1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
use std::sync::Arc;
use arrow::{
datatypes::SchemaRef,
error::ArrowError,
record_batch::{RecordBatch, RecordBatchReader},
};
use odbc_api::{buffers::ColumnarAnyBuffer, BlockCursor, Cursor};
use crate::{arrow_schema_from, BufferAllocationOptions, ConcurrentOdbcReader, Error};
use super::{odbc_batch_stream::OdbcBatchStream, to_record_batch::ToRecordBatch};
/// Arrow ODBC reader. Implements the [`arrow::record_batch::RecordBatchReader`] trait so it can be
/// used to fill Arrow arrays from an ODBC data source.
///
/// This reader is generic over the cursor type so it can be used in cases there the cursor only
/// borrows a statement handle (most likely the case then using prepared queries), or owned
/// statement handles (recommened then using one shot queries, to have an easier life with the
/// borrow checker).
///
/// # Example
///
/// ```no_run
/// use arrow_odbc::{odbc_api::{Environment, ConnectionOptions}, OdbcReader};
///
/// const CONNECTION_STRING: &str = "\
/// Driver={ODBC Driver 17 for SQL Server};\
/// Server=localhost;\
/// UID=SA;\
/// PWD=My@Test@Password1;\
/// ";
///
/// fn main() -> Result<(), anyhow::Error> {
///
/// let odbc_environment = Environment::new()?;
///
/// // Connect with database.
/// let connection = odbc_environment.connect_with_connection_string(
/// CONNECTION_STRING,
/// ConnectionOptions::default()
/// )?;
///
/// // This SQL statement does not require any arguments.
/// let parameters = ();
///
/// // Execute query and create result set
/// let cursor = connection
/// .execute("SELECT * FROM MyTable", parameters)?
/// .expect("SELECT statement must produce a cursor");
///
/// // Each batch shall only consist of maximum 10.000 rows.
/// let max_batch_size = 10_000;
///
/// // Read result set as arrow batches. Infer Arrow types automatically using the meta
/// // information of `cursor`.
/// let arrow_record_batches = OdbcReader::new(cursor, max_batch_size)?;
///
/// for batch in arrow_record_batches {
/// // ... process batch ...
/// }
/// Ok(())
/// }
/// ```
pub struct OdbcReader<C: Cursor> {
/// Converts the content of ODBC buffers into Arrow record batches
converter: ToRecordBatch,
/// Fetches values from the ODBC datasource using columnar batches. Values are streamed batch
/// by batch in order to avoid reallocation of the buffers used for tranistion.
batch_stream: BlockCursor<C, ColumnarAnyBuffer>,
/// We remember if the user decided to use fallibale allocations or not in case we need to
/// allocate another buffer due to a state transition towards [`ConcurrentOdbcReader`].
fallibale_allocations: bool,
}
impl<C: Cursor> OdbcReader<C> {
/// Construct a new `OdbcReader` instance. This constructor infers the Arrow schema from the
/// metadata of the cursor. If you want to set it explicitly use [`Self::with_arrow_schema`].
///
/// # Parameters
///
/// * `cursor`: ODBC cursor used to fetch batches from the data source. The constructor will
/// bind buffers to this cursor in order to perform bulk fetches from the source. This is
/// usually faster than fetching results row by row as it saves roundtrips to the database.
/// The type of these buffers will be inferred from the arrow schema. Not every arrow type is
/// supported though.
/// * `max_batch_size`: Maximum batch size requested from the datasource.
pub fn new(mut cursor: C, max_batch_size: usize) -> Result<Self, Error> {
// Get number of columns from result set. We know it to contain at least one column,
// otherwise it would not have been created.
let schema = Arc::new(arrow_schema_from(&mut cursor)?);
Self::with_arrow_schema(cursor, max_batch_size, schema)
}
/// Construct a new `OdbcReader instance.
///
/// # Parameters
///
/// * `cursor`: ODBC cursor used to fetch batches from the data source. The constructor will
/// bind buffers to this cursor in order to perform bulk fetches from the source. This is
/// usually faster than fetching results row by row as it saves roundtrips to the database.
/// The type of these buffers will be inferred from the arrow schema. Not every arrow type is
/// supported though.
/// * `max_batch_size`: Maximum batch size requested from the datasource.
/// * `schema`: Arrow schema. Describes the type of the Arrow Arrays in the record batches, but
/// is also used to determine CData type requested from the data source.
pub fn with_arrow_schema(
cursor: C,
max_batch_size: usize,
schema: SchemaRef,
) -> Result<Self, Error> {
Self::with(
cursor,
max_batch_size,
Some(schema),
BufferAllocationOptions::default(),
)
}
/// Construct a new [`crate::OdbcReader`] instance. This method allows you full control over
/// what options to explicitly specify, and what options you want to leave to this crate to
/// automatically decide.
///
/// # Parameters
///
/// * `cursor`: ODBC cursor used to fetch batches from the data source. The constructor will
/// bind buffers to this cursor in order to perform bulk fetches from the source. This is
/// usually faster than fetching results row by row as it saves roundtrips to the database.
/// The type of these buffers will be inferred from the arrow schema. Not every arrow type is
/// supported though.
/// * `max_batch_size`: Maximum batch size requested from the datasource.
/// * `schema`: Arrow schema. Describes the type of the Arrow Arrays in the record batches, but
/// is also used to determine CData type requested from the data source. Set to `None` to
/// infer schema from the data source.
/// * `buffer_allocation_options`: Allows you to specify upper limits for binary and / or text
/// buffer types. This is useful support fetching data from e.g. VARCHAR(max) or
/// VARBINARY(max) columns, which otherwise might lead to errors, due to the ODBC driver
/// having a hard time specifying a good upper bound for the largest possible expected value.
pub fn with(
mut cursor: C,
max_batch_size: usize,
schema: Option<SchemaRef>,
buffer_allocation_options: BufferAllocationOptions,
) -> Result<Self, Error> {
let converter = ToRecordBatch::new(&mut cursor, schema.clone(), buffer_allocation_options)?;
let row_set_buffer = converter.allocate_buffer(
max_batch_size,
buffer_allocation_options.fallibale_allocations,
)?;
let batch_stream = cursor.bind_buffer(row_set_buffer).unwrap();
Ok(Self {
converter,
batch_stream,
fallibale_allocations: buffer_allocation_options.fallibale_allocations
})
}
/// Consume this instance to create a similar ODBC reader which fetches batches asynchronously.
///
/// Steals all resources from this [`OdbcReader`] instance, and allocates another buffer for
/// transiting data from the ODBC data source to the application. This way one buffer can be
/// written to by a dedicated system thread, while the other is read by the application. Use
/// this if you want to trade memory for speed.
///
/// # Example
///
/// ```no_run
/// use arrow_odbc::{odbc_api::{Environment, ConnectionOptions}, OdbcReader};
/// use std::sync::OnceLock;
///
/// // In order to fetch in a dedicated system thread we need a cursor with static lifetime,
/// // this implies a static ODBC environment.
/// static ENV: OnceLock<Environment> = OnceLock::new();
///
/// const CONNECTION_STRING: &str = "\
/// Driver={ODBC Driver 17 for SQL Server};\
/// Server=localhost;\
/// UID=SA;\
/// PWD=My@Test@Password1;\
/// ";
///
/// fn main() -> Result<(), anyhow::Error> {
///
/// let odbc_environment = ENV.get_or_init(|| {Environment::new().unwrap() });
///
/// // Connect with database.
/// let connection = odbc_environment.connect_with_connection_string(
/// CONNECTION_STRING,
/// ConnectionOptions::default()
/// )?;
///
/// // This SQL statement does not require any arguments.
/// let parameters = ();
///
/// // Execute query and create result set
/// let cursor = connection
/// // Using `into_cursor` instead of `execute` takes ownership of the connection and
/// // allows for a cursor with static lifetime.
/// .into_cursor("SELECT * FROM MyTable", parameters)?
/// .expect("SELECT statement must produce a cursor");
///
/// // Construct ODBC reader ...
/// let max_batch_size = 1000;
/// let arrow_record_batches = OdbcReader::new(cursor, max_batch_size)
/// // ... and make it concurrent
/// .and_then(OdbcReader::into_concurrent)?;
///
/// for batch in arrow_record_batches {
/// // ... process batch ...
/// }
/// Ok(())
/// }
/// ```
pub fn into_concurrent(
self,
) -> Result<ConcurrentOdbcReader<C>, Error>
where
C: Send + 'static,
{
ConcurrentOdbcReader::from_block_cursor(
self.batch_stream,
self.converter,
self.fallibale_allocations,
)
}
/// Destroy the ODBC arrow reader and yield the underlyinng cursor object.
///
/// One application of this is to process more than one result set in case you executed a stored
/// procedure.
pub fn into_cursor(self) -> Result<C, odbc_api::Error> {
let (cursor, _buffer) = self.batch_stream.unbind()?;
Ok(cursor)
}
}
impl<C> Iterator for OdbcReader<C>
where
C: Cursor,
{
type Item = Result<RecordBatch, ArrowError>;
fn next(&mut self) -> Option<Self::Item> {
next(&mut self.batch_stream, &mut self.converter)
}
}
impl<C> RecordBatchReader for OdbcReader<C>
where
C: Cursor,
{
fn schema(&self) -> SchemaRef {
self.converter.schema().clone()
}
}
pub fn next(
batch_stream: &mut impl OdbcBatchStream,
converter: &mut ToRecordBatch,
) -> Option<Result<RecordBatch, ArrowError>> {
match batch_stream.next() {
// We successfully fetched a batch from the database. Try to copy it into a record batch
// and forward errors if any.
Ok(Some(batch)) => {
let result_record_batch = converter
.buffer_to_record_batch(batch)
.map_err(|mapping_error| ArrowError::ExternalError(Box::new(mapping_error)));
Some(result_record_batch)
}
// We ran out of batches in the result set. End the iterator.
Ok(None) => None,
// We had an error fetching the next batch from the database, let's report it as an
// external error.
Err(odbc_error) => Some(Err(ArrowError::ExternalError(Box::new(odbc_error)))),
}
}