async-backtrace-attributes 0.2.2

Procedural macros for the `async-backtrace` crate.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
use proc_macro2::TokenStream;
use quote::{quote, quote_spanned, ToTokens};
use syn::visit_mut::VisitMut;
use syn::{
    punctuated::Punctuated, spanned::Spanned, Block, Expr, ExprAsync, ExprCall, FnArg, Ident, Item,
    ItemFn, Pat, PatIdent, Path, ReturnType, Signature, Stmt, Token, Type, TypePath,
};

use crate::MaybeItemFnRef;

/// Given an existing function, generate an instrumented version of that
/// function
pub(crate) fn gen_function<'a, B: ToTokens + 'a>(
    input: MaybeItemFnRef<'a, B>,
    instrumented_function_name: &str,
    self_type: Option<&TypePath>,
) -> proc_macro2::TokenStream {
    // these are needed ahead of time, as ItemFn contains the function body _and_
    // isn't representable inside a quote!/quote_spanned! macro
    // (Syn's ToTokens isn't implemented for ItemFn)
    let MaybeItemFnRef {
        attrs,
        vis,
        sig,
        block,
    } = input;

    let Signature {
        output,
        inputs: params,
        unsafety,
        asyncness,
        constness,
        abi,
        ident,
        generics:
            syn::Generics {
                params: gen_params,
                where_clause,
                ..
            },
        ..
    } = sig;

    let (return_type, return_span) = if let ReturnType::Type(_, return_type) = &output {
        (erase_impl_trait(return_type), return_type.span())
    } else {
        // Point at function name if we don't have an explicit return type
        (syn::parse_quote! { () }, ident.span())
    };
    // Install a fake return statement as the first thing in the function
    // body, so that we eagerly infer that the return type is what we
    // declared in the async fn signature.
    // The `#[allow(..)]` is given because the return statement is
    // unreachable, but does affect inference, so it needs to be written
    // exactly that way for it to do its magic.
    let fake_return_edge = quote_spanned! {return_span=>
        #[allow(unreachable_code, clippy::diverging_sub_expression, clippy::let_unit_value, clippy::empty_loop)]
        if false {
            let __backtrace_attr_fake_return: #return_type = loop {};
            return __backtrace_attr_fake_return;
        }
    };
    let block = quote! {
        {
            #fake_return_edge
            #block
        }
    };

    let body = gen_block(
        &block,
        params,
        asyncness.is_some(),
        instrumented_function_name,
        self_type,
    );

    quote!(
        #(#attrs) *
        #vis #constness #unsafety #asyncness #abi fn #ident<#gen_params>(#params) #output
        #where_clause
        {
            #body
        }
    )
}

/// Instrument a block
/// Instrument a block
fn gen_block<B: ToTokens>(
    block: &B,
    _params: &Punctuated<FnArg, Token![,]>,
    async_context: bool,
    _instrumented_function_name: &str,
    _self_type: Option<&TypePath>,
) -> proc_macro2::TokenStream {
    // Generate the instrumented function body.
    // If the function is an `async fn`, this will wrap it in an async block,
    // which is `instrument`ed using `tracing-futures`. Otherwise, this will
    // enter the span and then perform the rest of the body.
    if async_context {
        quote!(async_backtrace::frame!(async move { #block }).await)
    } else {
        quote_spanned!(block.span() => #block)
    }
}

/// The specific async code pattern that was detected
enum AsyncKind<'a> {
    /// Immediately-invoked async fn, as generated by `async-trait <= 0.1.43`:
    /// `async fn foo<...>(...) {...}; Box::pin(foo<...>(...))`
    Function(&'a ItemFn),
    /// A function returning an async (move) block, optionally `Box::pin`-ed,
    /// as generated by `async-trait >= 0.1.44`:
    /// `Box::pin(async move { ... })`
    Async {
        async_expr: &'a ExprAsync,
        pinned_box: bool,
    },
}

pub(crate) struct AsyncInfo<'block> {
    // statement that must be patched
    source_stmt: &'block Stmt,
    kind: AsyncKind<'block>,
    self_type: Option<TypePath>,
    input: &'block ItemFn,
}

impl<'block> AsyncInfo<'block> {
    /// Get the AST of the inner function we need to hook, if it looks like a
    /// manual future implementation.
    ///
    /// When we are given a function that returns a (pinned) future containing
    /// the user logic, it is that (pinned) future that needs to be
    /// instrumented. Were we to instrument its parent, we would only
    /// collect information regarding the allocation of that future, and not
    /// its own span of execution.
    ///
    /// We inspect the block of the function to find if it matches any of the
    /// following patterns:
    ///
    /// - Immediately-invoked async fn, as generated by `async-trait <= 0.1.43`:
    ///   `async fn foo<...>(...) {...}; Box::pin(foo<...>(...))`
    ///
    /// - A function returning an async (move) block, optionally `Box::pin`-ed,
    ///   as generated by `async-trait >= 0.1.44`: `Box::pin(async move { ...
    ///   })`
    ///
    /// We the return the statement that must be instrumented, along with some
    /// other information.
    /// 'gen_body' will then be able to use that information to instrument the
    /// proper function/future.
    ///
    /// (this follows the approach suggested in
    /// https://github.com/dtolnay/async-trait/issues/45#issuecomment-571245673)
    pub(crate) fn from_fn(input: &'block ItemFn) -> Option<Self> {
        // are we in an async context? If yes, this isn't a manual async-like pattern
        if input.sig.asyncness.is_some() {
            return None;
        }

        let block = &input.block;

        // list of async functions declared inside the block
        let inside_funs = block.stmts.iter().filter_map(|stmt| {
            if let Stmt::Item(Item::Fn(fun)) = &stmt {
                // If the function is async, this is a candidate
                if fun.sig.asyncness.is_some() {
                    return Some((stmt, fun));
                }
            }
            None
        });

        // last expression of the block: it determines the return value of the
        // block, this is quite likely a `Box::pin` statement or an async block
        let (last_expr_stmt, last_expr) = block.stmts.iter().rev().find_map(|stmt| {
            if let Stmt::Expr(expr) = stmt {
                Some((stmt, expr))
            } else {
                None
            }
        })?;

        // is the last expression an async block?
        if let Expr::Async(async_expr) = last_expr {
            return Some(AsyncInfo {
                source_stmt: last_expr_stmt,
                kind: AsyncKind::Async {
                    async_expr,
                    pinned_box: false,
                },
                self_type: None,
                input,
            });
        }

        // is the last expression a function call?
        let (outside_func, outside_args) = match last_expr {
            Expr::Call(ExprCall { func, args, .. }) => (func, args),
            _ => return None,
        };

        // is it a call to `Box::pin()`?
        let path = match outside_func.as_ref() {
            Expr::Path(path) => &path.path,
            _ => return None,
        };
        if !path_to_string(path).ends_with("Box::pin") {
            return None;
        }

        // Does the call take an argument? If it doesn't,
        // it's not gonna compile anyway, but that's no reason
        // to (try to) perform an out of bounds access
        if outside_args.is_empty() {
            return None;
        }

        // Is the argument to Box::pin an async block that
        // captures its arguments?
        if let Expr::Async(async_expr) = &outside_args[0] {
            return Some(AsyncInfo {
                source_stmt: last_expr_stmt,
                kind: AsyncKind::Async {
                    async_expr,
                    pinned_box: true,
                },
                self_type: None,
                input,
            });
        }

        // Is the argument to Box::pin a function call itself?
        let func = match &outside_args[0] {
            Expr::Call(ExprCall { func, .. }) => func,
            _ => return None,
        };

        // "stringify" the path of the function called
        let func_name = match **func {
            Expr::Path(ref func_path) => path_to_string(&func_path.path),
            _ => return None,
        };

        // Was that function defined inside of the current block?
        // If so, retrieve the statement where it was declared and the function itself
        let (stmt_func_declaration, func) = inside_funs
            .into_iter()
            .find(|(_, fun)| fun.sig.ident == func_name)?;

        // If "_self" is present as an argument, we store its type to be able to rewrite
        // "Self" (the parameter type) with the type of "_self"
        let mut self_type = None;
        for arg in &func.sig.inputs {
            if let FnArg::Typed(ty) = arg {
                if let Pat::Ident(PatIdent { ref ident, .. }) = *ty.pat {
                    if ident == "_self" {
                        let mut ty = *ty.ty.clone();
                        // extract the inner type if the argument is "&self" or "&mut self"
                        if let Type::Reference(syn::TypeReference { elem, .. }) = ty {
                            ty = *elem;
                        }

                        if let Type::Path(tp) = ty {
                            self_type = Some(tp);
                            break;
                        }
                    }
                }
            }
        }

        Some(AsyncInfo {
            source_stmt: stmt_func_declaration,
            kind: AsyncKind::Function(func),
            self_type,
            input,
        })
    }

    pub(crate) fn gen_async(self, instrumented_function_name: &str) -> proc_macro::TokenStream {
        // let's rewrite some statements!
        let mut out_stmts: Vec<TokenStream> = self
            .input
            .block
            .stmts
            .iter()
            .map(|stmt| stmt.to_token_stream())
            .collect();

        if let Some((iter, _stmt)) = self
            .input
            .block
            .stmts
            .iter()
            .enumerate()
            .find(|(_iter, stmt)| *stmt == self.source_stmt)
        {
            // instrument the future by rewriting the corresponding statement
            out_stmts[iter] = match self.kind {
                // `Box::pin(immediately_invoked_async_fn())`
                AsyncKind::Function(fun) => gen_function(
                    fun.into(),
                    instrumented_function_name,
                    self.self_type.as_ref(),
                ),
                // `async move { ... }`, optionally pinned
                AsyncKind::Async {
                    async_expr,
                    pinned_box,
                } => {
                    let instrumented_block = gen_block(
                        &async_expr.block,
                        &self.input.sig.inputs,
                        true,
                        instrumented_function_name,
                        None,
                    );
                    let async_attrs = &async_expr.attrs;
                    if pinned_box {
                        quote! {
                            Box::pin(#(#async_attrs) * async move { #instrumented_block })
                        }
                    } else {
                        quote! {
                            #(#async_attrs) * async move { #instrumented_block }
                        }
                    }
                }
            };
        }

        let vis = &self.input.vis;
        let sig = &self.input.sig;
        let attrs = &self.input.attrs;
        quote!(
            #(#attrs) *
            #vis #sig {
                #(#out_stmts) *
            }
        )
        .into()
    }
}

// Return a path as a String
fn path_to_string(path: &Path) -> String {
    use std::fmt::Write;
    // some heuristic to prevent too many allocations
    let mut res = String::with_capacity(path.segments.len() * 5);
    for i in 0..path.segments.len() {
        write!(&mut res, "{}", path.segments[i].ident)
            .expect("writing to a String should never fail");
        if i < path.segments.len() - 1 {
            res.push_str("::");
        }
    }
    res
}

/// A visitor struct to replace idents and types in some piece
/// of code (e.g. the "self" and "Self" tokens in user-supplied
/// fields expressions when the function is generated by an old
/// version of async-trait).
struct IdentAndTypesRenamer<'a> {
    types: Vec<(&'a str, TypePath)>,
    idents: Vec<(Ident, Ident)>,
}

impl<'a> VisitMut for IdentAndTypesRenamer<'a> {
    // we deliberately compare strings because we want to ignore the spans
    // If we apply clippy's lint, the behavior changes
    #[allow(clippy::cmp_owned)]
    fn visit_ident_mut(&mut self, id: &mut Ident) {
        for (old_ident, new_ident) in &self.idents {
            if id.to_string() == old_ident.to_string() {
                *id = new_ident.clone();
            }
        }
    }

    fn visit_type_mut(&mut self, ty: &mut Type) {
        for (type_name, new_type) in &self.types {
            if let Type::Path(TypePath { path, .. }) = ty {
                if path_to_string(path) == *type_name {
                    *ty = Type::Path(new_type.clone());
                }
            }
        }
    }
}

// A visitor struct that replace an async block by its patched version
struct AsyncTraitBlockReplacer<'a> {
    block: &'a Block,
    patched_block: Block,
}

impl<'a> VisitMut for AsyncTraitBlockReplacer<'a> {
    fn visit_block_mut(&mut self, i: &mut Block) {
        if i == self.block {
            *i = self.patched_block.clone();
        }
    }
}

// Replaces any `impl Trait` with `_` so it can be used as the type in
// a `let` statement's LHS.
struct ImplTraitEraser;

impl VisitMut for ImplTraitEraser {
    fn visit_type_mut(&mut self, t: &mut Type) {
        if let Type::ImplTrait(..) = t {
            *t = syn::TypeInfer {
                underscore_token: Token![_](t.span()),
            }
            .into();
        } else {
            syn::visit_mut::visit_type_mut(self, t);
        }
    }
}

fn erase_impl_trait(ty: &Type) -> Type {
    let mut ty = ty.clone();
    ImplTraitEraser.visit_type_mut(&mut ty);
    ty
}