1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
//! Types used in OpenAI API requests and responses.
//! These types are created from component schemas in the [OpenAPI spec](https://github.com/openai/openai-openapi)
use std::{
    collections::HashMap,
    fmt::Display,
    path::{Path, PathBuf},
};

use serde::{Deserialize, Serialize};

use crate::{
    download::{download_url, save_b64},
    error::OpenAIError,
};

#[derive(Debug, Deserialize)]
pub struct Model {
    pub id: String,
    pub object: String,
    pub created: u32,
    pub owned_by: String,
}

#[derive(Debug, Deserialize)]
pub struct ListModelResponse {
    pub object: String,
    pub data: Vec<Model>,
}

#[derive(Serialize, Default, Debug)]
pub struct CreateCompletionRequest {
    /// ID of the model to use. You can use the [List models](/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](/docs/models/overview) for descriptions of them.
    pub model: String,

    /// The prompt(s) to generate completions for, encoded as a string, array of strings, array of tokens, or array of token arrays.
    ///
    /// Note that <|endoftext|> is the document separator that the model sees during training, so if a prompt is not specified the model will generate as if from the beginning of a new document.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub prompt: Option<String>, // todo check type

    /// The suffix that comes after a completion of inserted text.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub suffix: Option<String>, // todo: default null

    /// The maximum number of [tokens](/tokenizer) to generate in the completion.
    ///
    /// The token count of your prompt plus `max_tokens` cannot exceed the model's context length. Most models have a context length of 2048 tokens (except for the newest models, which support 4096).
    #[serde(skip_serializing_if = "Option::is_none")]
    pub max_tokens: Option<u16>,

    /// What [sampling temperature](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277) to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub temperature: Option<f32>, // todo: min:0 ,max: 2, default: 1,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    ///
    ///  We generally recommend altering this or `temperature` but not both.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub top_p: Option<f32>, //  todo: min: 0, max: 1, default: 1

    /// How many completions to generate for each prompt.

    /// **Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
    ///
    #[serde(skip_serializing_if = "Option::is_none")]
    pub n: Option<u8>, // min:1 max: 128, default: 1

    /// Whether to stream back partial progress. If set, tokens will be sent as data-only [server-sent events](https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events#Event_stream_format)
    /// as they become available, with the stream terminated by a `data: [DONE]` message.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub stream: Option<bool>,

    /// Include the log probabilities on the `logprobs` most likely tokens, as well the chosen tokens. For example, if `logprobs` is 5, the API will return a list of the 5 most likely tokens. The API will always return the `logprob` of the sampled token, so there may be up to `logprobs+1` elements in the response.

    /// The maximum value for `logprobs` is 5. If you need more than this, please contact us through our [Help center](https://help.openai.com) and describe your use case.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub logprobs: Option<u8>, // min:0 , max: 5, default: null

    /// Echo back the prompt in addition to the completion
    #[serde(skip_serializing_if = "Option::is_none")]
    pub echo: Option<bool>,

    ///  Up to 4 sequences where the API will stop generating further tokens. The returned text will not contain the stop sequence.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub stop: Option<String>, //todo: type?

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
    ///
    /// [See more information about frequency and presence penalties.](/docs/api-reference/parameter-details)
    #[serde(skip_serializing_if = "Option::is_none")]
    pub presence_penalty: Option<f32>, // min: -2.0, max: 2.0, default 0

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
    ///
    /// [See more information about frequency and presence penalties.](/docs/api-reference/parameter-details)
    #[serde(skip_serializing_if = "Option::is_none")]
    pub frequency_penalty: Option<f32>, // min: -2.0, max: 2.0, default: 0

    /// Generates `best_of` completions server-side and returns the "best" (the one with the highest log probability per token). Results cannot be streamed.
    ///
    /// When used with `n`, `best_of` controls the number of candidate completions and `n` specifies how many to return – `best_of` must be greater than `n`.
    ///
    /// **Note:** Because this parameter generates many completions, it can quickly consume your token quota. Use carefully and ensure that you have reasonable settings for `max_tokens` and `stop`.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of: Option<u8>, //min: 0, max: 20, default: 1

    /// Modify the likelihood of specified tokens appearing in the completion.
    ///
    /// Accepts a json object that maps tokens (specified by their token ID in the GPT tokenizer) to an associated bias value from -100 to 100. You can use this [tokenizer tool](/tokenizer?view=bpe) (which works for both GPT-2 and GPT-3) to convert text to token IDs. Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should result in a ban or exclusive selection of the relevant token.
    ///
    /// As an example, you can pass `{"50256": -100}` to prevent the <|endoftext|> token from being generated.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub logit_bias: Option<HashMap<String, serde_json::Value>>, // default: null

    /// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](/docs/usage-policies/end-user-ids).
    #[serde(skip_serializing_if = "Option::is_none")]
    pub user: Option<String>,
}

#[derive(Debug, Deserialize)]
pub struct Logprobs {
    pub tokens: Vec<String>,
    pub token_logprobs: Vec<f32>,
    pub token_offset: Vec<u32>,
}

#[derive(Debug, Deserialize)]
pub struct Choice {
    pub text: String,
    pub index: u32,
    pub logprobs: Option<Logprobs>,
    pub finish_reason: Option<String>,
}

#[derive(Debug, Deserialize)]
pub struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

#[derive(Debug, Deserialize)]
pub struct CreateCompletionResponse {
    pub id: String,
    pub object: String,
    pub created: u32,
    pub model: String,
    pub choices: Vec<Choice>,
    pub usage: Option<Usage>,
}

#[derive(Debug, Serialize, Default)]
pub struct CreateEditRequest {
    /// ID of the model to use. You can use the [List models](/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](/docs/models/overview) for descriptions of them.
    pub model: String,

    /// The input text to use as a starting point for the edit.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub input: Option<String>, // default ''

    /// The instruction that tells the model how to edit the prompt.
    pub instruction: String,

    /// How many edits to generate for the input and instruction.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub n: Option<u8>, // min:1 max: 20 default:1

    /// What [sampling temperature](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277) to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub temperature: Option<f32>, // todo: min:0 ,max: 2, default: 1,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    ///
    ///  We generally recommend altering this or `temperature` but not both.
    #[serde(skip_serializing_if = "Option::is_none")]
    pub top_p: Option<f32>, //  todo: min: 0, max: 1, default: 1
}

#[derive(Debug, Deserialize)]
pub struct CreateEditResponse {
    pub id: Option<String>,
    pub object: String,
    pub created: u32,
    pub model: Option<String>,
    pub choices: Vec<Choice>,
    pub usage: Usage,
}

#[derive(Default, Debug, Serialize)]
pub enum ImageSize {
    #[serde(rename = "256x256")]
    S256x256,
    #[serde(rename = "512x512")]
    S512x512,
    #[default]
    #[serde(rename = "1024x1024")]
    S1024x1024,
}

impl Display for ImageSize {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "{}",
            match self {
                ImageSize::S256x256 => "256x256",
                ImageSize::S512x512 => "512x512",
                ImageSize::S1024x1024 => "1024x1024",
            }
        )
    }
}

#[derive(Debug, Serialize, Default)]
#[serde(rename_all = "lowercase")]
pub enum ResponseFormat {
    #[default]
    Url,
    #[serde(rename = "b64_json")]
    B64Json,
}

impl Display for ResponseFormat {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(
            f,
            "{}",
            match self {
                ResponseFormat::Url => "url",
                ResponseFormat::B64Json => "b64_json",
            }
        )
    }
}

#[derive(Debug, Serialize, Default)]
pub struct CreateImageRequest {
    /// A text description of the desired image(s). The maximum length is 1000 characters.
    pub prompt: String,

    /// The number of images to generate. Must be between 1 and 10.
    pub n: Option<u8>, // min:1 max:10 default:1

    /// The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024`.
    pub size: Option<ImageSize>,

    /// The format in which the generated images are returned. Must be one of `url` or `b64_json`.
    pub response_format: Option<ResponseFormat>,

    /// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](/docs/usage-policies/end-user-ids).
    pub user: Option<String>,
}

#[derive(Debug, Deserialize)]
#[serde(rename_all = "lowercase")]
pub enum ImageData {
    Url(String),
    #[serde(rename = "b64_json")]
    B64Json(String),
}

#[derive(Debug, Deserialize)]
pub struct ImageResponse {
    pub created: u32,
    pub data: Vec<ImageData>,
}

#[derive(Debug, Default)]
pub struct ImageInput {
    pub path: PathBuf,
}

impl ImageInput {
    pub fn new<P: AsRef<Path>>(path: P) -> Self {
        ImageInput {
            path: PathBuf::from(path.as_ref()),
        }
    }
}

impl ImageResponse {
    pub async fn save<P: AsRef<Path>>(&self, dir: P) -> Result<(), OpenAIError> {
        let exists = match Path::try_exists(dir.as_ref()) {
            Ok(exists) => exists,
            Err(e) => return Err(OpenAIError::ImageSaveError(e.to_string())),
        };

        if !exists {
            std::fs::create_dir_all(dir.as_ref())
                .map_err(|e| OpenAIError::ImageSaveError(e.to_string()))?;
        }

        for id in &self.data {
            id.save(dir.as_ref()).await?;
        }
        Ok(())
    }
}

impl ImageData {
    async fn save<P: AsRef<Path>>(&self, dir: P) -> Result<(), OpenAIError> {
        match self {
            ImageData::Url(url) => download_url(url, dir).await?,
            ImageData::B64Json(b64_json) => save_b64(b64_json, dir).await?,
        }
        Ok(())
    }
}

#[derive(Debug, Default)]
pub struct CreateImageEditRequest {
    /// The image to edit. Must be a valid PNG file, less than 4MB, and square.
    pub image: ImageInput,

    /// An additional image whose fully transparent areas (e.g. where alpha is zero) indicate where `image` should be edited. Must be a valid PNG file, less than 4MB, and have the same dimensions as `image`.
    pub mask: ImageInput,

    /// A text description of the desired image(s). The maximum length is 1000 characters.
    pub prompt: String,

    /// The number of images to generate. Must be between 1 and 10.
    pub n: Option<u8>, // min:1 max:10 default:1

    /// The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024`.
    pub size: Option<ImageSize>,

    /// The format in which the generated images are returned. Must be one of `url` or `b64_json`.
    pub response_format: Option<ResponseFormat>,

    /// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](/docs/usage-policies/end-user-ids).
    pub user: Option<String>,
}

#[derive(Debug, Default)]
pub struct CreateImageVariationRequest {
    /// The image to use as the basis for the variation(s). Must be a valid PNG file, less than 4MB, and square.
    pub image: ImageInput,

    /// The number of images to generate. Must be between 1 and 10.
    pub n: Option<u8>, // min:1 max:10 default:1

    /// The size of the generated images. Must be one of `256x256`, `512x512`, or `1024x1024`.
    pub size: Option<ImageSize>,

    /// The format in which the generated images are returned. Must be one of `url` or `b64_json`.
    pub response_format: Option<ResponseFormat>,

    /// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse. [Learn more](/docs/usage-policies/end-user-ids).
    pub user: Option<String>,
}

#[derive(Debug, Serialize)]
#[serde(untagged)]
pub enum Input {
    Single(String),
    Array(Vec<String>),
}

impl Default for Input {
    fn default() -> Self {
        Input::Single("".to_owned())
    }
}

#[derive(Debug, Serialize, Default)]
pub enum TextModerationModel {
    #[default]
    #[serde(rename = "text-moderation-latest")]
    Latest,
    #[serde(rename = "text-moderation-stable")]
    Stable,
}

#[derive(Debug, Serialize, Default)]
pub struct CreateModerationRequest {
    /// The input text to classify
    pub input: Input,

    /// Two content moderations models are available: `text-moderation-stable` and `text-moderation-latest`.
    ///
    /// The default is `text-moderation-latest` which will be automatically upgraded over time. This ensures you are always using our most accurate model. If you use `text-moderation-stable`, we will provide advanced notice before updating the model. Accuracy of `text-moderation-stable` may be slightly lower than for `text-moderation-latest`.
    pub model: Option<TextModerationModel>,
}

#[derive(Debug, Deserialize)]
pub struct Category {
    pub hate: bool,
    #[serde(rename = "hate/threatening")]
    pub hate_threatening: bool,
    #[serde(rename = "self-harm")]
    pub self_harm: bool,
    pub sexual: bool,
    #[serde(rename = "sexual/minors")]
    pub sexual_minors: bool,
    pub violence: bool,
    #[serde(rename = "violence/graphic")]
    pub violence_graphic: bool,
}

#[derive(Debug, Deserialize)]
pub struct CategoryScore {
    pub hate: f32,
    #[serde(rename = "hate/threatening")]
    pub hate_threatening: f32,
    #[serde(rename = "self-harm")]
    pub self_harm: f32,
    pub sexual: f32,
    #[serde(rename = "sexual/minors")]
    pub sexual_minors: f32,
    pub violence: f32,
    #[serde(rename = "violence/graphic")]
    pub violence_graphic: f32,
}

#[derive(Debug, Deserialize)]
pub struct ContentModerationResult {
    pub flagged: bool,
    pub categories: Category,
    pub category_scores: CategoryScore,
}

#[derive(Debug, Deserialize)]
pub struct CreateModerationResponse {
    pub id: String,
    pub model: String,
    pub results: Vec<ContentModerationResult>,
}

/* Not used yet
pub struct OpenAIFile {
    pub id: String,
    pub object: String,
    pub bytes: u32,
    pub created_at: u32,
    pub filename: String,
    pub purpose: String,
    pub status: Option<String>,
    pub status_details: Option<serde_json::Value>, // nullable: true
}

pub struct FineTune {
    pub id: String,
    pub object: String,
    pub created_at: u32,
    pub updated_at: u32,
    pub model: String,
    pub fine_tuned_model: String, // nullable: true
    pub organization_id: String,
    pub status: String,
    pub hyperparams: serde_json::Value,
    pub training_files: Vec<OpenAIFile>,
    pub validation_files: Vec<OpenAIFile>,
    pub result_files: Vec<OpenAIFile>,
    pub events: Option<FineTuneEvent>,
}

pub struct FineTuneEvent {
    pub object: String,
    pub created_at: u32,
    pub level: String,
    pub message: String,
}

pub struct DeleteModelResponse {
    pub id: String,
    pub object: String,
    pub deleted: bool,
}
*/