arrow-flight 32.0.0

Apache Arrow Flight
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

use std::{collections::VecDeque, fmt::Debug, pin::Pin, sync::Arc, task::Poll};

use crate::{error::Result, FlightData, SchemaAsIpc};
use arrow_array::{ArrayRef, RecordBatch};
use arrow_ipc::writer::{DictionaryTracker, IpcDataGenerator, IpcWriteOptions};
use arrow_schema::{DataType, Field, Schema, SchemaRef};
use bytes::Bytes;
use futures::{ready, stream::BoxStream, Stream, StreamExt};

/// Creates a [`Stream`](futures::Stream) of [`FlightData`]s from a
/// `Stream` of [`Result`]<[`RecordBatch`], [`FlightError`]>.
///
/// This can be used to implement [`FlightService::do_get`] in an
/// Arrow Flight implementation;
///
/// # Caveats
///   1. [`DictionaryArray`](arrow_array::array::DictionaryArray)s
///   are converted to their underlying types prior to transport, due to
///   <https://github.com/apache/arrow-rs/issues/3389>.
///
/// # Example
/// ```no_run
/// # use std::sync::Arc;
/// # use arrow_array::{ArrayRef, RecordBatch, UInt32Array};
/// # async fn f() {
/// # let c1 = UInt32Array::from(vec![1, 2, 3, 4, 5, 6]);
/// # let record_batch = RecordBatch::try_from_iter(vec![
/// #      ("a", Arc::new(c1) as ArrayRef)
/// #   ])
/// #   .expect("cannot create record batch");
/// use arrow_flight::encode::FlightDataEncoderBuilder;
///
/// // Get an input stream of Result<RecordBatch, FlightError>
/// let input_stream = futures::stream::iter(vec![Ok(record_batch)]);
///
/// // Build a stream of `Result<FlightData>` (e.g. to return for do_get)
/// let flight_data_stream = FlightDataEncoderBuilder::new()
///  .build(input_stream);
///
/// // Create a tonic `Response` that can be returned from a Flight server
/// let response = tonic::Response::new(flight_data_stream);
/// # }
/// ```
///
/// [`FlightService::do_get`]: crate::flight_service_server::FlightService::do_get
/// [`FlightError`]: crate::error::FlightError
#[derive(Debug)]
pub struct FlightDataEncoderBuilder {
    /// The maximum approximate target message size in bytes
    /// (see details on [`Self::with_max_flight_data_size`]).
    max_flight_data_size: usize,
    /// Ipc writer options
    options: IpcWriteOptions,
    /// Metadata to add to the schema message
    app_metadata: Bytes,
    /// Optional schema, if known before data.
    schema: Option<SchemaRef>,
}

/// Default target size for encoded [`FlightData`].
///
/// Note this value would normally be 4MB, but the size calculation is
/// somewhat inexact, so we set it to 2MB.
pub const GRPC_TARGET_MAX_FLIGHT_SIZE_BYTES: usize = 2097152;

impl Default for FlightDataEncoderBuilder {
    fn default() -> Self {
        Self {
            max_flight_data_size: GRPC_TARGET_MAX_FLIGHT_SIZE_BYTES,
            options: IpcWriteOptions::default(),
            app_metadata: Bytes::new(),
            schema: None,
        }
    }
}

impl FlightDataEncoderBuilder {
    pub fn new() -> Self {
        Self::default()
    }

    /// Set the (approximate) maximum size, in bytes, of the
    /// [`FlightData`] produced by this encoder. Defaults to 2MB.
    ///
    /// Since there is often a maximum message size for gRPC messages
    /// (typically around 4MB), this encoder splits up [`RecordBatch`]s
    /// (preserving order) into multiple [`FlightData`] objects to
    /// limit the size individual messages sent via gRPC.
    ///
    /// The size is approximate because of the additional encoding
    /// overhead on top of the underlying data buffers themselves.
    pub fn with_max_flight_data_size(mut self, max_flight_data_size: usize) -> Self {
        self.max_flight_data_size = max_flight_data_size;
        self
    }

    /// Specify application specific metadata included in the
    /// [`FlightData::app_metadata`] field of the the first Schema
    /// message
    pub fn with_metadata(mut self, app_metadata: Bytes) -> Self {
        self.app_metadata = app_metadata;
        self
    }

    /// Set the [`IpcWriteOptions`] used to encode the [`RecordBatch`]es for transport.
    pub fn with_options(mut self, options: IpcWriteOptions) -> Self {
        self.options = options;
        self
    }

    /// Specify a schema for the RecordBatches being sent. If a schema
    /// is not specified, an encoded Schema message will be sent when
    /// the first [`RecordBatch`], if any, is encoded. Some clients
    /// expect a Schema message even if there is no data sent.
    pub fn with_schema(mut self, schema: SchemaRef) -> Self {
        self.schema = Some(schema);
        self
    }

    /// Return a [`Stream`](futures::Stream) of [`FlightData`],
    /// consuming self. More details on [`FlightDataEncoder`]
    pub fn build<S>(self, input: S) -> FlightDataEncoder
    where
        S: Stream<Item = Result<RecordBatch>> + Send + 'static,
    {
        let Self {
            max_flight_data_size,
            options,
            app_metadata,
            schema,
        } = self;

        FlightDataEncoder::new(
            input.boxed(),
            schema,
            max_flight_data_size,
            options,
            app_metadata,
        )
    }
}

/// Stream that encodes a stream of record batches to flight data.
///
/// See [`FlightDataEncoderBuilder`] for details and example.
pub struct FlightDataEncoder {
    /// Input stream
    inner: BoxStream<'static, Result<RecordBatch>>,
    /// schema, set after the first batch
    schema: Option<SchemaRef>,
    /// Target maximum size of flight data
    /// (see details on [`FlightDataEncoderBuilder::with_max_flight_data_size`]).
    max_flight_data_size: usize,
    /// do the encoding / tracking of dictionaries
    encoder: FlightIpcEncoder,
    /// optional metadata to add to schema FlightData
    app_metadata: Option<Bytes>,
    /// data queued up to send but not yet sent
    queue: VecDeque<FlightData>,
    /// Is this stream done (inner is empty or errored)
    done: bool,
}

impl FlightDataEncoder {
    fn new(
        inner: BoxStream<'static, Result<RecordBatch>>,
        schema: Option<SchemaRef>,
        max_flight_data_size: usize,
        options: IpcWriteOptions,
        app_metadata: Bytes,
    ) -> Self {
        let mut encoder = Self {
            inner,
            schema: None,
            max_flight_data_size,
            encoder: FlightIpcEncoder::new(options),
            app_metadata: Some(app_metadata),
            queue: VecDeque::new(),
            done: false,
        };

        // If schema is known up front, enqueue it immediately
        if let Some(schema) = schema {
            encoder.encode_schema(&schema);
        }
        encoder
    }

    /// Place the `FlightData` in the queue to send
    fn queue_message(&mut self, data: FlightData) {
        self.queue.push_back(data);
    }

    /// Place the `FlightData` in the queue to send
    fn queue_messages(&mut self, datas: impl IntoIterator<Item = FlightData>) {
        for data in datas {
            self.queue_message(data)
        }
    }

    /// Encodes schema as a [`FlightData`] in self.queue.
    /// Updates `self.schema` and returns the new schema
    fn encode_schema(&mut self, schema: &SchemaRef) -> SchemaRef {
        // The first message is the schema message, and all
        // batches have the same schema
        let schema = Arc::new(prepare_schema_for_flight(schema));
        let mut schema_flight_data = self.encoder.encode_schema(&schema);

        // attach any metadata requested
        if let Some(app_metadata) = self.app_metadata.take() {
            schema_flight_data.app_metadata = app_metadata;
        }
        self.queue_message(schema_flight_data);
        // remember schema
        self.schema = Some(schema.clone());
        schema
    }

    /// Encodes batch into one or more `FlightData` messages in self.queue
    fn encode_batch(&mut self, batch: RecordBatch) -> Result<()> {
        let schema = match &self.schema {
            Some(schema) => schema.clone(),
            // encode the schema if this is the first time we have seen it
            None => self.encode_schema(&batch.schema()),
        };

        // encode the batch
        let batch = prepare_batch_for_flight(&batch, schema)?;

        for batch in split_batch_for_grpc_response(batch, self.max_flight_data_size) {
            let (flight_dictionaries, flight_batch) =
                self.encoder.encode_batch(&batch)?;

            self.queue_messages(flight_dictionaries);
            self.queue_message(flight_batch);
        }

        Ok(())
    }
}

impl Stream for FlightDataEncoder {
    type Item = Result<FlightData>;

    fn poll_next(
        mut self: Pin<&mut Self>,
        cx: &mut std::task::Context<'_>,
    ) -> Poll<Option<Self::Item>> {
        loop {
            if self.done && self.queue.is_empty() {
                return Poll::Ready(None);
            }

            // Any messages queued to send?
            if let Some(data) = self.queue.pop_front() {
                return Poll::Ready(Some(Ok(data)));
            }

            // Get next batch
            let batch = ready!(self.inner.poll_next_unpin(cx));

            match batch {
                None => {
                    // inner is done
                    self.done = true;
                    // queue must also be empty so we are done
                    assert!(self.queue.is_empty());
                    return Poll::Ready(None);
                }
                Some(Err(e)) => {
                    // error from inner
                    self.done = true;
                    self.queue.clear();
                    return Poll::Ready(Some(Err(e)));
                }
                Some(Ok(batch)) => {
                    // had data, encode into the queue
                    if let Err(e) = self.encode_batch(batch) {
                        self.done = true;
                        self.queue.clear();
                        return Poll::Ready(Some(Err(e)));
                    }
                }
            }
        }
    }
}

/// Prepare an arrow Schema for transport over the Arrow Flight protocol
///
/// Convert dictionary types to underlying types
///
/// See hydrate_dictionary for more information
fn prepare_schema_for_flight(schema: &Schema) -> Schema {
    let fields = schema
        .fields()
        .iter()
        .map(|field| match field.data_type() {
            DataType::Dictionary(_, value_type) => Field::new(
                field.name(),
                value_type.as_ref().clone(),
                field.is_nullable(),
            )
            .with_metadata(field.metadata().clone()),
            _ => field.clone(),
        })
        .collect();

    Schema::new(fields)
}

/// Split [`RecordBatch`] so it hopefully fits into a gRPC response.
///
/// Data is zero-copy sliced into batches.
///
/// Note: this method does not take into account already sliced
/// arrays: <https://github.com/apache/arrow-rs/issues/3407>
fn split_batch_for_grpc_response(
    batch: RecordBatch,
    max_flight_data_size: usize,
) -> Vec<RecordBatch> {
    let size = batch
        .columns()
        .iter()
        .map(|col| col.get_buffer_memory_size())
        .sum::<usize>();

    let n_batches = (size / max_flight_data_size
        + usize::from(size % max_flight_data_size != 0))
    .max(1);
    let rows_per_batch = (batch.num_rows() / n_batches).max(1);
    let mut out = Vec::with_capacity(n_batches + 1);

    let mut offset = 0;
    while offset < batch.num_rows() {
        let length = (rows_per_batch).min(batch.num_rows() - offset);
        out.push(batch.slice(offset, length));

        offset += length;
    }

    out
}

/// The data needed to encode a stream of flight data, holding on to
/// shared Dictionaries.
///
/// TODO: at allow dictionaries to be flushed / avoid building them
///
/// TODO limit on the number of dictionaries???
struct FlightIpcEncoder {
    options: IpcWriteOptions,
    data_gen: IpcDataGenerator,
    dictionary_tracker: DictionaryTracker,
}

impl FlightIpcEncoder {
    fn new(options: IpcWriteOptions) -> Self {
        let error_on_replacement = true;
        Self {
            options,
            data_gen: IpcDataGenerator::default(),
            dictionary_tracker: DictionaryTracker::new(error_on_replacement),
        }
    }

    /// Encode a schema as a FlightData
    fn encode_schema(&self, schema: &Schema) -> FlightData {
        SchemaAsIpc::new(schema, &self.options).into()
    }

    /// Convert a `RecordBatch` to a Vec of `FlightData` representing
    /// dictionaries and a `FlightData` representing the batch
    fn encode_batch(
        &mut self,
        batch: &RecordBatch,
    ) -> Result<(Vec<FlightData>, FlightData)> {
        let (encoded_dictionaries, encoded_batch) = self.data_gen.encoded_batch(
            batch,
            &mut self.dictionary_tracker,
            &self.options,
        )?;

        let flight_dictionaries =
            encoded_dictionaries.into_iter().map(Into::into).collect();
        let flight_batch = encoded_batch.into();

        Ok((flight_dictionaries, flight_batch))
    }
}

/// Prepares a RecordBatch for transport over the Arrow Flight protocol
///
/// This means:
///
/// 1. Hydrates any dictionaries to its underlying type. See
/// hydrate_dictionary for more information.
///
fn prepare_batch_for_flight(
    batch: &RecordBatch,
    schema: SchemaRef,
) -> Result<RecordBatch> {
    let columns = batch
        .columns()
        .iter()
        .map(hydrate_dictionary)
        .collect::<Result<Vec<_>>>()?;

    Ok(RecordBatch::try_new(schema, columns)?)
}

/// Hydrates a dictionary to its underlying type
///
/// An IPC response, streaming or otherwise, defines its schema up front
/// which defines the mapping from dictionary IDs. It then sends these
/// dictionaries over the wire.
///
/// This requires identifying the different dictionaries in use, assigning
/// them IDs, and sending new dictionaries, delta or otherwise, when needed
///
/// See also:
/// * <https://github.com/apache/arrow-rs/issues/1206>
///
/// For now we just hydrate the dictionaries to their underlying type
fn hydrate_dictionary(array: &ArrayRef) -> Result<ArrayRef> {
    let arr = if let DataType::Dictionary(_, value) = array.data_type() {
        arrow_cast::cast(array, value)?
    } else {
        Arc::clone(array)
    };
    Ok(arr)
}

#[cfg(test)]
mod tests {
    use arrow::{
        array::{UInt32Array, UInt8Array},
        compute::concat_batches,
        datatypes::Int32Type,
    };
    use arrow_array::{
        DictionaryArray, Int16Array, Int32Array, Int64Array, StringArray, UInt64Array,
    };

    use super::*;

    #[test]
    /// ensure only the batch's used data (not the allocated data) is sent
    /// <https://github.com/apache/arrow-rs/issues/208>
    fn test_encode_flight_data() {
        let options = arrow::ipc::writer::IpcWriteOptions::default();
        let c1 = UInt32Array::from(vec![1, 2, 3, 4, 5, 6]);

        let batch = RecordBatch::try_from_iter(vec![("a", Arc::new(c1) as ArrayRef)])
            .expect("cannot create record batch");
        let schema = batch.schema();

        let (_, baseline_flight_batch) = make_flight_data(&batch, &options);

        let big_batch = batch.slice(0, batch.num_rows() - 1);
        let optimized_big_batch =
            prepare_batch_for_flight(&big_batch, Arc::clone(&schema))
                .expect("failed to optimize");
        let (_, optimized_big_flight_batch) =
            make_flight_data(&optimized_big_batch, &options);

        assert_eq!(
            baseline_flight_batch.data_body.len(),
            optimized_big_flight_batch.data_body.len()
        );

        let small_batch = batch.slice(0, 1);
        let optimized_small_batch =
            prepare_batch_for_flight(&small_batch, Arc::clone(&schema))
                .expect("failed to optimize");
        let (_, optimized_small_flight_batch) =
            make_flight_data(&optimized_small_batch, &options);

        assert!(
            baseline_flight_batch.data_body.len()
                > optimized_small_flight_batch.data_body.len()
        );
    }

    pub fn make_flight_data(
        batch: &RecordBatch,
        options: &IpcWriteOptions,
    ) -> (Vec<FlightData>, FlightData) {
        let data_gen = IpcDataGenerator::default();
        let mut dictionary_tracker = DictionaryTracker::new(false);

        let (encoded_dictionaries, encoded_batch) = data_gen
            .encoded_batch(batch, &mut dictionary_tracker, options)
            .expect("DictionaryTracker configured above to not error on replacement");

        let flight_dictionaries =
            encoded_dictionaries.into_iter().map(Into::into).collect();
        let flight_batch = encoded_batch.into();

        (flight_dictionaries, flight_batch)
    }

    #[test]
    fn test_split_batch_for_grpc_response() {
        let max_flight_data_size = 1024;

        // no split
        let c = UInt32Array::from(vec![1, 2, 3, 4, 5, 6]);
        let batch = RecordBatch::try_from_iter(vec![("a", Arc::new(c) as ArrayRef)])
            .expect("cannot create record batch");
        let split = split_batch_for_grpc_response(batch.clone(), max_flight_data_size);
        assert_eq!(split.len(), 1);
        assert_eq!(batch, split[0]);

        // split once
        let n_rows = max_flight_data_size + 1;
        assert!(n_rows % 2 == 1, "should be an odd number");
        let c =
            UInt8Array::from((0..n_rows).map(|i| (i % 256) as u8).collect::<Vec<_>>());
        let batch = RecordBatch::try_from_iter(vec![("a", Arc::new(c) as ArrayRef)])
            .expect("cannot create record batch");
        let split = split_batch_for_grpc_response(batch.clone(), max_flight_data_size);
        assert_eq!(split.len(), 3);
        assert_eq!(
            split.iter().map(|batch| batch.num_rows()).sum::<usize>(),
            n_rows
        );
        assert_eq!(concat_batches(&batch.schema(), &split).unwrap(), batch);
    }

    #[test]
    fn test_split_batch_for_grpc_response_sizes() {
        // 2000 8 byte entries into 2k pieces: 8 chunks of 250 rows
        verify_split(2000, 2 * 1024, vec![250, 250, 250, 250, 250, 250, 250, 250]);

        // 2000 8 byte entries into 4k pieces: 4 chunks of 500 rows
        verify_split(2000, 4 * 1024, vec![500, 500, 500, 500]);

        // 2023 8 byte entries into 3k pieces does not divide evenly
        verify_split(2023, 3 * 1024, vec![337, 337, 337, 337, 337, 337, 1]);

        // 10 8 byte entries into 1 byte pieces means each rows gets its own
        verify_split(10, 1, vec![1, 1, 1, 1, 1, 1, 1, 1, 1, 1]);

        // 10 8 byte entries into 1k byte pieces means one piece
        verify_split(10, 1024, vec![10]);
    }

    /// Creates a UInt64Array of 8 byte integers with input_rows rows
    /// `max_flight_data_size_bytes` pieces and verifies the row counts in
    /// those pieces
    fn verify_split(
        num_input_rows: u64,
        max_flight_data_size_bytes: usize,
        expected_sizes: Vec<usize>,
    ) {
        let array: UInt64Array = (0..num_input_rows).collect();

        let batch = RecordBatch::try_from_iter(vec![("a", Arc::new(array) as ArrayRef)])
            .expect("cannot create record batch");

        let input_rows = batch.num_rows();

        let split =
            split_batch_for_grpc_response(batch.clone(), max_flight_data_size_bytes);
        let sizes: Vec<_> = split.iter().map(|batch| batch.num_rows()).collect();
        let output_rows: usize = sizes.iter().sum();

        assert_eq!(sizes, expected_sizes, "mismatch for {batch:?}");
        assert_eq!(input_rows, output_rows, "mismatch for {batch:?}");
    }

    // test sending record batches
    // test sending record batches with multiple different dictionaries

    #[tokio::test]
    async fn flight_data_size_even() {
        let s1 =
            StringArray::from_iter_values(std::iter::repeat(".10 bytes.").take(1024));
        let i1 = Int16Array::from_iter_values(0..1024);
        let s2 = StringArray::from_iter_values(std::iter::repeat("6bytes").take(1024));
        let i2 = Int64Array::from_iter_values(0..1024);

        let batch = RecordBatch::try_from_iter(vec![
            ("s1", Arc::new(s1) as _),
            ("i1", Arc::new(i1) as _),
            ("s2", Arc::new(s2) as _),
            ("i2", Arc::new(i2) as _),
        ])
        .unwrap();

        verify_encoded_split(batch, 112).await;
    }

    #[tokio::test]
    async fn flight_data_size_uneven_variable_lengths() {
        // each row has a longer string than the last with increasing lengths 0 --> 1024
        let array = StringArray::from_iter_values((0..1024).map(|i| "*".repeat(i)));
        let batch =
            RecordBatch::try_from_iter(vec![("data", Arc::new(array) as _)]).unwrap();

        // overage is much higher than ideal
        // https://github.com/apache/arrow-rs/issues/3478
        verify_encoded_split(batch, 4304).await;
    }

    #[tokio::test]
    async fn flight_data_size_large_row() {
        // batch with individual that can each exceed the batch size
        let array1 = StringArray::from_iter_values(vec![
            "*".repeat(500),
            "*".repeat(500),
            "*".repeat(500),
            "*".repeat(500),
        ]);
        let array2 = StringArray::from_iter_values(vec![
            "*".to_string(),
            "*".repeat(1000),
            "*".repeat(2000),
            "*".repeat(4000),
        ]);

        let array3 = StringArray::from_iter_values(vec![
            "*".to_string(),
            "*".to_string(),
            "*".repeat(1000),
            "*".repeat(2000),
        ]);

        let batch = RecordBatch::try_from_iter(vec![
            ("a1", Arc::new(array1) as _),
            ("a2", Arc::new(array2) as _),
            ("a3", Arc::new(array3) as _),
        ])
        .unwrap();

        // 5k over limit (which is 2x larger than limit of 5k)
        // overage is much higher than ideal
        // https://github.com/apache/arrow-rs/issues/3478
        verify_encoded_split(batch, 5800).await;
    }

    #[tokio::test]
    async fn flight_data_size_string_dictionary() {
        // Small dictionary (only 2 distinct values ==> 2 entries in dictionary)
        let array: DictionaryArray<Int32Type> = (1..1024)
            .map(|i| match i % 3 {
                0 => Some("value0"),
                1 => Some("value1"),
                _ => None,
            })
            .collect();

        let batch =
            RecordBatch::try_from_iter(vec![("a1", Arc::new(array) as _)]).unwrap();

        verify_encoded_split(batch, 160).await;
    }

    #[tokio::test]
    async fn flight_data_size_large_dictionary() {
        // large dictionary (all distinct values ==> 1024 entries in dictionary)
        let values: Vec<_> = (1..1024).map(|i| "**".repeat(i)).collect();

        let array: DictionaryArray<Int32Type> =
            values.iter().map(|s| Some(s.as_str())).collect();

        let batch =
            RecordBatch::try_from_iter(vec![("a1", Arc::new(array) as _)]).unwrap();

        // overage is much higher than ideal
        // https://github.com/apache/arrow-rs/issues/3478
        verify_encoded_split(batch, 3328).await;
    }

    #[tokio::test]
    async fn flight_data_size_large_dictionary_repeated_non_uniform() {
        // large dictionary (1024 distinct values) that are used throughout the array
        let values = StringArray::from_iter_values((0..1024).map(|i| "******".repeat(i)));
        let keys = Int32Array::from_iter_values((0..3000).map(|i| (3000 - i) % 1024));
        let array = DictionaryArray::<Int32Type>::try_new(&keys, &values).unwrap();

        let batch =
            RecordBatch::try_from_iter(vec![("a1", Arc::new(array) as _)]).unwrap();

        // overage is much higher than ideal
        // https://github.com/apache/arrow-rs/issues/3478
        verify_encoded_split(batch, 5280).await;
    }

    #[tokio::test]
    async fn flight_data_size_multiple_dictionaries() {
        // high cardinality
        let values1: Vec<_> = (1..1024).map(|i| "**".repeat(i)).collect();
        // highish cardinality
        let values2: Vec<_> = (1..1024).map(|i| "**".repeat(i % 10)).collect();
        // medium cardinality
        let values3: Vec<_> = (1..1024).map(|i| "**".repeat(i % 100)).collect();

        let array1: DictionaryArray<Int32Type> =
            values1.iter().map(|s| Some(s.as_str())).collect();
        let array2: DictionaryArray<Int32Type> =
            values2.iter().map(|s| Some(s.as_str())).collect();
        let array3: DictionaryArray<Int32Type> =
            values3.iter().map(|s| Some(s.as_str())).collect();

        let batch = RecordBatch::try_from_iter(vec![
            ("a1", Arc::new(array1) as _),
            ("a2", Arc::new(array2) as _),
            ("a3", Arc::new(array3) as _),
        ])
        .unwrap();

        // overage is much higher than ideal
        // https://github.com/apache/arrow-rs/issues/3478
        verify_encoded_split(batch, 4128).await;
    }

    /// Return size, in memory of flight data
    fn flight_data_size(d: &FlightData) -> usize {
        let flight_descriptor_size = d
            .flight_descriptor
            .as_ref()
            .map(|descriptor| {
                let path_len: usize =
                    descriptor.path.iter().map(|p| p.as_bytes().len()).sum();

                std::mem::size_of_val(descriptor) + descriptor.cmd.len() + path_len
            })
            .unwrap_or(0);

        flight_descriptor_size
            + d.app_metadata.len()
            + d.data_body.len()
            + d.data_header.len()
    }

    /// Coverage for <https://github.com/apache/arrow-rs/issues/3478>
    ///
    /// Encodes the specified batch using several values of
    /// `max_flight_data_size` between 1K to 5K and ensures that the
    /// resulting size of the flight data stays within the limit
    /// + `allowed_overage`
    ///
    /// `allowed_overage` is how far off the actual data encoding is
    /// from the target limit that was set. It is an improvement when
    /// the allowed_overage decreses.
    ///
    /// Note this overhead will likely always be greater than zero to
    /// account for encoding overhead such as IPC headers and padding.
    ///
    ///
    async fn verify_encoded_split(batch: RecordBatch, allowed_overage: usize) {
        let num_rows = batch.num_rows();

        // Track the overall required maximum overage
        let mut max_overage_seen = 0;

        for max_flight_data_size in [1024, 2021, 5000] {
            println!("Encoding {num_rows} with a maximum size of {max_flight_data_size}");

            let mut stream = FlightDataEncoderBuilder::new()
                .with_max_flight_data_size(max_flight_data_size)
                .build(futures::stream::iter([Ok(batch.clone())]));

            let mut i = 0;
            while let Some(data) = stream.next().await.transpose().unwrap() {
                let actual_data_size = flight_data_size(&data);

                let actual_overage = if actual_data_size > max_flight_data_size {
                    actual_data_size - max_flight_data_size
                } else {
                    0
                };

                assert!(
                    actual_overage <= allowed_overage,
                    "encoded data[{i}]: actual size {actual_data_size}, \
                         actual_overage: {actual_overage} \
                         allowed_overage: {allowed_overage}"
                );

                i += 1;

                max_overage_seen = max_overage_seen.max(actual_overage)
            }
        }

        // ensure that the specified overage is exactly the maxmium so
        // that when the splitting logic improves, the tests must be
        // updated to reflect the better logic
        assert_eq!(
            allowed_overage, max_overage_seen,
            "Specified overage was too high"
        );
    }
}