greater than or equal to u32.
                    // - the remaining bytes is greater than or equal to `size_of::<u32>()`.
                    unsafe {
                        let val: u32 = (*src.add(i)).load(Ordering::Relaxed);
                        dst.add(i).write(val);
                    }
                }
                return result;
            }
        }

        // Branch 4: If the alignment of `T` is greater than or equal to u16,
        // we can read it as a chunk of u16 from the first byte.
        if mem::size_of::<usize>() > 2 && mem::align_of::<T>() >= mem::align_of::<AtomicU16>() {
            let src = src as *const AtomicU16;
            let dst = result.as_mut_ptr() as *mut u16;
            for i in range(0..mem::size_of::<T>() / mem::size_of::<u16>()) {
                // SAFETY:
                // - the caller must guarantee that `src` is properly aligned for `T`.
                // - `T` has an alignment greater than or equal to u16.
                // - the remaining bytes is greater than or equal to `size_of::<u16>()`.
                unsafe {
                    let val: u16 = (*src.add(i)).load(Ordering::Relaxed);
                    dst.add(i).write(val);
                }
            }
            return result;
        }

        // Branch 5: Otherwise, we read it per byte.
        let mut state = load::LoadState::new(result.as_mut_ptr(), src);
        state.atomic_load_u8(state.remaining());
        debug_assert_eq!(state.remaining(), 0);
        result
    }

    // Boundary to make the fields of StoreState private.
    //
    // Note that this is not a complete safe/unsafe boundary, since it is still
    // possible to pass an invalid pointer to the constructor.
    mod store {
        use core::{
            mem,
            sync::atomic::{AtomicU8, AtomicUsize, Ordering},
        };

        // Invariant: `src` and `dst` will never change.
        // Invariant: Only the `advance` method can advance offset and counter.
        pub(super) struct StoreState {
            src: *const u8,
            dst: *const u8,
            /// Number of remaining bytes in `T`.
            remaining: usize,
            offset: usize,
        }

        impl StoreState {
            #[cfg_attr(feature = "inline-always", inline(always))]
            #[cfg_attr(not(feature = "inline-always"), inline)]
            pub(super) fn new<T>(dst: *mut T, src: *const T) -> Self {
                Self {
                    src: src as *const u8,
                    dst: dst as *mut u8 as *const u8,
                    remaining: mem::size_of::<T>(),
                    offset: 0,
                }
            }

            /// Advances pointers by `size` **bytes**.
            ///
            /// # Safety
            ///
            /// - The remaining bytes must be greater than or equal to `size`.
            /// - The range of `self.dst..self.dst.add(size)` must be filled.
            #[cfg_attr(feature = "inline-always", inline(always))]
            #[cfg_attr(not(feature = "inline-always"), inline)]
            unsafe fn advance(&mut self, size: usize) {
                debug_assert!(self.remaining >= size);
                self.remaining -= size;
                self.offset += size;
            }

            #[cfg_attr(feature = "inline-always", inline(always))]
            #[cfg_attr(not(feature = "inline-always"), inline)]
            pub(super) fn remaining(&self) -> usize {
                self.remaining
            }

            #[cfg_attr(feature = "inline-always", inline(always))]
            #[cfg_attr(not(feature = "inline-always"), inline)]
            unsafe fn src<T>(&self) -> *const T {
                // SAFETY: the caller must uphold the safety contract.
                unsafe { self.src.add(self.offset) as *const T }
            }

            #[cfg_attr(feature = "inline-always", inline(always))]
            #[cfg_attr(not(feature = "inline-always"), inline)]
            unsafe fn dst<T>(&self) -> &T {
                // SAFETY: the caller must uphold the safety contract.
                unsafe { &*(self.dst.add(self.offset) as *const T) }
            }

            #[cfg_attr(feature = "inline-always", inline(always))]
            #[cfg_attr(not(feature = "inline-always"), inline)]
            pub(super) fn atomic_store_u8(&mut self, count: usize) {
                // This condition is also checked by the caller, so the compiler
                // will remove this assertion by optimization.
                assert!(self.remaining() >= count);
                for _ in 0..count {
                    // SAFETY:
                    // - we've checked that the remaining bytes is greater than or equal to `count`
                    // Therefore, due to `StoreState`'s invariant:
                    // - `src` is valid to read of `count` of u8.
                    // - `dst` is valid to atomic write of `count` of u8.
                    unsafe {
                        let val = self.src::<u8>().read();
                        self.dst::<AtomicU8>().store(val, Ordering::Relaxed);
                        // SAFETY: we've filled 1 byte.
                        self.advance(1);
                    }
                }
            }

            /// Note: The remaining bytes smaller than usize are ignored.
            ///
            /// # Safety
            ///
            /// - `self.dst` must be properly aligned for `usize`.
            ///
            /// There is no alignment requirement for `self.src`.
            #[cfg_attr(feature = "inline-always", inline(always))]
            #[cfg_attr(not(feature = "inline-always"), inline)]
            pub(super) unsafe fn atomic_store_usize_to_end(&mut self) {
                while self.remaining() >= mem::size_of::<usize>() {
                    // SAFETY:
                    // - the caller must guarantee that `dst` is properly aligned for `usize`.
                    // - we've checked that the remaining bytes is greater than
                    //   or equal to `size_of::<usize>()`.
                    // Therefore, due to `StoreState`'s invariant:
                    // - `src` is valid to *unaligned* read of `usize`.
                    // - `dst` is valid to atomic write of `usize`.
                    unsafe {
                        let val = self.src::<usize>().read_unaligned();
                        self.dst::<AtomicUsize>().store(val, Ordering::Relaxed);
                        // SAFETY: we've filled `size_of::<usize>()` bytes.
                        self.advance(mem::size_of::<usize>());
                    }
                }
            }

            /// # Safety
            ///
            /// - both `self.src` and `self.dst` must be properly aligned for `Half`.
            /// - the remaining bytes is greater than or equal to `size_of::<Half>()`.
            #[cfg(not(atomic_memcpy_symbolic_alignment_check_compat))]
            #[cfg(not(target_pointer_width = "16"))]
            #[cfg_attr(feature = "inline-always", inline(always))]
            #[cfg_attr(not(feature = "inline-always"), inline)]
            pub(super) unsafe fn atomic_store_half(&mut self) {
                use super::{AtomicHalf, Half};
                debug_assert!(self.remaining() >= mem::size_of::<Half>());
                // SAFETY:
                // - the caller must guarantee that both `src` and `dst` is properly aligned for `Half`.
                // - the caller must guarantee that the remaining bytes is greater than
                //   or equal to `size_of::<Half>()`.
                // Therefore, due to `StoreState`'s invariant:
                // - `src` is valid to read of `Half`.
                // - `dst` is valid to atomic write of `Half`.
                unsafe {
                    let val = self.src::<Half>().read();
                    self.dst::<AtomicHalf>().store(val, Ordering::Relaxed);
                    // SAFETY: we've filled `size_of::<Half>()` bytes.
                    self.advance(mem::size_of::<Half>());
                }
            }
        }
    }

    /// Byte-wise atomic store.
    ///
    /// See the [`atomic_load`] function for the detailed implementation comment.
    ///
    /// # Safety
    ///
    /// See the documentation of [crate root's `atomic_store`](crate::atomic_store) for safety requirements.
    #[cfg_attr(feature = "inline-always", inline(always))]
    #[cfg_attr(not(feature = "inline-always"), inline)]
    pub(crate) unsafe fn atomic_store<T>(dst: *mut T, val: T) {
        // Safety requirements guaranteed by the caller:
        // - `dst` is valid for atomic writes.
        // - `dst` is properly aligned for `T`.
        // - `dst` go through `UnsafeCell::get`.
        // - there are no concurrent non-atomic operations.
        // - there are no concurrent atomic operations of different granularity.
        // - if there are concurrent atomic write operations, `T` is valid for all bit patterns.
        // Note that the safety of the code in this function relies on these guarantees,
        // whether or not they are explicitly mentioned in the each safety comment.
        debug_assert!(!dst.is_null());
        debug_assert!(dst as usize % mem::align_of::<T>() == 0);
        static_assert_atomic_alignment();

        // In atomic_store, the panic *after* the first store operation is unsound
        // because dst may become an invalid bit pattern.
        //
        // Our code is written very carefully so as not to cause panic, but we
        // will use additional guards just in case.
        //
        // Note:
        // - If the compiler can understand at compile time that panic will
        //   never occur, this guard will be removed (as with no-panic).
        // - atomic_load does not modify the data, so it does not have this requirement.
        // - If an invalid ordering is passed, it will be panic *before* the
        //   first store operation, so is fine.
        let guard = PanicGuard;

        let val = ManuallyDrop::new(val); // Do not drop `val`.

        if mem::size_of::<T>() == 0 {
            mem::forget(guard);
            return;
        }

        // Branch 1: If the alignment of `T` is less than usize, but `T` can be write as
        // at least one or more usize, compute the align offset and write it
        // like `(&[AtomicU8], &[AtomicUsize], &[AtomicU8])`.
        if mem::align_of::<T>() < mem::align_of::<AtomicUsize>()
            && mem::size_of::<T>() >= mem::size_of::<usize>() * 4
        {
            let mut state = store::StoreState::new(dst, &*val);
            // See the `atomic_load` function for the detailed comment.
            #[cfg(not(atomic_memcpy_symbolic_alignment_check_compat))]
            #[cfg(not(target_pointer_width = "16"))]
            {
                if mem::align_of::<T>() >= mem::align_of::<Half>() {
                    if dst as usize % mem::size_of::<usize>() == 0 {
                        // SAFETY:
                        // - we've checked that `dst` is properly aligned for `usize`.
                        // - the remaining bytes is greater than or equal to `size_of::<usize>()`.
                        unsafe { state.atomic_store_usize_to_end() }
                    } else {
                        debug_assert_eq!(
                            dst as usize % mem::size_of::<usize>(),
                            mem::size_of::<Half>()
                        );
                        // SAFETY:
                        // - the caller must guarantee that `dst` is properly aligned for `T`.
                        // - `T` has an alignment greater than or equal to `Half`.
                        // - the remaining bytes is greater than or equal to `size_of::<usize>()`.
                        unsafe {
                            state.atomic_store_half();
                            // SAFETY: we've advanced `size_of::<Half>()` bytes,
                            // so now `state.dst` is definitely aligned.
                            state.atomic_store_usize_to_end();
                        }
                    }
                    // Store remaining bytes.
                    if state.remaining() != 0 {
                        debug_assert_eq!(state.remaining(), mem::size_of::<Half>());
                        // SAFETY:
                        // - the caller must guarantee that `src` is properly aligned for `T`.
                        // - `T` has an alignment greater than or equal to `Half`.
                        // - the remaining bytes is equal to `size_of::<Half>()`.
                        unsafe { state.atomic_store_half() }
                    }
                    mem::forget(guard);
                    return;
                }
            }
            let offset = (dst as *mut u8).align_offset(mem::align_of::<AtomicUsize>());
            // Note: align_offset may returns usize::MAX: https://github.com/rust-lang/rust/issues/62420
            if state.remaining() >= offset {
                // Store `offset` bytes per byte to align `state.dst`.
                state.atomic_store_u8(offset);
                debug_assert!(state.remaining() >= mem::size_of::<usize>());
                // SAFETY:
                // - align_offset succeeds and the `offset` bytes have been
                //   filled, so now `state.dst` is definitely aligned.
                // - we've checked that the remaining bytes is greater than
                //   or equal to `size_of::<usize>()`.
                //
                // In this branch, the pointer to `state.src` is usually
                // not properly aligned, so we use `atomic_store_usize_to_end`,
                // which has no requirement for alignment of `state.src`.
                unsafe {
                    state.atomic_store_usize_to_end();
                }
                // Store remaining bytes per byte.
                state.atomic_store_u8(state.remaining());
                debug_assert_eq!(state.remaining(), 0);
                mem::forget(guard);
                return;
            }
        }

        // Branch 2: If the alignment of `T` is greater than or equal to usize,
        // we can write it as a chunk of usize from the first byte.
        if mem::align_of::<T>() >= mem::align_of::<AtomicUsize>() {
            let src = &*val as *const T as *const usize;
            let dst = dst as *const AtomicUsize;
            for i in range(0..mem::size_of::<T>() / mem::size_of::<usize>()) {
                // SAFETY:
                // - the caller must guarantee that `dst` is properly aligned for `T`.
                // - `T` has an alignment greater than or equal to usize.
                // - the remaining bytes is greater than or equal to `size_of::<usize>()`.
                unsafe {
                    let val: usize = src.add(i).read();
                    (*dst.add(i)).store(val, Ordering::Relaxed);
                }
            }
            mem::forget(guard);
            return;
        }

        #[cfg(not(target_pointer_width = "16"))]
        {
            // Branch 3: If the alignment of `T` is greater than or equal to u32,
            // we can write it as a chunk of u32 from the first byte.
            if mem::size_of::<usize>() > 4 && mem::align_of::<T>() >= mem::align_of::<AtomicU32>() {
                let src = &*val as *const T as *const u32;
                let dst = dst as *const AtomicU32;
                for i in range(0..mem::size_of::<T>() / mem::size_of::<u32>()) {
                    // SAFETY:
                    // - the caller must guarantee that `dst` is properly aligned for `T`.
                    // - `T` has an alignment greater than or equal to u32.
                    // - the remaining bytes is greater than or equal to `size_of::<u32>()`.
                    unsafe {
                        let val: u32 = src.add(i).read();
                        (*dst.add(i)).store(val, Ordering::Relaxed);
                    }
                }
                mem::forget(guard);
                return;
            }
        }

        // Branch 4: If the alignment of `T` is greater than or equal to u16,
        // we can write it as a chunk of u16 from the first byte.
        if mem::size_of::<usize>() > 2 && mem::align_of::<T>() >= mem::align_of::<AtomicU16>() {
            let src = &*val as *const T as *const u16;
            let dst = dst as *const AtomicU16;
            for i in range(0..mem::size_of::<T>() / mem::size_of::<u16>()) {
                // SAFETY:
                // - the caller must guarantee that `dst` is properly aligned for `T`.
                // - `T` has an alignment greater than or equal to u16.
                // - the remaining bytes is greater than or equal to `size_of::<u16>()`.
                unsafe {
                    let val: u16 = src.add(i).read();
                    (*dst.add(i)).store(val, Ordering::Relaxed);
                }
            }
            mem::forget(guard);
            return;
        }

        // Branch 5: Otherwise, we write it per byte.
        let mut state = store::StoreState::new(dst, &*val);
        state.atomic_store_u8(state.remaining());
        debug_assert_eq!(state.remaining(), 0);
        mem::forget(guard);
    }

    // This allows read_volatile and atomic_load to be lowered to exactly the
    // same assembly on little endian platforms such as aarch64, riscv64.
    #[cfg_attr(feature = "inline-always", inline(always))]
    #[cfg_attr(not(feature = "inline-always"), inline)]
    #[cfg(target_endian = "little")]
    fn range<T>(r: Range<T>) -> core::iter::Rev<Range<T>>
    where
        Range<T>: DoubleEndedIterator,
    {
        r.rev()
    }
    #[cfg_attr(feature = "inline-always", inline(always))]
    #[cfg_attr(not(feature = "inline-always"), inline)]
    #[cfg(target_endian = "big")]
    fn range<T>(r: Range<T>) -> Range<T>
    where
        Range<T>: DoubleEndedIterator,
    {
        r
    }

    // Atomic integers larger than the pointer size often does not have the
    // same alignment as the corresponding integer types.
    //
    // ```console
    // $ rustc --print cfg --target x86_64-apple-darwin | grep -E 'target_has_atomic_.*(64|128)'
    // target_has_atomic_equal_alignment="64"
    // target_has_atomic_load_store="128"
    // target_has_atomic_load_store="64"
    // ```
    //
    // It's unlikely that the same thing will happen with an atomic type
    // less than or equal to the pointer size, but we'll check just in case.
    #[cfg_attr(feature = "inline-always", inline(always))]
    #[cfg_attr(not(feature = "inline-always"), inline)]
    fn static_assert_atomic_alignment() {
        let [] = [(); mem::align_of::<usize>() - mem::align_of::<AtomicUsize>()];
        #[cfg(not(any(target_pointer_width = "16", target_pointer_width = "32")))]
        let [] = [(); mem::align_of::<u64>() - mem::align_of::<AtomicU64>()];
        #[cfg(not(target_pointer_width = "16"))]
        let [] = [(); mem::align_of::<u32>() - mem::align_of::<AtomicU32>()];
        let [] = [(); mem::align_of::<u16>() - mem::align_of::<AtomicU16>()];
    }

    struct PanicGuard;

    impl Drop for PanicGuard {
        fn drop(&mut self) {
            // This crate supports no-std environment, so we cannot use std::process::abort.
            // Instead, it uses the nature of double panics being converted to an abort.
            panic!("abort");
        }
    }
}

#[cfg(any(
    target_pointer_width = "16",
    all(target_arch = "riscv32", not(target_feature = "a"), target_os = "none"),
    atomic_memcpy_unsafe_volatile,
))]
mod imp {
    #[cfg_attr(feature = "inline-always", inline(always))]
    #[cfg_attr(not(feature = "inline-always"), inline)]
    pub(crate) unsafe fn atomic_load<T>(src: *const T) -> core::mem::MaybeUninit<T> {
        // SAFETY: the user who explicitly specified the `--cfg atomic_memcpy_unsafe_volatile`
        // must guarantees that the volatile read would not cause data races.
        //
        // HACK: Using volatile read/write instead of atomic load/store on single-threaded platforms where
        // LLVM does not support atomic is normally considered to be an okay workaround.
        // <https://github.com/rust-lang/compiler-builtins/commit/e0187f17dbcbf9dc026d379b2af8d866300596a5>
        unsafe { (src as *const core::mem::MaybeUninit<T>).read_volatile() }
    }

    #[cfg_attr(feature = "inline-always", inline(always))]
    #[cfg_attr(not(feature = "inline-always"), inline)]
    pub(crate) unsafe fn atomic_store<T>(dst: *mut T, src: T) {
        // SAFETY: the user who explicitly specified the `--cfg atomic_memcpy_unsafe_volatile`
        // must guarantees that the volatile write would not cause data races.
        //
        // HACK: Using volatile read/write instead of atomic load/store on single-threaded platforms where
        // LLVM does not support atomic is normally considered to be an okay workaround.
        // <https://github.com/rust-lang/compiler-builtins/commit/e0187f17dbcbf9dc026d379b2af8d866300596a5>
        unsafe {
            dst.write_volatile(src);
        }
    }
}