arrow 55.2.0

Rust implementation of Apache Arrow
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Utils to make benchmarking easier

use crate::array::*;
use crate::datatypes::*;
use crate::util::test_util::seedable_rng;
use arrow_buffer::{Buffer, IntervalMonthDayNano};
use half::f16;
use rand::distr::uniform::SampleUniform;
use rand::rng;
use rand::Rng;
use rand::SeedableRng;
use rand::{
    distr::{Alphanumeric, Distribution, StandardUniform},
    prelude::StdRng,
};
use std::ops::Range;

/// Creates an random (but fixed-seeded) array of a given size and null density
pub fn create_primitive_array<T>(size: usize, null_density: f32) -> PrimitiveArray<T>
where
    T: ArrowPrimitiveType,
    StandardUniform: Distribution<T::Native>,
{
    let mut rng = seedable_rng();

    (0..size)
        .map(|_| {
            if rng.random::<f32>() < null_density {
                None
            } else {
                Some(rng.random())
            }
        })
        .collect()
}

/// Creates a [`PrimitiveArray`] of a given `size` and `null_density`
/// filling it with random numbers generated using the provided `seed`.
pub fn create_primitive_array_with_seed<T>(
    size: usize,
    null_density: f32,
    seed: u64,
) -> PrimitiveArray<T>
where
    T: ArrowPrimitiveType,
    StandardUniform: Distribution<T::Native>,
{
    let mut rng = StdRng::seed_from_u64(seed);

    (0..size)
        .map(|_| {
            if rng.random::<f32>() < null_density {
                None
            } else {
                Some(rng.random())
            }
        })
        .collect()
}

/// Creates a [`PrimitiveArray`] of a given `size` and `null_density`
/// filling it with random [`IntervalMonthDayNano`] generated using the provided `seed`.
pub fn create_month_day_nano_array_with_seed(
    size: usize,
    null_density: f32,
    seed: u64,
) -> IntervalMonthDayNanoArray {
    let mut rng = StdRng::seed_from_u64(seed);

    (0..size)
        .map(|_| {
            if rng.random::<f32>() < null_density {
                None
            } else {
                Some(IntervalMonthDayNano::new(
                    rng.random(),
                    rng.random(),
                    rng.random(),
                ))
            }
        })
        .collect()
}

/// Creates a random (but fixed-seeded) array of a given size and null density
pub fn create_boolean_array(size: usize, null_density: f32, true_density: f32) -> BooleanArray
where
    StandardUniform: Distribution<bool>,
{
    let mut rng = seedable_rng();
    (0..size)
        .map(|_| {
            if rng.random::<f32>() < null_density {
                None
            } else {
                let value = rng.random::<f32>() < true_density;
                Some(value)
            }
        })
        .collect()
}

/// Creates a random (but fixed-seeded) string array of a given size and null density.
///
/// Strings have a random length
/// between 0 and 400 alphanumeric characters. `0..400` is chosen to cover a wide range of common string lengths,
/// which have a dramatic impact on performance of some queries, e.g. LIKE/ILIKE/regex.
pub fn create_string_array<Offset: OffsetSizeTrait>(
    size: usize,
    null_density: f32,
) -> GenericStringArray<Offset> {
    create_string_array_with_max_len(size, null_density, 400)
}

/// Creates longer string array with same prefix, the prefix should be larger than 4 bytes,
/// and the string length should be larger than 12 bytes
/// so that we can compare the performance with StringViewArray, because StringViewArray has 4 bytes inline for view
pub fn create_longer_string_array_with_same_prefix<Offset: OffsetSizeTrait>(
    size: usize,
    null_density: f32,
) -> GenericStringArray<Offset> {
    create_string_array_with_len_range_and_prefix(size, null_density, 13, 100, "prefix_")
}

/// Creates longer string view array with same prefix, the prefix should be larger than 4 bytes,
/// and the string length should be larger than 12 bytes
/// so that we can compare the StringArray performance with StringViewArray, because StringViewArray has 4 bytes inline for view
pub fn create_longer_string_view_array_with_same_prefix(
    size: usize,
    null_density: f32,
) -> StringViewArray {
    create_string_view_array_with_len_range_and_prefix(size, null_density, 13, 100, "prefix_")
}

fn create_string_array_with_len_range_and_prefix<Offset: OffsetSizeTrait>(
    size: usize,
    null_density: f32,
    min_str_len: usize,
    max_str_len: usize,
    prefix: &str,
) -> GenericStringArray<Offset> {
    assert!(
        min_str_len <= max_str_len,
        "min_str_len must be <= max_str_len"
    );
    assert!(
        prefix.len() <= max_str_len,
        "Prefix length must be <= max_str_len"
    );

    let rng = &mut seedable_rng();
    (0..size)
        .map(|_| {
            if rng.random::<f32>() < null_density {
                None
            } else {
                let remaining_len = rng.random_range(
                    min_str_len.saturating_sub(prefix.len())..=(max_str_len - prefix.len()),
                );

                let mut value = prefix.to_string();
                value.extend(
                    rng.sample_iter(&Alphanumeric)
                        .take(remaining_len)
                        .map(char::from),
                );

                Some(value)
            }
        })
        .collect()
}

fn create_string_view_array_with_len_range_and_prefix(
    size: usize,
    null_density: f32,
    min_str_len: usize,
    max_str_len: usize,
    prefix: &str,
) -> StringViewArray {
    assert!(
        min_str_len <= max_str_len,
        "min_str_len must be <= max_str_len"
    );
    assert!(
        prefix.len() <= max_str_len,
        "Prefix length must be <= max_str_len"
    );

    let rng = &mut seedable_rng();
    (0..size)
        .map(|_| {
            if rng.random::<f32>() < null_density {
                None
            } else {
                let remaining_len = rng.random_range(
                    min_str_len.saturating_sub(prefix.len())..=(max_str_len - prefix.len()),
                );

                let mut value = prefix.to_string();
                value.extend(
                    rng.sample_iter(&Alphanumeric)
                        .take(remaining_len)
                        .map(char::from),
                );

                Some(value)
            }
        })
        .collect()
}

/// Creates a random (but fixed-seeded) array of rand size with a given max size, null density and length
fn create_string_array_with_max_len<Offset: OffsetSizeTrait>(
    size: usize,
    null_density: f32,
    max_str_len: usize,
) -> GenericStringArray<Offset> {
    let rng = &mut seedable_rng();
    (0..size)
        .map(|_| {
            if rng.random::<f32>() < null_density {
                None
            } else {
                let str_len = rng.random_range(0..max_str_len);
                let value = rng.sample_iter(&Alphanumeric).take(str_len).collect();
                let value = String::from_utf8(value).unwrap();
                Some(value)
            }
        })
        .collect()
}

/// Creates a random (but fixed-seeded) array of a given size, null density and length
pub fn create_string_array_with_len<Offset: OffsetSizeTrait>(
    size: usize,
    null_density: f32,
    str_len: usize,
) -> GenericStringArray<Offset> {
    let rng = &mut seedable_rng();

    (0..size)
        .map(|_| {
            if rng.random::<f32>() < null_density {
                None
            } else {
                let value = rng.sample_iter(&Alphanumeric).take(str_len).collect();
                let value = String::from_utf8(value).unwrap();
                Some(value)
            }
        })
        .collect()
}

/// Creates a random (but fixed-seeded) string view array of a given size and null density.
///
/// See `create_string_array` above for more details.
pub fn create_string_view_array(size: usize, null_density: f32) -> StringViewArray {
    create_string_view_array_with_max_len(size, null_density, 400)
}

/// Creates a random (but fixed-seeded) array of rand size with a given max size, null density and length
pub fn create_string_view_array_with_max_len(
    size: usize,
    null_density: f32,
    max_str_len: usize,
) -> StringViewArray {
    let rng = &mut seedable_rng();
    (0..size)
        .map(|_| {
            if rng.random::<f32>() < null_density {
                None
            } else {
                let str_len = rng.random_range(0..max_str_len);
                let value = rng.sample_iter(&Alphanumeric).take(str_len).collect();
                let value = String::from_utf8(value).unwrap();
                Some(value)
            }
        })
        .collect()
}

/// Creates a random (but fixed-seeded) array of a given size, null density and length
pub fn create_string_view_array_with_len(
    size: usize,
    null_density: f32,
    str_len: usize,
    mixed: bool,
) -> StringViewArray {
    let rng = &mut seedable_rng();

    let mut lengths = Vec::with_capacity(size);

    // if mixed, we creates first half that string length small than 12 bytes and second half large than 12 bytes
    if mixed {
        for _ in 0..size / 2 {
            lengths.push(rng.random_range(1..12));
        }
        for _ in size / 2..size {
            lengths.push(rng.random_range(12..=std::cmp::max(30, str_len)));
        }
    } else {
        lengths.resize(size, str_len);
    }

    lengths
        .into_iter()
        .map(|len| {
            if rng.random::<f32>() < null_density {
                None
            } else {
                let value: Vec<u8> = rng.sample_iter(&Alphanumeric).take(len).collect();
                Some(String::from_utf8(value).unwrap())
            }
        })
        .collect()
}

/// Creates an random (but fixed-seeded) array of a given size and null density
/// consisting of random 4 character alphanumeric strings
pub fn create_string_dict_array<K: ArrowDictionaryKeyType>(
    size: usize,
    null_density: f32,
    str_len: usize,
) -> DictionaryArray<K> {
    let rng = &mut seedable_rng();

    let data: Vec<_> = (0..size)
        .map(|_| {
            if rng.random::<f32>() < null_density {
                None
            } else {
                let value = rng.sample_iter(&Alphanumeric).take(str_len).collect();
                let value = String::from_utf8(value).unwrap();
                Some(value)
            }
        })
        .collect();

    data.iter().map(|x| x.as_deref()).collect()
}

/// Create primitive run array for given logical and physical array lengths
pub fn create_primitive_run_array<R: RunEndIndexType, V: ArrowPrimitiveType>(
    logical_array_len: usize,
    physical_array_len: usize,
) -> RunArray<R> {
    assert!(logical_array_len >= physical_array_len);
    // typical length of each run
    let run_len = logical_array_len / physical_array_len;

    // Some runs should have extra length
    let mut run_len_extra = logical_array_len % physical_array_len;

    let mut values: Vec<V::Native> = (0..physical_array_len)
        .flat_map(|s| {
            let mut take_len = run_len;
            if run_len_extra > 0 {
                take_len += 1;
                run_len_extra -= 1;
            }
            std::iter::repeat(V::Native::from_usize(s).unwrap()).take(take_len)
        })
        .collect();
    while values.len() < logical_array_len {
        let last_val = values[values.len() - 1];
        values.push(last_val);
    }
    let mut builder = PrimitiveRunBuilder::<R, V>::with_capacity(physical_array_len);
    builder.extend(values.into_iter().map(Some));

    builder.finish()
}

/// Create string array to be used by run array builder. The string array
/// will result in run array with physical length of `physical_array_len`
/// and logical length of `logical_array_len`
pub fn create_string_array_for_runs(
    physical_array_len: usize,
    logical_array_len: usize,
    string_len: usize,
) -> Vec<String> {
    assert!(logical_array_len >= physical_array_len);
    let mut rng = rng();

    // typical length of each run
    let run_len = logical_array_len / physical_array_len;

    // Some runs should have extra length
    let mut run_len_extra = logical_array_len % physical_array_len;

    let mut values: Vec<String> = (0..physical_array_len)
        .map(|_| (0..string_len).map(|_| rng.random::<char>()).collect())
        .flat_map(|s| {
            let mut take_len = run_len;
            if run_len_extra > 0 {
                take_len += 1;
                run_len_extra -= 1;
            }
            std::iter::repeat(s).take(take_len)
        })
        .collect();
    while values.len() < logical_array_len {
        let last_val = values[values.len() - 1].clone();
        values.push(last_val);
    }
    values
}

/// Creates an random (but fixed-seeded) binary array of a given size and null density
pub fn create_binary_array<Offset: OffsetSizeTrait>(
    size: usize,
    null_density: f32,
) -> GenericBinaryArray<Offset> {
    let rng = &mut seedable_rng();
    let range_rng = &mut seedable_rng();

    (0..size)
        .map(|_| {
            if rng.random::<f32>() < null_density {
                None
            } else {
                let value = rng
                    .sample_iter::<u8, _>(StandardUniform)
                    .take(range_rng.random_range(0..8))
                    .collect::<Vec<u8>>();
                Some(value)
            }
        })
        .collect()
}

/// Creates an random (but fixed-seeded) array of a given size and null density
pub fn create_fsb_array(size: usize, null_density: f32, value_len: usize) -> FixedSizeBinaryArray {
    let rng = &mut seedable_rng();

    FixedSizeBinaryArray::try_from_sparse_iter_with_size(
        (0..size).map(|_| {
            if rng.random::<f32>() < null_density {
                None
            } else {
                let value = rng
                    .sample_iter::<u8, _>(StandardUniform)
                    .take(value_len)
                    .collect::<Vec<u8>>();
                Some(value)
            }
        }),
        value_len as i32,
    )
    .unwrap()
}

/// Creates a random (but fixed-seeded) dictionary array of a given size and null density
/// with the provided values array
pub fn create_dict_from_values<K>(
    size: usize,
    null_density: f32,
    values: &dyn Array,
) -> DictionaryArray<K>
where
    K: ArrowDictionaryKeyType,
    StandardUniform: Distribution<K::Native>,
    K::Native: SampleUniform,
{
    let min_key = K::Native::from_usize(0).unwrap();
    let max_key = K::Native::from_usize(values.len()).unwrap();
    create_sparse_dict_from_values(size, null_density, values, min_key..max_key)
}

/// Creates a random (but fixed-seeded) dictionary array of a given size and null density
/// with the provided values array and key range
pub fn create_sparse_dict_from_values<K>(
    size: usize,
    null_density: f32,
    values: &dyn Array,
    key_range: Range<K::Native>,
) -> DictionaryArray<K>
where
    K: ArrowDictionaryKeyType,
    StandardUniform: Distribution<K::Native>,
    K::Native: SampleUniform,
{
    let mut rng = seedable_rng();
    let data_type =
        DataType::Dictionary(Box::new(K::DATA_TYPE), Box::new(values.data_type().clone()));

    let keys: Buffer = (0..size)
        .map(|_| rng.random_range(key_range.clone()))
        .collect();

    let nulls: Option<Buffer> = (null_density != 0.).then(|| {
        (0..size)
            .map(|_| rng.random_bool(null_density as _))
            .collect()
    });

    let data = ArrayDataBuilder::new(data_type)
        .len(size)
        .null_bit_buffer(nulls)
        .add_buffer(keys)
        .add_child_data(values.to_data())
        .build()
        .unwrap();

    DictionaryArray::from(data)
}

/// Creates a random (but fixed-seeded) f16 array of a given size and nan-value density
pub fn create_f16_array(size: usize, nan_density: f32) -> Float16Array {
    let mut rng = seedable_rng();

    (0..size)
        .map(|_| {
            if rng.random::<f32>() < nan_density {
                Some(f16::NAN)
            } else {
                Some(f16::from_f32(rng.random()))
            }
        })
        .collect()
}

/// Creates a random (but fixed-seeded) f32 array of a given size and nan-value density
pub fn create_f32_array(size: usize, nan_density: f32) -> Float32Array {
    let mut rng = seedable_rng();

    (0..size)
        .map(|_| {
            if rng.random::<f32>() < nan_density {
                Some(f32::NAN)
            } else {
                Some(rng.random())
            }
        })
        .collect()
}

/// Creates a random (but fixed-seeded) f64 array of a given size and nan-value density
pub fn create_f64_array(size: usize, nan_density: f32) -> Float64Array {
    let mut rng = seedable_rng();

    (0..size)
        .map(|_| {
            if rng.random::<f32>() < nan_density {
                Some(f64::NAN)
            } else {
                Some(rng.random())
            }
        })
        .collect()
}