#![warn(missing_docs)]
use std::cmp::Ordering;
use std::hash::{Hash, Hasher};
use std::sync::Arc;
use arrow_array::cast::*;
use arrow_array::types::ArrowDictionaryKeyType;
use arrow_array::*;
use arrow_buffer::{ArrowNativeType, Buffer, OffsetBuffer, ScalarBuffer};
use arrow_data::ArrayDataBuilder;
use arrow_schema::*;
use variable::{decode_binary_view, decode_string_view};
use crate::fixed::{decode_bool, decode_fixed_size_binary, decode_primitive};
use crate::variable::{decode_binary, decode_string};
mod fixed;
mod list;
mod variable;
#[derive(Debug)]
pub struct RowConverter {
fields: Arc<[SortField]>,
codecs: Vec<Codec>,
}
#[derive(Debug)]
enum Codec {
Stateless,
Dictionary(RowConverter, OwnedRow),
Struct(RowConverter, OwnedRow),
List(RowConverter),
}
impl Codec {
fn new(sort_field: &SortField) -> Result<Self, ArrowError> {
match &sort_field.data_type {
DataType::Dictionary(_, values) => {
let sort_field =
SortField::new_with_options(values.as_ref().clone(), sort_field.options);
let converter = RowConverter::new(vec![sort_field])?;
let null_array = new_null_array(values.as_ref(), 1);
let nulls = converter.convert_columns(&[null_array])?;
let owned = OwnedRow {
data: nulls.buffer.into(),
config: nulls.config,
};
Ok(Self::Dictionary(converter, owned))
}
d if !d.is_nested() => Ok(Self::Stateless),
DataType::List(f) | DataType::LargeList(f) => {
let options = SortOptions {
descending: false,
nulls_first: sort_field.options.nulls_first != sort_field.options.descending,
};
let field = SortField::new_with_options(f.data_type().clone(), options);
let converter = RowConverter::new(vec![field])?;
Ok(Self::List(converter))
}
DataType::Struct(f) => {
let sort_fields = f
.iter()
.map(|x| SortField::new_with_options(x.data_type().clone(), sort_field.options))
.collect();
let converter = RowConverter::new(sort_fields)?;
let nulls: Vec<_> = f.iter().map(|x| new_null_array(x.data_type(), 1)).collect();
let nulls = converter.convert_columns(&nulls)?;
let owned = OwnedRow {
data: nulls.buffer.into(),
config: nulls.config,
};
Ok(Self::Struct(converter, owned))
}
_ => Err(ArrowError::NotYetImplemented(format!(
"not yet implemented: {:?}",
sort_field.data_type
))),
}
}
fn encoder(&self, array: &dyn Array) -> Result<Encoder<'_>, ArrowError> {
match self {
Codec::Stateless => Ok(Encoder::Stateless),
Codec::Dictionary(converter, nulls) => {
let values = array.as_any_dictionary().values().clone();
let rows = converter.convert_columns(&[values])?;
Ok(Encoder::Dictionary(rows, nulls.row()))
}
Codec::Struct(converter, null) => {
let v = as_struct_array(array);
let rows = converter.convert_columns(v.columns())?;
Ok(Encoder::Struct(rows, null.row()))
}
Codec::List(converter) => {
let values = match array.data_type() {
DataType::List(_) => as_list_array(array).values(),
DataType::LargeList(_) => as_large_list_array(array).values(),
_ => unreachable!(),
};
let rows = converter.convert_columns(&[values.clone()])?;
Ok(Encoder::List(rows))
}
}
}
fn size(&self) -> usize {
match self {
Codec::Stateless => 0,
Codec::Dictionary(converter, nulls) => converter.size() + nulls.data.len(),
Codec::Struct(converter, nulls) => converter.size() + nulls.data.len(),
Codec::List(converter) => converter.size(),
}
}
}
#[derive(Debug)]
enum Encoder<'a> {
Stateless,
Dictionary(Rows, Row<'a>),
Struct(Rows, Row<'a>),
List(Rows),
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct SortField {
options: SortOptions,
data_type: DataType,
}
impl SortField {
pub fn new(data_type: DataType) -> Self {
Self::new_with_options(data_type, Default::default())
}
pub fn new_with_options(data_type: DataType, options: SortOptions) -> Self {
Self { options, data_type }
}
pub fn size(&self) -> usize {
self.data_type.size() + std::mem::size_of::<Self>() - std::mem::size_of::<DataType>()
}
}
impl RowConverter {
pub fn new(fields: Vec<SortField>) -> Result<Self, ArrowError> {
if !Self::supports_fields(&fields) {
return Err(ArrowError::NotYetImplemented(format!(
"Row format support not yet implemented for: {fields:?}"
)));
}
let codecs = fields.iter().map(Codec::new).collect::<Result<_, _>>()?;
Ok(Self {
fields: fields.into(),
codecs,
})
}
pub fn supports_fields(fields: &[SortField]) -> bool {
fields.iter().all(|x| Self::supports_datatype(&x.data_type))
}
fn supports_datatype(d: &DataType) -> bool {
match d {
_ if !d.is_nested() => true,
DataType::List(f) | DataType::LargeList(f) | DataType::Map(f, _) => {
Self::supports_datatype(f.data_type())
}
DataType::Struct(f) => f.iter().all(|x| Self::supports_datatype(x.data_type())),
_ => false,
}
}
pub fn convert_columns(&self, columns: &[ArrayRef]) -> Result<Rows, ArrowError> {
let num_rows = columns.first().map(|x| x.len()).unwrap_or(0);
let mut rows = self.empty_rows(num_rows, 0);
self.append(&mut rows, columns)?;
Ok(rows)
}
pub fn append(&self, rows: &mut Rows, columns: &[ArrayRef]) -> Result<(), ArrowError> {
assert!(
Arc::ptr_eq(&rows.config.fields, &self.fields),
"rows were not produced by this RowConverter"
);
if columns.len() != self.fields.len() {
return Err(ArrowError::InvalidArgumentError(format!(
"Incorrect number of arrays provided to RowConverter, expected {} got {}",
self.fields.len(),
columns.len()
)));
}
let encoders = columns
.iter()
.zip(&self.codecs)
.zip(self.fields.iter())
.map(|((column, codec), field)| {
if !column.data_type().equals_datatype(&field.data_type) {
return Err(ArrowError::InvalidArgumentError(format!(
"RowConverter column schema mismatch, expected {} got {}",
field.data_type,
column.data_type()
)));
}
codec.encoder(column.as_ref())
})
.collect::<Result<Vec<_>, _>>()?;
let write_offset = rows.num_rows();
let lengths = row_lengths(columns, &encoders);
rows.offsets.reserve(lengths.len());
let mut cur_offset = rows.offsets[write_offset];
for l in lengths {
rows.offsets.push(cur_offset);
cur_offset = cur_offset.checked_add(l).expect("overflow");
}
rows.buffer.resize(cur_offset, 0);
for ((column, field), encoder) in columns.iter().zip(self.fields.iter()).zip(encoders) {
encode_column(
&mut rows.buffer,
&mut rows.offsets[write_offset..],
column.as_ref(),
field.options,
&encoder,
)
}
if cfg!(debug_assertions) {
assert_eq!(*rows.offsets.last().unwrap(), rows.buffer.len());
rows.offsets
.windows(2)
.for_each(|w| assert!(w[0] <= w[1], "offsets should be monotonic"));
}
Ok(())
}
pub fn convert_rows<'a, I>(&self, rows: I) -> Result<Vec<ArrayRef>, ArrowError>
where
I: IntoIterator<Item = Row<'a>>,
{
let mut validate_utf8 = false;
let mut rows: Vec<_> = rows
.into_iter()
.map(|row| {
assert!(
Arc::ptr_eq(&row.config.fields, &self.fields),
"rows were not produced by this RowConverter"
);
validate_utf8 |= row.config.validate_utf8;
row.data
})
.collect();
unsafe { self.convert_raw(&mut rows, validate_utf8) }
}
pub fn empty_rows(&self, row_capacity: usize, data_capacity: usize) -> Rows {
let mut offsets = Vec::with_capacity(row_capacity.saturating_add(1));
offsets.push(0);
Rows {
offsets,
buffer: Vec::with_capacity(data_capacity),
config: RowConfig {
fields: self.fields.clone(),
validate_utf8: false,
},
}
}
pub fn from_binary(&self, array: BinaryArray) -> Rows {
assert_eq!(
array.null_count(),
0,
"can't construct Rows instance from array with nulls"
);
Rows {
buffer: array.values().to_vec(),
offsets: array.offsets().iter().map(|&i| i.as_usize()).collect(),
config: RowConfig {
fields: Arc::clone(&self.fields),
validate_utf8: true,
},
}
}
unsafe fn convert_raw(
&self,
rows: &mut [&[u8]],
validate_utf8: bool,
) -> Result<Vec<ArrayRef>, ArrowError> {
self.fields
.iter()
.zip(&self.codecs)
.map(|(field, codec)| decode_column(field, rows, codec, validate_utf8))
.collect()
}
pub fn parser(&self) -> RowParser {
RowParser::new(Arc::clone(&self.fields))
}
pub fn size(&self) -> usize {
std::mem::size_of::<Self>()
+ self.fields.iter().map(|x| x.size()).sum::<usize>()
+ self.codecs.capacity() * std::mem::size_of::<Codec>()
+ self.codecs.iter().map(Codec::size).sum::<usize>()
}
}
#[derive(Debug)]
pub struct RowParser {
config: RowConfig,
}
impl RowParser {
fn new(fields: Arc<[SortField]>) -> Self {
Self {
config: RowConfig {
fields,
validate_utf8: true,
},
}
}
pub fn parse<'a>(&'a self, bytes: &'a [u8]) -> Row<'a> {
Row {
data: bytes,
config: &self.config,
}
}
}
#[derive(Debug, Clone)]
struct RowConfig {
fields: Arc<[SortField]>,
validate_utf8: bool,
}
#[derive(Debug)]
pub struct Rows {
buffer: Vec<u8>,
offsets: Vec<usize>,
config: RowConfig,
}
impl Rows {
pub fn push(&mut self, row: Row<'_>) {
assert!(
Arc::ptr_eq(&row.config.fields, &self.config.fields),
"row was not produced by this RowConverter"
);
self.config.validate_utf8 |= row.config.validate_utf8;
self.buffer.extend_from_slice(row.data);
self.offsets.push(self.buffer.len())
}
pub fn row(&self, row: usize) -> Row<'_> {
assert!(row + 1 < self.offsets.len());
unsafe { self.row_unchecked(row) }
}
pub unsafe fn row_unchecked(&self, index: usize) -> Row<'_> {
let end = unsafe { self.offsets.get_unchecked(index + 1) };
let start = unsafe { self.offsets.get_unchecked(index) };
let data = unsafe { self.buffer.get_unchecked(*start..*end) };
Row {
data,
config: &self.config,
}
}
pub fn clear(&mut self) {
self.offsets.truncate(1);
self.buffer.clear();
}
pub fn num_rows(&self) -> usize {
self.offsets.len() - 1
}
pub fn iter(&self) -> RowsIter<'_> {
self.into_iter()
}
pub fn size(&self) -> usize {
std::mem::size_of::<Self>()
+ self.buffer.len()
+ self.offsets.len() * std::mem::size_of::<usize>()
}
pub fn try_into_binary(self) -> Result<BinaryArray, ArrowError> {
if self.buffer.len() > i32::MAX as usize {
return Err(ArrowError::InvalidArgumentError(format!(
"{}-byte rows buffer too long to convert into a i32-indexed BinaryArray",
self.buffer.len()
)));
}
let offsets_scalar = ScalarBuffer::from_iter(self.offsets.into_iter().map(i32::usize_as));
let array = unsafe {
BinaryArray::new_unchecked(
OffsetBuffer::new_unchecked(offsets_scalar),
Buffer::from_vec(self.buffer),
None,
)
};
Ok(array)
}
}
impl<'a> IntoIterator for &'a Rows {
type Item = Row<'a>;
type IntoIter = RowsIter<'a>;
fn into_iter(self) -> Self::IntoIter {
RowsIter {
rows: self,
start: 0,
end: self.num_rows(),
}
}
}
#[derive(Debug)]
pub struct RowsIter<'a> {
rows: &'a Rows,
start: usize,
end: usize,
}
impl<'a> Iterator for RowsIter<'a> {
type Item = Row<'a>;
fn next(&mut self) -> Option<Self::Item> {
if self.end == self.start {
return None;
}
let row = unsafe { self.rows.row_unchecked(self.start) };
self.start += 1;
Some(row)
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
}
impl ExactSizeIterator for RowsIter<'_> {
fn len(&self) -> usize {
self.end - self.start
}
}
impl DoubleEndedIterator for RowsIter<'_> {
fn next_back(&mut self) -> Option<Self::Item> {
if self.end == self.start {
return None;
}
let row = unsafe { self.rows.row_unchecked(self.end) };
self.end -= 1;
Some(row)
}
}
#[derive(Debug, Copy, Clone)]
pub struct Row<'a> {
data: &'a [u8],
config: &'a RowConfig,
}
impl<'a> Row<'a> {
pub fn owned(&self) -> OwnedRow {
OwnedRow {
data: self.data.into(),
config: self.config.clone(),
}
}
pub fn data(&self) -> &'a [u8] {
self.data
}
}
impl PartialEq for Row<'_> {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.data.eq(other.data)
}
}
impl Eq for Row<'_> {}
impl PartialOrd for Row<'_> {
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Row<'_> {
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
self.data.cmp(other.data)
}
}
impl Hash for Row<'_> {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
self.data.hash(state)
}
}
impl AsRef<[u8]> for Row<'_> {
#[inline]
fn as_ref(&self) -> &[u8] {
self.data
}
}
#[derive(Debug, Clone)]
pub struct OwnedRow {
data: Box<[u8]>,
config: RowConfig,
}
impl OwnedRow {
pub fn row(&self) -> Row<'_> {
Row {
data: &self.data,
config: &self.config,
}
}
}
impl PartialEq for OwnedRow {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.row().eq(&other.row())
}
}
impl Eq for OwnedRow {}
impl PartialOrd for OwnedRow {
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for OwnedRow {
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
self.row().cmp(&other.row())
}
}
impl Hash for OwnedRow {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
self.row().hash(state)
}
}
impl AsRef<[u8]> for OwnedRow {
#[inline]
fn as_ref(&self) -> &[u8] {
&self.data
}
}
#[inline]
fn null_sentinel(options: SortOptions) -> u8 {
match options.nulls_first {
true => 0,
false => 0xFF,
}
}
fn row_lengths(cols: &[ArrayRef], encoders: &[Encoder]) -> Vec<usize> {
use fixed::FixedLengthEncoding;
let num_rows = cols.first().map(|x| x.len()).unwrap_or(0);
let mut lengths = vec![0; num_rows];
for (array, encoder) in cols.iter().zip(encoders) {
match encoder {
Encoder::Stateless => {
downcast_primitive_array! {
array => lengths.iter_mut().for_each(|x| *x += fixed::encoded_len(array)),
DataType::Null => {},
DataType::Boolean => lengths.iter_mut().for_each(|x| *x += bool::ENCODED_LEN),
DataType::Binary => as_generic_binary_array::<i32>(array)
.iter()
.zip(lengths.iter_mut())
.for_each(|(slice, length)| *length += variable::encoded_len(slice)),
DataType::LargeBinary => as_generic_binary_array::<i64>(array)
.iter()
.zip(lengths.iter_mut())
.for_each(|(slice, length)| *length += variable::encoded_len(slice)),
DataType::BinaryView => array.as_binary_view().iter().zip(lengths.iter_mut()).for_each(|(slice, length)| {
*length += variable::encoded_len(slice)
}),
DataType::Utf8 => array.as_string::<i32>()
.iter()
.zip(lengths.iter_mut())
.for_each(|(slice, length)| {
*length += variable::encoded_len(slice.map(|x| x.as_bytes()))
}),
DataType::LargeUtf8 => array.as_string::<i64>()
.iter()
.zip(lengths.iter_mut())
.for_each(|(slice, length)| {
*length += variable::encoded_len(slice.map(|x| x.as_bytes()))
}),
DataType::Utf8View => array.as_string_view().iter().zip(lengths.iter_mut()).for_each(|(slice, length)| {
*length += variable::encoded_len(slice.map(|x| x.as_bytes()))
}),
DataType::FixedSizeBinary(len) => {
let len = len.to_usize().unwrap();
lengths.iter_mut().for_each(|x| *x += 1 + len)
}
_ => unimplemented!("unsupported data type: {}", array.data_type()),
}
}
Encoder::Dictionary(values, null) => {
downcast_dictionary_array! {
array => {
for (v, length) in array.keys().iter().zip(lengths.iter_mut()) {
*length += match v {
Some(k) => values.row(k.as_usize()).data.len(),
None => null.data.len(),
}
}
}
_ => unreachable!(),
}
}
Encoder::Struct(rows, null) => {
let array = as_struct_array(array);
lengths.iter_mut().enumerate().for_each(|(idx, length)| {
match array.is_valid(idx) {
true => *length += 1 + rows.row(idx).as_ref().len(),
false => *length += 1 + null.data.len(),
}
});
}
Encoder::List(rows) => match array.data_type() {
DataType::List(_) => {
list::compute_lengths(&mut lengths, rows, as_list_array(array))
}
DataType::LargeList(_) => {
list::compute_lengths(&mut lengths, rows, as_large_list_array(array))
}
_ => unreachable!(),
},
}
}
lengths
}
fn encode_column(
data: &mut [u8],
offsets: &mut [usize],
column: &dyn Array,
opts: SortOptions,
encoder: &Encoder<'_>,
) {
match encoder {
Encoder::Stateless => {
downcast_primitive_array! {
column => {
if let Some(nulls) = column.nulls().filter(|n| n.null_count() > 0){
fixed::encode(data, offsets, column.values(), nulls, opts)
} else {
fixed::encode_not_null(data, offsets, column.values(), opts)
}
}
DataType::Null => {}
DataType::Boolean => {
if let Some(nulls) = column.nulls().filter(|n| n.null_count() > 0){
fixed::encode_boolean(data, offsets, column.as_boolean().values(), nulls, opts)
} else {
fixed::encode_boolean_not_null(data, offsets, column.as_boolean().values(), opts)
}
}
DataType::Binary => {
variable::encode(data, offsets, as_generic_binary_array::<i32>(column).iter(), opts)
}
DataType::BinaryView => {
variable::encode(data, offsets, column.as_binary_view().iter(), opts)
}
DataType::LargeBinary => {
variable::encode(data, offsets, as_generic_binary_array::<i64>(column).iter(), opts)
}
DataType::Utf8 => variable::encode(
data, offsets,
column.as_string::<i32>().iter().map(|x| x.map(|x| x.as_bytes())),
opts,
),
DataType::LargeUtf8 => variable::encode(
data, offsets,
column.as_string::<i64>()
.iter()
.map(|x| x.map(|x| x.as_bytes())),
opts,
),
DataType::Utf8View => variable::encode(
data, offsets,
column.as_string_view().iter().map(|x| x.map(|x| x.as_bytes())),
opts,
),
DataType::FixedSizeBinary(_) => {
let array = column.as_any().downcast_ref().unwrap();
fixed::encode_fixed_size_binary(data, offsets, array, opts)
}
_ => unimplemented!("unsupported data type: {}", column.data_type()),
}
}
Encoder::Dictionary(values, nulls) => {
downcast_dictionary_array! {
column => encode_dictionary_values(data, offsets, column, values, nulls),
_ => unreachable!()
}
}
Encoder::Struct(rows, null) => {
let array = as_struct_array(column);
let null_sentinel = null_sentinel(opts);
offsets
.iter_mut()
.skip(1)
.enumerate()
.for_each(|(idx, offset)| {
let (row, sentinel) = match array.is_valid(idx) {
true => (rows.row(idx), 0x01),
false => (*null, null_sentinel),
};
let end_offset = *offset + 1 + row.as_ref().len();
data[*offset] = sentinel;
data[*offset + 1..end_offset].copy_from_slice(row.as_ref());
*offset = end_offset;
})
}
Encoder::List(rows) => match column.data_type() {
DataType::List(_) => list::encode(data, offsets, rows, opts, as_list_array(column)),
DataType::LargeList(_) => {
list::encode(data, offsets, rows, opts, as_large_list_array(column))
}
_ => unreachable!(),
},
}
}
pub fn encode_dictionary_values<K: ArrowDictionaryKeyType>(
data: &mut [u8],
offsets: &mut [usize],
column: &DictionaryArray<K>,
values: &Rows,
null: &Row<'_>,
) {
for (offset, k) in offsets.iter_mut().skip(1).zip(column.keys()) {
let row = match k {
Some(k) => values.row(k.as_usize()).data,
None => null.data,
};
let end_offset = *offset + row.len();
data[*offset..end_offset].copy_from_slice(row);
*offset = end_offset;
}
}
macro_rules! decode_primitive_helper {
($t:ty, $rows:ident, $data_type:ident, $options:ident) => {
Arc::new(decode_primitive::<$t>($rows, $data_type, $options))
};
}
unsafe fn decode_column(
field: &SortField,
rows: &mut [&[u8]],
codec: &Codec,
validate_utf8: bool,
) -> Result<ArrayRef, ArrowError> {
let options = field.options;
let array: ArrayRef = match codec {
Codec::Stateless => {
let data_type = field.data_type.clone();
downcast_primitive! {
data_type => (decode_primitive_helper, rows, data_type, options),
DataType::Null => Arc::new(NullArray::new(rows.len())),
DataType::Boolean => Arc::new(decode_bool(rows, options)),
DataType::Binary => Arc::new(decode_binary::<i32>(rows, options)),
DataType::LargeBinary => Arc::new(decode_binary::<i64>(rows, options)),
DataType::BinaryView => Arc::new(decode_binary_view(rows, options)),
DataType::FixedSizeBinary(size) => Arc::new(decode_fixed_size_binary(rows, size, options)),
DataType::Utf8 => Arc::new(decode_string::<i32>(rows, options, validate_utf8)),
DataType::LargeUtf8 => Arc::new(decode_string::<i64>(rows, options, validate_utf8)),
DataType::Utf8View => Arc::new(decode_string_view(rows, options, validate_utf8)),
_ => return Err(ArrowError::NotYetImplemented(format!("unsupported data type: {}", data_type)))
}
}
Codec::Dictionary(converter, _) => {
let cols = converter.convert_raw(rows, validate_utf8)?;
cols.into_iter().next().unwrap()
}
Codec::Struct(converter, _) => {
let (null_count, nulls) = fixed::decode_nulls(rows);
rows.iter_mut().for_each(|row| *row = &row[1..]);
let children = converter.convert_raw(rows, validate_utf8)?;
let child_data = children.iter().map(|c| c.to_data()).collect();
let builder = ArrayDataBuilder::new(field.data_type.clone())
.len(rows.len())
.null_count(null_count)
.null_bit_buffer(Some(nulls))
.child_data(child_data);
Arc::new(StructArray::from(builder.build_unchecked()))
}
Codec::List(converter) => match &field.data_type {
DataType::List(_) => {
Arc::new(list::decode::<i32>(converter, rows, field, validate_utf8)?)
}
DataType::LargeList(_) => {
Arc::new(list::decode::<i64>(converter, rows, field, validate_utf8)?)
}
_ => unreachable!(),
},
};
Ok(array)
}
#[cfg(test)]
mod tests {
use rand::distributions::uniform::SampleUniform;
use rand::distributions::{Distribution, Standard};
use rand::{thread_rng, Rng};
use arrow_array::builder::*;
use arrow_array::types::*;
use arrow_array::*;
use arrow_buffer::{i256, NullBuffer};
use arrow_buffer::{Buffer, OffsetBuffer};
use arrow_cast::display::{ArrayFormatter, FormatOptions};
use arrow_ord::sort::{LexicographicalComparator, SortColumn};
use super::*;
#[test]
fn test_fixed_width() {
let cols = [
Arc::new(Int16Array::from_iter([
Some(1),
Some(2),
None,
Some(-5),
Some(2),
Some(2),
Some(0),
])) as ArrayRef,
Arc::new(Float32Array::from_iter([
Some(1.3),
Some(2.5),
None,
Some(4.),
Some(0.1),
Some(-4.),
Some(-0.),
])) as ArrayRef,
];
let converter = RowConverter::new(vec![
SortField::new(DataType::Int16),
SortField::new(DataType::Float32),
])
.unwrap();
let rows = converter.convert_columns(&cols).unwrap();
assert_eq!(rows.offsets, &[0, 8, 16, 24, 32, 40, 48, 56]);
assert_eq!(
rows.buffer,
&[
1, 128, 1, 1, 191, 166, 102, 102, 1, 128, 2, 1, 192, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 127, 251, 1, 192, 128, 0, 0, 1, 128, 2, 1, 189, 204, 204, 205, 1, 128, 2, 1, 63, 127, 255, 255, 1, 128, 0, 1, 127, 255, 255, 255 ]
);
assert!(rows.row(3) < rows.row(6));
assert!(rows.row(0) < rows.row(1));
assert!(rows.row(3) < rows.row(0));
assert!(rows.row(4) < rows.row(1));
assert!(rows.row(5) < rows.row(4));
let back = converter.convert_rows(&rows).unwrap();
for (expected, actual) in cols.iter().zip(&back) {
assert_eq!(expected, actual);
}
}
#[test]
fn test_decimal128() {
let converter = RowConverter::new(vec![SortField::new(DataType::Decimal128(
DECIMAL128_MAX_PRECISION,
7,
))])
.unwrap();
let col = Arc::new(
Decimal128Array::from_iter([
None,
Some(i128::MIN),
Some(-13),
Some(46_i128),
Some(5456_i128),
Some(i128::MAX),
])
.with_precision_and_scale(38, 7)
.unwrap(),
) as ArrayRef;
let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
for i in 0..rows.num_rows() - 1 {
assert!(rows.row(i) < rows.row(i + 1));
}
let back = converter.convert_rows(&rows).unwrap();
assert_eq!(back.len(), 1);
assert_eq!(col.as_ref(), back[0].as_ref())
}
#[test]
fn test_decimal256() {
let converter = RowConverter::new(vec![SortField::new(DataType::Decimal256(
DECIMAL256_MAX_PRECISION,
7,
))])
.unwrap();
let col = Arc::new(
Decimal256Array::from_iter([
None,
Some(i256::MIN),
Some(i256::from_parts(0, -1)),
Some(i256::from_parts(u128::MAX, -1)),
Some(i256::from_parts(u128::MAX, 0)),
Some(i256::from_parts(0, 46_i128)),
Some(i256::from_parts(5, 46_i128)),
Some(i256::MAX),
])
.with_precision_and_scale(DECIMAL256_MAX_PRECISION, 7)
.unwrap(),
) as ArrayRef;
let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
for i in 0..rows.num_rows() - 1 {
assert!(rows.row(i) < rows.row(i + 1));
}
let back = converter.convert_rows(&rows).unwrap();
assert_eq!(back.len(), 1);
assert_eq!(col.as_ref(), back[0].as_ref())
}
#[test]
fn test_bool() {
let converter = RowConverter::new(vec![SortField::new(DataType::Boolean)]).unwrap();
let col = Arc::new(BooleanArray::from_iter([None, Some(false), Some(true)])) as ArrayRef;
let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
assert!(rows.row(2) > rows.row(1));
assert!(rows.row(2) > rows.row(0));
assert!(rows.row(1) > rows.row(0));
let cols = converter.convert_rows(&rows).unwrap();
assert_eq!(&cols[0], &col);
let converter = RowConverter::new(vec![SortField::new_with_options(
DataType::Boolean,
SortOptions::default().desc().with_nulls_first(false),
)])
.unwrap();
let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
assert!(rows.row(2) < rows.row(1));
assert!(rows.row(2) < rows.row(0));
assert!(rows.row(1) < rows.row(0));
let cols = converter.convert_rows(&rows).unwrap();
assert_eq!(&cols[0], &col);
}
#[test]
fn test_timezone() {
let a =
TimestampNanosecondArray::from(vec![1, 2, 3, 4, 5]).with_timezone("+01:00".to_string());
let d = a.data_type().clone();
let converter = RowConverter::new(vec![SortField::new(a.data_type().clone())]).unwrap();
let rows = converter.convert_columns(&[Arc::new(a) as _]).unwrap();
let back = converter.convert_rows(&rows).unwrap();
assert_eq!(back.len(), 1);
assert_eq!(back[0].data_type(), &d);
let mut a = PrimitiveDictionaryBuilder::<Int32Type, TimestampNanosecondType>::new();
a.append(34).unwrap();
a.append_null();
a.append(345).unwrap();
let dict = a.finish();
let values = TimestampNanosecondArray::from(dict.values().to_data());
let dict_with_tz = dict.with_values(Arc::new(values.with_timezone("+02:00")));
let v = DataType::Timestamp(TimeUnit::Nanosecond, Some("+02:00".into()));
let d = DataType::Dictionary(Box::new(DataType::Int32), Box::new(v.clone()));
assert_eq!(dict_with_tz.data_type(), &d);
let converter = RowConverter::new(vec![SortField::new(d.clone())]).unwrap();
let rows = converter
.convert_columns(&[Arc::new(dict_with_tz) as _])
.unwrap();
let back = converter.convert_rows(&rows).unwrap();
assert_eq!(back.len(), 1);
assert_eq!(back[0].data_type(), &v);
}
#[test]
fn test_null_encoding() {
let col = Arc::new(NullArray::new(10));
let converter = RowConverter::new(vec![SortField::new(DataType::Null)]).unwrap();
let rows = converter.convert_columns(&[col]).unwrap();
assert_eq!(rows.num_rows(), 10);
assert_eq!(rows.row(1).data.len(), 0);
}
#[test]
fn test_variable_width() {
let col = Arc::new(StringArray::from_iter([
Some("hello"),
Some("he"),
None,
Some("foo"),
Some(""),
])) as ArrayRef;
let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
assert!(rows.row(1) < rows.row(0));
assert!(rows.row(2) < rows.row(4));
assert!(rows.row(3) < rows.row(0));
assert!(rows.row(3) < rows.row(1));
let cols = converter.convert_rows(&rows).unwrap();
assert_eq!(&cols[0], &col);
let col = Arc::new(BinaryArray::from_iter([
None,
Some(vec![0_u8; 0]),
Some(vec![0_u8; 6]),
Some(vec![0_u8; variable::MINI_BLOCK_SIZE]),
Some(vec![0_u8; variable::MINI_BLOCK_SIZE + 1]),
Some(vec![0_u8; variable::BLOCK_SIZE]),
Some(vec![0_u8; variable::BLOCK_SIZE + 1]),
Some(vec![1_u8; 6]),
Some(vec![1_u8; variable::MINI_BLOCK_SIZE]),
Some(vec![1_u8; variable::MINI_BLOCK_SIZE + 1]),
Some(vec![1_u8; variable::BLOCK_SIZE]),
Some(vec![1_u8; variable::BLOCK_SIZE + 1]),
Some(vec![0xFF_u8; 6]),
Some(vec![0xFF_u8; variable::MINI_BLOCK_SIZE]),
Some(vec![0xFF_u8; variable::MINI_BLOCK_SIZE + 1]),
Some(vec![0xFF_u8; variable::BLOCK_SIZE]),
Some(vec![0xFF_u8; variable::BLOCK_SIZE + 1]),
])) as ArrayRef;
let converter = RowConverter::new(vec![SortField::new(DataType::Binary)]).unwrap();
let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
for i in 0..rows.num_rows() {
for j in i + 1..rows.num_rows() {
assert!(
rows.row(i) < rows.row(j),
"{} < {} - {:?} < {:?}",
i,
j,
rows.row(i),
rows.row(j)
);
}
}
let cols = converter.convert_rows(&rows).unwrap();
assert_eq!(&cols[0], &col);
let converter = RowConverter::new(vec![SortField::new_with_options(
DataType::Binary,
SortOptions::default().desc().with_nulls_first(false),
)])
.unwrap();
let rows = converter.convert_columns(&[Arc::clone(&col)]).unwrap();
for i in 0..rows.num_rows() {
for j in i + 1..rows.num_rows() {
assert!(
rows.row(i) > rows.row(j),
"{} > {} - {:?} > {:?}",
i,
j,
rows.row(i),
rows.row(j)
);
}
}
let cols = converter.convert_rows(&rows).unwrap();
assert_eq!(&cols[0], &col);
}
fn dictionary_eq(a: &dyn Array, b: &dyn Array) {
match b.data_type() {
DataType::Dictionary(_, v) => {
assert_eq!(a.data_type(), v.as_ref());
let b = arrow_cast::cast(b, v).unwrap();
assert_eq!(a, b.as_ref())
}
_ => assert_eq!(a, b),
}
}
#[test]
fn test_string_dictionary() {
let a = Arc::new(DictionaryArray::<Int32Type>::from_iter([
Some("foo"),
Some("hello"),
Some("he"),
None,
Some("hello"),
Some(""),
Some("hello"),
Some("hello"),
])) as ArrayRef;
let field = SortField::new(a.data_type().clone());
let converter = RowConverter::new(vec![field]).unwrap();
let rows_a = converter.convert_columns(&[Arc::clone(&a)]).unwrap();
assert!(rows_a.row(3) < rows_a.row(5));
assert!(rows_a.row(2) < rows_a.row(1));
assert!(rows_a.row(0) < rows_a.row(1));
assert!(rows_a.row(3) < rows_a.row(0));
assert_eq!(rows_a.row(1), rows_a.row(4));
assert_eq!(rows_a.row(1), rows_a.row(6));
assert_eq!(rows_a.row(1), rows_a.row(7));
let cols = converter.convert_rows(&rows_a).unwrap();
dictionary_eq(&cols[0], &a);
let b = Arc::new(DictionaryArray::<Int32Type>::from_iter([
Some("hello"),
None,
Some("cupcakes"),
])) as ArrayRef;
let rows_b = converter.convert_columns(&[Arc::clone(&b)]).unwrap();
assert_eq!(rows_a.row(1), rows_b.row(0));
assert_eq!(rows_a.row(3), rows_b.row(1));
assert!(rows_b.row(2) < rows_a.row(0));
let cols = converter.convert_rows(&rows_b).unwrap();
dictionary_eq(&cols[0], &b);
let converter = RowConverter::new(vec![SortField::new_with_options(
a.data_type().clone(),
SortOptions::default().desc().with_nulls_first(false),
)])
.unwrap();
let rows_c = converter.convert_columns(&[Arc::clone(&a)]).unwrap();
assert!(rows_c.row(3) > rows_c.row(5));
assert!(rows_c.row(2) > rows_c.row(1));
assert!(rows_c.row(0) > rows_c.row(1));
assert!(rows_c.row(3) > rows_c.row(0));
let cols = converter.convert_rows(&rows_c).unwrap();
dictionary_eq(&cols[0], &a);
let converter = RowConverter::new(vec![SortField::new_with_options(
a.data_type().clone(),
SortOptions::default().desc().with_nulls_first(true),
)])
.unwrap();
let rows_c = converter.convert_columns(&[Arc::clone(&a)]).unwrap();
assert!(rows_c.row(3) < rows_c.row(5));
assert!(rows_c.row(2) > rows_c.row(1));
assert!(rows_c.row(0) > rows_c.row(1));
assert!(rows_c.row(3) < rows_c.row(0));
let cols = converter.convert_rows(&rows_c).unwrap();
dictionary_eq(&cols[0], &a);
}
#[test]
fn test_struct() {
let a = Arc::new(Int32Array::from(vec![1, 1, 2, 2])) as ArrayRef;
let a_f = Arc::new(Field::new("int", DataType::Int32, false));
let u = Arc::new(StringArray::from(vec!["a", "b", "c", "d"])) as ArrayRef;
let u_f = Arc::new(Field::new("s", DataType::Utf8, false));
let s1 = Arc::new(StructArray::from(vec![(a_f, a), (u_f, u)])) as ArrayRef;
let sort_fields = vec![SortField::new(s1.data_type().clone())];
let converter = RowConverter::new(sort_fields).unwrap();
let r1 = converter.convert_columns(&[Arc::clone(&s1)]).unwrap();
for (a, b) in r1.iter().zip(r1.iter().skip(1)) {
assert!(a < b);
}
let back = converter.convert_rows(&r1).unwrap();
assert_eq!(back.len(), 1);
assert_eq!(&back[0], &s1);
let data = s1
.to_data()
.into_builder()
.null_bit_buffer(Some(Buffer::from_slice_ref([0b00001010])))
.null_count(2)
.build()
.unwrap();
let s2 = Arc::new(StructArray::from(data)) as ArrayRef;
let r2 = converter.convert_columns(&[Arc::clone(&s2)]).unwrap();
assert_eq!(r2.row(0), r2.row(2)); assert!(r2.row(0) < r2.row(1)); assert_ne!(r1.row(0), r2.row(0)); assert_eq!(r1.row(1), r2.row(1));
let back = converter.convert_rows(&r2).unwrap();
assert_eq!(back.len(), 1);
assert_eq!(&back[0], &s2);
back[0].to_data().validate_full().unwrap();
}
#[test]
fn test_primitive_dictionary() {
let mut builder = PrimitiveDictionaryBuilder::<Int32Type, Int32Type>::new();
builder.append(2).unwrap();
builder.append(3).unwrap();
builder.append(0).unwrap();
builder.append_null();
builder.append(5).unwrap();
builder.append(3).unwrap();
builder.append(-1).unwrap();
let a = builder.finish();
let data_type = a.data_type().clone();
let columns = [Arc::new(a) as ArrayRef];
let field = SortField::new(data_type.clone());
let converter = RowConverter::new(vec![field]).unwrap();
let rows = converter.convert_columns(&columns).unwrap();
assert!(rows.row(0) < rows.row(1));
assert!(rows.row(2) < rows.row(0));
assert!(rows.row(3) < rows.row(2));
assert!(rows.row(6) < rows.row(2));
assert!(rows.row(3) < rows.row(6));
}
#[test]
fn test_dictionary_nulls() {
let values = Int32Array::from_iter([Some(1), Some(-1), None, Some(4), None]).into_data();
let keys =
Int32Array::from_iter([Some(0), Some(0), Some(1), Some(2), Some(4), None]).into_data();
let data_type = DataType::Dictionary(Box::new(DataType::Int32), Box::new(DataType::Int32));
let data = keys
.into_builder()
.data_type(data_type.clone())
.child_data(vec![values])
.build()
.unwrap();
let columns = [Arc::new(DictionaryArray::<Int32Type>::from(data)) as ArrayRef];
let field = SortField::new(data_type.clone());
let converter = RowConverter::new(vec![field]).unwrap();
let rows = converter.convert_columns(&columns).unwrap();
assert_eq!(rows.row(0), rows.row(1));
assert_eq!(rows.row(3), rows.row(4));
assert_eq!(rows.row(4), rows.row(5));
assert!(rows.row(3) < rows.row(0));
}
#[test]
#[should_panic(expected = "Encountered non UTF-8 data")]
fn test_invalid_utf8() {
let converter = RowConverter::new(vec![SortField::new(DataType::Binary)]).unwrap();
let array = Arc::new(BinaryArray::from_iter_values([&[0xFF]])) as _;
let rows = converter.convert_columns(&[array]).unwrap();
let binary_row = rows.row(0);
let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
let parser = converter.parser();
let utf8_row = parser.parse(binary_row.as_ref());
converter.convert_rows(std::iter::once(utf8_row)).unwrap();
}
#[test]
#[should_panic(expected = "Encountered non UTF-8 data")]
fn test_invalid_utf8_array() {
let converter = RowConverter::new(vec![SortField::new(DataType::Binary)]).unwrap();
let array = Arc::new(BinaryArray::from_iter_values([&[0xFF]])) as _;
let rows = converter.convert_columns(&[array]).unwrap();
let binary_rows = rows.try_into_binary().expect("known-small rows");
let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
let parsed = converter.from_binary(binary_rows);
converter.convert_rows(parsed.iter()).unwrap();
}
#[test]
#[should_panic(expected = "index out of bounds")]
fn test_invalid_empty() {
let binary_row: &[u8] = &[];
let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
let parser = converter.parser();
let utf8_row = parser.parse(binary_row.as_ref());
converter.convert_rows(std::iter::once(utf8_row)).unwrap();
}
#[test]
#[should_panic(expected = "index out of bounds")]
fn test_invalid_empty_array() {
let row: &[u8] = &[];
let binary_rows = BinaryArray::from(vec![row]);
let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
let parsed = converter.from_binary(binary_rows);
converter.convert_rows(parsed.iter()).unwrap();
}
#[test]
#[should_panic(expected = "index out of bounds")]
fn test_invalid_truncated() {
let binary_row: &[u8] = &[0x02];
let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
let parser = converter.parser();
let utf8_row = parser.parse(binary_row.as_ref());
converter.convert_rows(std::iter::once(utf8_row)).unwrap();
}
#[test]
#[should_panic(expected = "index out of bounds")]
fn test_invalid_truncated_array() {
let row: &[u8] = &[0x02];
let binary_rows = BinaryArray::from(vec![row]);
let converter = RowConverter::new(vec![SortField::new(DataType::Utf8)]).unwrap();
let parsed = converter.from_binary(binary_rows);
converter.convert_rows(parsed.iter()).unwrap();
}
#[test]
#[should_panic(expected = "rows were not produced by this RowConverter")]
fn test_different_converter() {
let values = Arc::new(Int32Array::from_iter([Some(1), Some(-1)]));
let converter = RowConverter::new(vec![SortField::new(DataType::Int32)]).unwrap();
let rows = converter.convert_columns(&[values]).unwrap();
let converter = RowConverter::new(vec![SortField::new(DataType::Int32)]).unwrap();
let _ = converter.convert_rows(&rows);
}
fn test_single_list<O: OffsetSizeTrait>() {
let mut builder = GenericListBuilder::<O, _>::new(Int32Builder::new());
builder.values().append_value(32);
builder.values().append_value(52);
builder.values().append_value(32);
builder.append(true);
builder.values().append_value(32);
builder.values().append_value(52);
builder.values().append_value(12);
builder.append(true);
builder.values().append_value(32);
builder.values().append_value(52);
builder.append(true);
builder.values().append_value(32); builder.values().append_value(52); builder.append(false);
builder.values().append_value(32);
builder.values().append_null();
builder.append(true);
builder.append(true);
let list = Arc::new(builder.finish()) as ArrayRef;
let d = list.data_type().clone();
let converter = RowConverter::new(vec![SortField::new(d.clone())]).unwrap();
let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
assert!(rows.row(0) > rows.row(1)); assert!(rows.row(2) < rows.row(1)); assert!(rows.row(3) < rows.row(2)); assert!(rows.row(4) < rows.row(2)); assert!(rows.row(5) < rows.row(2)); assert!(rows.row(3) < rows.row(5));
let back = converter.convert_rows(&rows).unwrap();
assert_eq!(back.len(), 1);
back[0].to_data().validate_full().unwrap();
assert_eq!(&back[0], &list);
let options = SortOptions::default().asc().with_nulls_first(false);
let field = SortField::new_with_options(d.clone(), options);
let converter = RowConverter::new(vec![field]).unwrap();
let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
assert!(rows.row(0) > rows.row(1)); assert!(rows.row(2) < rows.row(1)); assert!(rows.row(3) > rows.row(2)); assert!(rows.row(4) > rows.row(2)); assert!(rows.row(5) < rows.row(2)); assert!(rows.row(3) > rows.row(5));
let back = converter.convert_rows(&rows).unwrap();
assert_eq!(back.len(), 1);
back[0].to_data().validate_full().unwrap();
assert_eq!(&back[0], &list);
let options = SortOptions::default().desc().with_nulls_first(false);
let field = SortField::new_with_options(d.clone(), options);
let converter = RowConverter::new(vec![field]).unwrap();
let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
assert!(rows.row(0) < rows.row(1)); assert!(rows.row(2) > rows.row(1)); assert!(rows.row(3) > rows.row(2)); assert!(rows.row(4) > rows.row(2)); assert!(rows.row(5) > rows.row(2)); assert!(rows.row(3) > rows.row(5));
let back = converter.convert_rows(&rows).unwrap();
assert_eq!(back.len(), 1);
back[0].to_data().validate_full().unwrap();
assert_eq!(&back[0], &list);
let options = SortOptions::default().desc().with_nulls_first(true);
let field = SortField::new_with_options(d, options);
let converter = RowConverter::new(vec![field]).unwrap();
let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
assert!(rows.row(0) < rows.row(1)); assert!(rows.row(2) > rows.row(1)); assert!(rows.row(3) < rows.row(2)); assert!(rows.row(4) < rows.row(2)); assert!(rows.row(5) > rows.row(2)); assert!(rows.row(3) < rows.row(5));
let back = converter.convert_rows(&rows).unwrap();
assert_eq!(back.len(), 1);
back[0].to_data().validate_full().unwrap();
assert_eq!(&back[0], &list);
}
fn test_nested_list<O: OffsetSizeTrait>() {
let mut builder =
GenericListBuilder::<O, _>::new(GenericListBuilder::<O, _>::new(Int32Builder::new()));
builder.values().values().append_value(1);
builder.values().values().append_value(2);
builder.values().append(true);
builder.values().values().append_value(1);
builder.values().values().append_null();
builder.values().append(true);
builder.append(true);
builder.values().values().append_value(1);
builder.values().values().append_null();
builder.values().append(true);
builder.values().values().append_value(1);
builder.values().values().append_null();
builder.values().append(true);
builder.append(true);
builder.values().values().append_value(1);
builder.values().values().append_null();
builder.values().append(true);
builder.values().append(false);
builder.append(true);
builder.append(false);
builder.values().values().append_value(1);
builder.values().values().append_value(2);
builder.values().append(true);
builder.append(true);
let list = Arc::new(builder.finish()) as ArrayRef;
let d = list.data_type().clone();
let options = SortOptions::default().asc().with_nulls_first(true);
let field = SortField::new_with_options(d.clone(), options);
let converter = RowConverter::new(vec![field]).unwrap();
let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
assert!(rows.row(0) > rows.row(1));
assert!(rows.row(1) > rows.row(2));
assert!(rows.row(2) > rows.row(3));
assert!(rows.row(4) < rows.row(0));
assert!(rows.row(4) > rows.row(1));
let back = converter.convert_rows(&rows).unwrap();
assert_eq!(back.len(), 1);
back[0].to_data().validate_full().unwrap();
assert_eq!(&back[0], &list);
let options = SortOptions::default().desc().with_nulls_first(true);
let field = SortField::new_with_options(d.clone(), options);
let converter = RowConverter::new(vec![field]).unwrap();
let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
assert!(rows.row(0) > rows.row(1));
assert!(rows.row(1) > rows.row(2));
assert!(rows.row(2) > rows.row(3));
assert!(rows.row(4) > rows.row(0));
assert!(rows.row(4) > rows.row(1));
let back = converter.convert_rows(&rows).unwrap();
assert_eq!(back.len(), 1);
back[0].to_data().validate_full().unwrap();
assert_eq!(&back[0], &list);
let options = SortOptions::default().desc().with_nulls_first(false);
let field = SortField::new_with_options(d, options);
let converter = RowConverter::new(vec![field]).unwrap();
let rows = converter.convert_columns(&[Arc::clone(&list)]).unwrap();
assert!(rows.row(0) < rows.row(1));
assert!(rows.row(1) < rows.row(2));
assert!(rows.row(2) < rows.row(3));
assert!(rows.row(4) > rows.row(0));
assert!(rows.row(4) < rows.row(1));
let back = converter.convert_rows(&rows).unwrap();
assert_eq!(back.len(), 1);
back[0].to_data().validate_full().unwrap();
assert_eq!(&back[0], &list);
}
#[test]
fn test_list() {
test_single_list::<i32>();
test_nested_list::<i32>();
}
#[test]
fn test_large_list() {
test_single_list::<i64>();
test_nested_list::<i64>();
}
fn generate_primitive_array<K>(len: usize, valid_percent: f64) -> PrimitiveArray<K>
where
K: ArrowPrimitiveType,
Standard: Distribution<K::Native>,
{
let mut rng = thread_rng();
(0..len)
.map(|_| rng.gen_bool(valid_percent).then(|| rng.gen()))
.collect()
}
fn generate_strings<O: OffsetSizeTrait>(
len: usize,
valid_percent: f64,
) -> GenericStringArray<O> {
let mut rng = thread_rng();
(0..len)
.map(|_| {
rng.gen_bool(valid_percent).then(|| {
let len = rng.gen_range(0..100);
let bytes = (0..len).map(|_| rng.gen_range(0..128)).collect();
String::from_utf8(bytes).unwrap()
})
})
.collect()
}
fn generate_string_view(len: usize, valid_percent: f64) -> StringViewArray {
let mut rng = thread_rng();
(0..len)
.map(|_| {
rng.gen_bool(valid_percent).then(|| {
let len = rng.gen_range(0..100);
let bytes = (0..len).map(|_| rng.gen_range(0..128)).collect();
String::from_utf8(bytes).unwrap()
})
})
.collect()
}
fn generate_byte_view(len: usize, valid_percent: f64) -> BinaryViewArray {
let mut rng = thread_rng();
(0..len)
.map(|_| {
rng.gen_bool(valid_percent).then(|| {
let len = rng.gen_range(0..100);
let bytes: Vec<_> = (0..len).map(|_| rng.gen_range(0..128)).collect();
bytes
})
})
.collect()
}
fn generate_dictionary<K>(
values: ArrayRef,
len: usize,
valid_percent: f64,
) -> DictionaryArray<K>
where
K: ArrowDictionaryKeyType,
K::Native: SampleUniform,
{
let mut rng = thread_rng();
let min_key = K::Native::from_usize(0).unwrap();
let max_key = K::Native::from_usize(values.len()).unwrap();
let keys: PrimitiveArray<K> = (0..len)
.map(|_| {
rng.gen_bool(valid_percent)
.then(|| rng.gen_range(min_key..max_key))
})
.collect();
let data_type =
DataType::Dictionary(Box::new(K::DATA_TYPE), Box::new(values.data_type().clone()));
let data = keys
.into_data()
.into_builder()
.data_type(data_type)
.add_child_data(values.to_data())
.build()
.unwrap();
DictionaryArray::from(data)
}
fn generate_fixed_size_binary(len: usize, valid_percent: f64) -> FixedSizeBinaryArray {
let mut rng = thread_rng();
let width = rng.gen_range(0..20);
let mut builder = FixedSizeBinaryBuilder::new(width);
let mut b = vec![0; width as usize];
for _ in 0..len {
match rng.gen_bool(valid_percent) {
true => {
b.iter_mut().for_each(|x| *x = rng.gen());
builder.append_value(&b).unwrap();
}
false => builder.append_null(),
}
}
builder.finish()
}
fn generate_struct(len: usize, valid_percent: f64) -> StructArray {
let mut rng = thread_rng();
let nulls = NullBuffer::from_iter((0..len).map(|_| rng.gen_bool(valid_percent)));
let a = generate_primitive_array::<Int32Type>(len, valid_percent);
let b = generate_strings::<i32>(len, valid_percent);
let fields = Fields::from(vec![
Field::new("a", DataType::Int32, true),
Field::new("b", DataType::Utf8, true),
]);
let values = vec![Arc::new(a) as _, Arc::new(b) as _];
StructArray::new(fields, values, Some(nulls))
}
fn generate_list<F>(len: usize, valid_percent: f64, values: F) -> ListArray
where
F: FnOnce(usize) -> ArrayRef,
{
let mut rng = thread_rng();
let offsets = OffsetBuffer::<i32>::from_lengths((0..len).map(|_| rng.gen_range(0..10)));
let values_len = offsets.last().unwrap().to_usize().unwrap();
let values = values(values_len);
let nulls = NullBuffer::from_iter((0..len).map(|_| rng.gen_bool(valid_percent)));
let field = Arc::new(Field::new("item", values.data_type().clone(), true));
ListArray::new(field, offsets, values, Some(nulls))
}
fn generate_column(len: usize) -> ArrayRef {
let mut rng = thread_rng();
match rng.gen_range(0..16) {
0 => Arc::new(generate_primitive_array::<Int32Type>(len, 0.8)),
1 => Arc::new(generate_primitive_array::<UInt32Type>(len, 0.8)),
2 => Arc::new(generate_primitive_array::<Int64Type>(len, 0.8)),
3 => Arc::new(generate_primitive_array::<UInt64Type>(len, 0.8)),
4 => Arc::new(generate_primitive_array::<Float32Type>(len, 0.8)),
5 => Arc::new(generate_primitive_array::<Float64Type>(len, 0.8)),
6 => Arc::new(generate_strings::<i32>(len, 0.8)),
7 => Arc::new(generate_dictionary::<Int64Type>(
Arc::new(generate_strings::<i32>(rng.gen_range(1..len), 1.0)),
len,
0.8,
)),
8 => Arc::new(generate_dictionary::<Int64Type>(
Arc::new(generate_primitive_array::<Int64Type>(
rng.gen_range(1..len),
1.0,
)),
len,
0.8,
)),
9 => Arc::new(generate_fixed_size_binary(len, 0.8)),
10 => Arc::new(generate_struct(len, 0.8)),
11 => Arc::new(generate_list(len, 0.8, |values_len| {
Arc::new(generate_primitive_array::<Int64Type>(values_len, 0.8))
})),
12 => Arc::new(generate_list(len, 0.8, |values_len| {
Arc::new(generate_strings::<i32>(values_len, 0.8))
})),
13 => Arc::new(generate_list(len, 0.8, |values_len| {
Arc::new(generate_struct(values_len, 0.8))
})),
14 => Arc::new(generate_string_view(len, 0.8)),
15 => Arc::new(generate_byte_view(len, 0.8)),
_ => unreachable!(),
}
}
fn print_row(cols: &[SortColumn], row: usize) -> String {
let t: Vec<_> = cols
.iter()
.map(|x| match x.values.is_valid(row) {
true => {
let opts = FormatOptions::default().with_null("NULL");
let formatter = ArrayFormatter::try_new(x.values.as_ref(), &opts).unwrap();
formatter.value(row).to_string()
}
false => "NULL".to_string(),
})
.collect();
t.join(",")
}
fn print_col_types(cols: &[SortColumn]) -> String {
let t: Vec<_> = cols
.iter()
.map(|x| x.values.data_type().to_string())
.collect();
t.join(",")
}
#[test]
#[cfg_attr(miri, ignore)]
fn fuzz_test() {
for _ in 0..100 {
let mut rng = thread_rng();
let num_columns = rng.gen_range(1..5);
let len = rng.gen_range(5..100);
let arrays: Vec<_> = (0..num_columns).map(|_| generate_column(len)).collect();
let options: Vec<_> = (0..num_columns)
.map(|_| SortOptions {
descending: rng.gen_bool(0.5),
nulls_first: rng.gen_bool(0.5),
})
.collect();
let sort_columns: Vec<_> = options
.iter()
.zip(&arrays)
.map(|(o, c)| SortColumn {
values: Arc::clone(c),
options: Some(*o),
})
.collect();
let comparator = LexicographicalComparator::try_new(&sort_columns).unwrap();
let columns: Vec<SortField> = options
.into_iter()
.zip(&arrays)
.map(|(o, a)| SortField::new_with_options(a.data_type().clone(), o))
.collect();
let converter = RowConverter::new(columns).unwrap();
let rows = converter.convert_columns(&arrays).unwrap();
for i in 0..len {
for j in 0..len {
let row_i = rows.row(i);
let row_j = rows.row(j);
let row_cmp = row_i.cmp(&row_j);
let lex_cmp = comparator.compare(i, j);
assert_eq!(
row_cmp,
lex_cmp,
"({:?} vs {:?}) vs ({:?} vs {:?}) for types {}",
print_row(&sort_columns, i),
print_row(&sort_columns, j),
row_i,
row_j,
print_col_types(&sort_columns)
);
}
}
let back = converter.convert_rows(&rows).unwrap();
for (actual, expected) in back.iter().zip(&arrays) {
actual.to_data().validate_full().unwrap();
dictionary_eq(actual, expected)
}
let rows = rows.try_into_binary().expect("reasonable size");
let parser = converter.parser();
let back = converter
.convert_rows(rows.iter().map(|b| parser.parse(b.expect("valid bytes"))))
.unwrap();
for (actual, expected) in back.iter().zip(&arrays) {
actual.to_data().validate_full().unwrap();
dictionary_eq(actual, expected)
}
let rows = converter.from_binary(rows);
let back = converter.convert_rows(&rows).unwrap();
for (actual, expected) in back.iter().zip(&arrays) {
actual.to_data().validate_full().unwrap();
dictionary_eq(actual, expected)
}
}
}
#[test]
fn test_clear() {
let converter = RowConverter::new(vec![SortField::new(DataType::Int32)]).unwrap();
let mut rows = converter.empty_rows(3, 128);
let first = Int32Array::from(vec![None, Some(2), Some(4)]);
let second = Int32Array::from(vec![Some(2), None, Some(4)]);
let arrays = [Arc::new(first) as ArrayRef, Arc::new(second) as ArrayRef];
for array in arrays.iter() {
rows.clear();
converter.append(&mut rows, &[array.clone()]).unwrap();
let back = converter.convert_rows(&rows).unwrap();
assert_eq!(&back[0], array);
}
let mut rows_expected = converter.empty_rows(3, 128);
converter.append(&mut rows_expected, &arrays[1..]).unwrap();
for (i, (actual, expected)) in rows.iter().zip(rows_expected.iter()).enumerate() {
assert_eq!(
actual, expected,
"For row {}: expected {:?}, actual: {:?}",
i, expected, actual
);
}
}
#[test]
fn test_append_codec_dictionary_binary() {
use DataType::*;
let converter = RowConverter::new(vec![SortField::new(Dictionary(
Box::new(Int32),
Box::new(Binary),
))])
.unwrap();
let mut rows = converter.empty_rows(4, 128);
let keys = Int32Array::from_iter_values([0, 1, 2, 3]);
let values = BinaryArray::from(vec![
Some("a".as_bytes()),
Some(b"b"),
Some(b"c"),
Some(b"d"),
]);
let dict_array = DictionaryArray::new(keys, Arc::new(values));
rows.clear();
let array = Arc::new(dict_array) as ArrayRef;
converter.append(&mut rows, &[array.clone()]).unwrap();
let back = converter.convert_rows(&rows).unwrap();
dictionary_eq(&back[0], &array);
}
#[test]
fn test_list_prefix() {
let mut a = ListBuilder::new(Int8Builder::new());
a.append_value([None]);
a.append_value([None, None]);
let a = a.finish();
let converter = RowConverter::new(vec![SortField::new(a.data_type().clone())]).unwrap();
let rows = converter.convert_columns(&[Arc::new(a) as _]).unwrap();
assert_eq!(rows.row(0).cmp(&rows.row(1)), Ordering::Less);
}
}