async-backtrace 0.2.2

Efficient, logical 'backtraces' of async tasks.
Documentation
// Copyright (c) 2022 Tokio Contributors
//
// Permission is hereby granted, free of charge, to any
// person obtaining a copy of this software and associated
// documentation files (the "Software"), to deal in the
// Software without restriction, including without
// limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice
// shall be included in all copies or substantial portions
// of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
// ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.

//! An intrusive double linked list of data.
//!
//! The data structure supports tracking pinned nodes. Most of the data
//! structure's APIs are `unsafe` as they require the caller to ensure the
//! specified node is actually contained by the list.
//!
//! [Adapted from Tokio.](https://github.com/tokio-rs/tokio/blob/master/tokio/src/util/linked_list.rs)

use crate::cell::UnsafeCell;
use core::fmt;
use core::marker::{PhantomData, PhantomPinned};
use core::mem::ManuallyDrop;
use core::ptr::{self, NonNull};

/// An intrusive linked list.
///
/// Currently, the list is not emptied on drop. It is the caller's
/// responsibility to ensure the list is empty before dropping it.
pub(crate) struct LinkedList<L, T> {
    /// Linked list head
    head: Option<NonNull<T>>,

    /// Linked list tail
    tail: Option<NonNull<T>>,

    /// Node type marker.
    _marker: PhantomData<*const L>,
}

unsafe impl<L: Link> Send for LinkedList<L, L::Target> where L::Target: Send {}
unsafe impl<L: Link> Sync for LinkedList<L, L::Target> where L::Target: Sync {}

/// Defines how a type is tracked within a linked list.
///
/// In order to support storing a single type within multiple lists, accessing
/// the list pointers is decoupled from the entry type.
///
/// # Safety
///
/// Implementations must guarantee that `Target` types are pinned in memory. In
/// other words, when a node is inserted, the value will not be moved as long as
/// it is stored in the list.
pub(crate) unsafe trait Link {
    /// Handle to the list entry.
    ///
    /// This is usually a pointer-ish type.
    type Handle;

    /// Node type.
    type Target;

    /// Convert the handle to a raw pointer without consuming the handle.
    #[allow(clippy::wrong_self_convention)]
    fn as_raw(handle: &Self::Handle) -> NonNull<Self::Target>;

    /// Convert the raw pointer to a handle
    unsafe fn from_raw(ptr: NonNull<Self::Target>) -> Self::Handle;

    /// Return the pointers for a node
    ///
    /// # Safety
    ///
    /// The resulting pointer should have the same tag in the stacked-borrows
    /// stack as the argument. In particular, the method may not create an
    /// intermediate reference in the process of creating the resulting raw
    /// pointer.
    unsafe fn pointers(target: NonNull<Self::Target>) -> NonNull<Pointers<Self::Target>>;
}

/// Previous / next pointers.
pub(crate) struct Pointers<T> {
    inner: UnsafeCell<PointersInner<T>>,
}
/// We do not want the compiler to put the `noalias` attribute on mutable
/// references to this type, so the type has been made `!Unpin` with a
/// `PhantomPinned` field.
///
/// Additionally, we never access the `prev` or `next` fields directly, as any
/// such access would implicitly involve the creation of a reference to the
/// field, which we want to avoid since the fields are not `!Unpin`, and would
/// hence be given the `noalias` attribute if we were to do such an access.
/// As an alternative to accessing the fields directly, the `Pointers` type
/// provides getters and setters for the two fields, and those are implemented
/// using raw pointer casts and offsets, which is valid since the struct is
/// #[repr(C)].
///
/// See this link for more information:
/// <https://github.com/rust-lang/rust/pull/82834>
#[repr(C)]
struct PointersInner<T> {
    /// The previous node in the list. null if there is no previous node.
    ///
    /// This field is accessed through pointer manipulation, so it is not dead
    /// code.
    #[allow(dead_code)]
    prev: Option<NonNull<T>>,

    /// The next node in the list. null if there is no previous node.
    ///
    /// This field is accessed through pointer manipulation, so it is not dead
    /// code.
    #[allow(dead_code)]
    next: Option<NonNull<T>>,

    /// This type is !Unpin due to the heuristic from:
    /// <https://github.com/rust-lang/rust/pull/82834>
    _pin: PhantomPinned,
}

unsafe impl<T: Send> Send for Pointers<T> {}
unsafe impl<T: Sync> Sync for Pointers<T> {}

pub(crate) struct Iter<'a, T: Link> {
    _list: &'a LinkedList<T, T::Target>,
    curr: Option<NonNull<T::Target>>,
}

// ===== impl LinkedList =====

impl<L, T> LinkedList<L, T> {
    /// Creates an empty linked list.
    pub(crate) const fn new() -> LinkedList<L, T> {
        LinkedList {
            head: None,
            tail: None,
            _marker: PhantomData,
        }
    }

    pub(crate) fn iter(&self) -> Iter<'_, L>
    where
        L: Link<Target = T>,
    {
        Iter {
            _list: self,
            curr: self.head,
        }
    }
}

impl<L: Link> LinkedList<L, L::Target> {
    /// Adds an element first in the list.
    pub(crate) fn push_front(&mut self, val: L::Handle) {
        // The value should not be dropped, it is being inserted into the list
        let val = ManuallyDrop::new(val);
        let ptr = L::as_raw(&val);
        assert_ne!(self.head, Some(ptr));
        unsafe {
            L::pointers(ptr).as_mut().set_next(self.head);
            L::pointers(ptr).as_mut().set_prev(None);

            if let Some(head) = self.head {
                L::pointers(head).as_mut().set_prev(Some(ptr));
            }

            self.head = Some(ptr);

            if self.tail.is_none() {
                self.tail = Some(ptr);
            }
        }
    }

    /// Removes the specified node from the list
    ///
    /// # Safety
    ///
    /// The caller **must** ensure that `node` is currently contained by
    /// `self` or not contained by any other list.
    pub(crate) unsafe fn remove(&mut self, node: NonNull<L::Target>) -> Option<L::Handle> {
        if let Some(prev) = L::pointers(node).as_ref().get_prev() {
            debug_assert_eq!(L::pointers(prev).as_ref().get_next(), Some(node));
            L::pointers(prev)
                .as_mut()
                .set_next(L::pointers(node).as_ref().get_next());
        } else {
            if self.head != Some(node) {
                return None;
            }

            self.head = L::pointers(node).as_ref().get_next();
        }

        if let Some(next) = L::pointers(node).as_ref().get_next() {
            debug_assert_eq!(L::pointers(next).as_ref().get_prev(), Some(node));
            L::pointers(next)
                .as_mut()
                .set_prev(L::pointers(node).as_ref().get_prev());
        } else {
            // This might be the last item in the list
            if self.tail != Some(node) {
                return None;
            }

            self.tail = L::pointers(node).as_ref().get_prev();
        }

        L::pointers(node).as_mut().set_next(None);
        L::pointers(node).as_mut().set_prev(None);

        Some(L::from_raw(node))
    }
}

impl<L: Link> fmt::Debug for LinkedList<L, L::Target> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("LinkedList")
            .field("head", &self.head)
            .field("tail", &self.tail)
            .finish()
    }
}

// ===== impl Pointers =====
impl<T> Pointers<T> {
    /// Create a new set of empty pointers
    pub(crate) fn new() -> Pointers<T> {
        Pointers {
            inner: UnsafeCell::new(PointersInner {
                prev: None,
                next: None,
                _pin: PhantomPinned,
            }),
        }
    }

    pub(crate) fn get_prev(&self) -> Option<NonNull<T>> {
        // SAFETY: prev is the first field in PointersInner, which is #[repr(C)].
        unsafe {
            self.inner.with(|inner| {
                let prev = inner as *const Option<NonNull<T>>;
                ptr::read(prev)
            })
        }
    }
    pub(crate) fn get_next(&self) -> Option<NonNull<T>> {
        // SAFETY: next is the second field in PointersInner, which is #[repr(C)].
        unsafe {
            self.inner.with(|inner| {
                let prev = inner as *const Option<NonNull<T>>;
                let next = prev.add(1);
                ptr::read(next)
            })
        }
    }

    fn set_prev(&mut self, value: Option<NonNull<T>>) {
        // SAFETY: prev is the first field in PointersInner, which is #[repr(C)].
        unsafe {
            self.inner.with_mut(|inner| {
                let prev = inner as *mut Option<NonNull<T>>;
                ptr::write(prev, value);
            });
        }
    }
    fn set_next(&mut self, value: Option<NonNull<T>>) {
        // SAFETY: next is the second field in PointersInner, which is #[repr(C)].
        unsafe {
            self.inner.with_mut(|inner| {
                let prev = inner as *mut Option<NonNull<T>>;
                let next = prev.add(1);
                ptr::write(next, value);
            });
        }
    }
}

impl<T> fmt::Debug for Pointers<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let prev = self.get_prev();
        let next = self.get_next();
        f.debug_struct("Pointers")
            .field("prev", &prev)
            .field("next", &next)
            .finish()
    }
}

// ===== impl Iter =====

impl<'a, T> Iterator for Iter<'a, T>
where
    T: Link,
{
    type Item = T::Handle;

    fn next(&mut self) -> Option<Self::Item> {
        let curr = self.curr;
        self.curr = curr.and_then(|curr| unsafe { T::pointers(curr).as_ref() }.get_next());
        curr.map(|curr| unsafe { T::from_raw(curr) })
    }
}