1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
use crate::{
    Bounds, Buffer, BufferLayout, GpuDevice, GpuRenderer, OrderedIndex,
};
use std::ops::Range;
pub struct InstanceDetails {
    pub start: u32,
    pub end: u32,
}
pub type ClippedInstanceDetails = (InstanceDetails, Option<Bounds>);
//This Holds onto all the instances Compressed into a byte array.
pub struct InstanceBuffer<K: BufferLayout> {
    pub unprocessed: Vec<Vec<OrderedIndex>>,
    pub buffers: Vec<Option<InstanceDetails>>,
    pub clipped_buffers: Vec<Vec<ClippedInstanceDetails>>,
    pub buffer: Buffer<K>,
    pub layer_size: usize,
    // this is a calculation of the buffers size when being marked as ready to add into the buffer.
    needed_size: usize,
    is_clipped: bool,
}
impl<K: BufferLayout> InstanceBuffer<K> {
    /// Used to create GpuBuffer from a BufferPass.
    /// Only use this for creating a reusable buffer.
    pub fn create_buffer(
        gpu_device: &GpuDevice,
        data: &[u8],
        layer_size: usize,
    ) -> Self {
        InstanceBuffer {
            unprocessed: Vec::new(),
            buffers: Vec::new(),
            clipped_buffers: Vec::new(),
            buffer: Buffer::new(
                gpu_device,
                data,
                wgpu::BufferUsages::VERTEX | wgpu::BufferUsages::COPY_DST,
                Some("Instance Buffer"),
            ),
            layer_size: layer_size.max(32),
            needed_size: 0,
            is_clipped: false,
        }
    }
    pub fn add_buffer_store(
        &mut self,
        renderer: &GpuRenderer,
        index: OrderedIndex,
        layer: usize,
    ) {
        if let Some(store) = renderer.get_buffer(index.index) {
            let offset = layer.saturating_add(1);
            if self.unprocessed.len() < offset {
                for i in self.unprocessed.len()..offset {
                    //Push the layer buffer. if this is a layer we are adding data too lets
                    //give it a starting size. this cna be adjusted later for better performance
                    //versus ram usage.
                    self.unprocessed.push(if i == layer {
                        Vec::with_capacity(self.layer_size)
                    } else {
                        Vec::new()
                    });
                }
            }
            self.needed_size += store.store.len();
            if let Some(unprocessed) = self.unprocessed.get_mut(layer) {
                unprocessed.push(index);
            }
        }
    }
    fn buffer_write(
        &self,
        renderer: &mut GpuRenderer,
        buf: &OrderedIndex,
        pos: &mut usize,
        count: &mut u32,
        changed: bool,
    ) {
        let mut write_buffer = false;
        let old_pos = *pos as u64;
        if let Some(store) = renderer.get_buffer_mut(buf.index) {
            let range = *pos..*pos + store.store.len();
            if store.store_pos != range || changed || store.changed {
                store.store_pos = range;
                store.changed = false;
                write_buffer = true
            }
            *pos += store.store.len();
            *count += (store.store.len() / K::stride()) as u32;
        }
        if write_buffer {
            if let Some(store) = renderer.get_buffer(buf.index) {
                self.buffer.write(&renderer.device, &store.store, old_pos);
            }
        }
    }
    pub fn finalize(&mut self, renderer: &mut GpuRenderer) {
        let (mut changed, mut pos, mut count) = (false, 0, 0);
        if self.needed_size > self.buffer.max {
            self.resize(renderer.gpu_device(), self.needed_size / K::stride());
            changed = true;
        }
        self.buffer.count = self.needed_size / K::stride();
        self.buffer.len = self.needed_size;
        for processing in &mut self.unprocessed {
            processing.sort();
        }
        if self.is_clipped {
            for buffer in &mut self.clipped_buffers {
                buffer.clear();
            }
            if self.clipped_buffers.len() < self.unprocessed.len() {
                for _ in self.clipped_buffers.len()..self.unprocessed.len() {
                    self.clipped_buffers.push(Vec::new());
                }
            }
        } else {
            self.buffers.clear();
        }
        for (layer, processing) in self.unprocessed.iter().enumerate() {
            if processing.is_empty() {
                if !self.is_clipped {
                    self.buffers.push(None);
                }
                continue;
            }
            let mut start_pos = count;
            if !self.is_clipped {
                for buf in processing {
                    self.buffer_write(
                        renderer, buf, &mut pos, &mut count, changed,
                    );
                }
                self.buffers.push(Some(InstanceDetails {
                    start: start_pos,
                    end: count,
                }));
            } else {
                for buf in processing {
                    self.buffer_write(
                        renderer, buf, &mut pos, &mut count, changed,
                    );
                    if let Some(buffer) = self.clipped_buffers.get_mut(layer) {
                        buffer.push((
                            InstanceDetails {
                                start: start_pos,
                                end: count,
                            },
                            buf.bounds,
                        ));
                    }
                    start_pos = count;
                }
            }
        }
        self.needed_size = 0;
        for buffer in &mut self.unprocessed {
            buffer.clear()
        }
    }
    //private but resizes the buffer on the GPU when needed.
    fn resize(&mut self, gpu_device: &GpuDevice, capacity: usize) {
        let data = K::with_capacity(capacity, 0);
        self.buffer = Buffer::new(
            gpu_device,
            &data.vertexs,
            wgpu::BufferUsages::VERTEX | wgpu::BufferUsages::COPY_DST,
            Some("Vertex Buffer"),
        );
    }
    /// creates a new pre initlized InstanceBuffer with a default size.
    /// default size is based on the initial InstanceLayout::default_buffer length.
    pub fn new(gpu_device: &GpuDevice, layer_size: usize) -> Self {
        Self::create_buffer(
            gpu_device,
            &K::default_buffer().vertexs,
            layer_size,
        )
    }
    /// Returns the elements count.
    pub fn count(&self) -> u32 {
        self.buffer.count as u32
    }
    /// Returns the elements byte count.
    pub fn len(&self) -> u64 {
        self.buffer.len as u64
    }
    pub fn is_empty(&self) -> bool {
        self.buffer.is_empty()
    }
    /// Returns vertex_buffer's max size in bytes.
    pub fn max(&self) -> usize {
        self.buffer.max
    }
    /// Returns if the buffer is clipped or not to deturmine if you should use
    /// buffers or clipped_buffers.
    pub fn is_clipped(&self) -> bool {
        self.is_clipped
    }
    /// Sets the Buffer into Clipping mode.
    /// This will Produce a clipped_buffers instead of the buffers which
    /// will still be layered but a Vector of individual objects will Exist rather
    /// than a grouped object per layer. Will make it less Efficient but allows Bounds Clipping.
    pub fn set_as_clipped(&mut self) {
        self.is_clipped = true;
    }
    /// Returns buffer's stride.
    pub fn stride(&self) -> usize {
        K::stride()
    }
    /// Returns wgpu::BufferSlice of vertices.
    /// bounds is used to set a specific Range if needed.
    /// If bounds is None then range is 0..vertex_count.
    pub fn instances(&self, bounds: Option<Range<u64>>) -> wgpu::BufferSlice {
        let range = if let Some(bounds) = bounds {
            bounds
        } else {
            0..self.len()
        };
        self.buffer.buffer_slice(range)
    }
    /// Creates a Buffer based on capacity.
    /// Capacity is the amount of objects to initialize for.
    pub fn with_capacity(
        gpu_device: &GpuDevice,
        capacity: usize,
        layer_size: usize,
    ) -> Self {
        Self::create_buffer(
            gpu_device,
            &K::with_capacity(capacity, 0).vertexs,
            layer_size,
        )
    }
}