arrayvec_const/arrayvec.rs
1
2use std::cmp;
3use std::iter;
4use std::mem;
5use std::ops::{Bound, Deref, DerefMut, RangeBounds};
6use std::ptr;
7use std::slice;
8
9// extra traits
10use std::borrow::{Borrow, BorrowMut};
11use std::hash::{Hash, Hasher};
12use std::fmt;
13
14#[cfg(feature="std")]
15use std::io;
16
17use std::mem::ManuallyDrop;
18use std::mem::MaybeUninit;
19
20use const_panic::concat_panic;
21#[cfg(feature="serde")]
22use serde::{Serialize, Deserialize, Serializer, Deserializer};
23
24use crate::LenUint;
25use crate::errors::CapacityError;
26use crate::utils::MakeMaybeUninit;
27
28/// A vector with a fixed capacity.
29///
30/// The `ArrayVec` is a vector backed by a fixed size array. It keeps track of
31/// the number of initialized elements. The `ArrayVec<T, CAP>` is parameterized
32/// by `T` for the element type and `CAP` for the maximum capacity.
33///
34/// `CAP` is of type `usize` but is range limited to `u32::MAX` (or `u16::MAX` on 16-bit targets);
35/// attempting to create larger arrayvecs with larger capacity will panic.
36///
37/// The vector is a contiguous value (storing the elements inline) that you can store directly on
38/// the stack if needed.
39///
40/// It offers a simple API but also dereferences to a slice, so that the full slice API is
41/// available. The ArrayVec can be converted into a by value iterator.
42#[repr(C)]
43pub struct ArrayVec<T, const CAP: usize> {
44 len: LenUint,
45 // the `len` first elements of the array are initialized
46 xs: [MaybeUninit<T>; CAP],
47}
48
49impl<T, const CAP: usize> Drop for ArrayVec<T, CAP> {
50 fn drop(&mut self) {
51 self.clear();
52
53 // MaybeUninit inhibits array's drop
54 }
55}
56
57
58macro_rules! panic_oob {
59 ($method_name:expr, $index:expr, $len:expr) => {
60 concat_panic!("ArrayVec::", $method_name, ": index ", $index, " is out of bounds in vector of length ", $len)
61 }
62}
63
64impl<T, const CAP: usize> ArrayVec<T, CAP> {
65 /// Capacity
66 const CAPACITY: usize = CAP;
67
68 /// Create a new empty `ArrayVec`.
69 ///
70 /// The maximum capacity is given by the generic parameter `CAP`.
71 ///
72 /// ```
73 /// use arrayvec::ArrayVec;
74 ///
75 /// let mut array = ArrayVec::<_, 16>::new();
76 /// array.push(1);
77 /// array.push(2);
78 /// assert_eq!(&array[..], &[1, 2]);
79 /// assert_eq!(array.capacity(), 16);
80 /// ```
81 #[inline]
82 #[track_caller]
83 pub const fn new() -> ArrayVec<T, CAP> {
84 assert_capacity_limit!(CAP);
85 unsafe {
86 ArrayVec { xs: MaybeUninit::uninit().assume_init(), len: 0 }
87 }
88 }
89
90 /// Create a new empty `ArrayVec` (const fn).
91 ///
92 /// The maximum capacity is given by the generic parameter `CAP`.
93 ///
94 /// ```
95 /// use arrayvec::ArrayVec;
96 ///
97 /// static ARRAY: ArrayVec<u8, 1024> = ArrayVec::new_const();
98 /// ```
99 pub const fn new_const() -> ArrayVec<T, CAP> {
100 assert_capacity_limit_const!(CAP);
101 ArrayVec { xs: MakeMaybeUninit::ARRAY, len: 0 }
102 }
103
104 /// Return the number of elements in the `ArrayVec`.
105 ///
106 /// ```
107 /// use arrayvec::ArrayVec;
108 ///
109 /// let mut array = ArrayVec::from([1, 2, 3]);
110 /// array.pop();
111 /// assert_eq!(array.len(), 2);
112 /// ```
113 #[inline(always)]
114 pub const fn len(&self) -> usize { self.len as usize }
115
116 /// Returns whether the `ArrayVec` is empty.
117 ///
118 /// ```
119 /// use arrayvec::ArrayVec;
120 ///
121 /// let mut array = ArrayVec::from([1]);
122 /// array.pop();
123 /// assert_eq!(array.is_empty(), true);
124 /// ```
125 #[inline]
126 pub const fn is_empty(&self) -> bool { self.len() == 0 }
127
128 /// Return the capacity of the `ArrayVec`.
129 ///
130 /// ```
131 /// use arrayvec::ArrayVec;
132 ///
133 /// let array = ArrayVec::from([1, 2, 3]);
134 /// assert_eq!(array.capacity(), 3);
135 /// ```
136 #[inline(always)]
137 pub const fn capacity(&self) -> usize { CAP }
138
139 /// Return true if the `ArrayVec` is completely filled to its capacity, false otherwise.
140 ///
141 /// ```
142 /// use arrayvec::ArrayVec;
143 ///
144 /// let mut array = ArrayVec::<_, 1>::new();
145 /// assert!(!array.is_full());
146 /// array.push(1);
147 /// assert!(array.is_full());
148 /// ```
149 pub const fn is_full(&self) -> bool { self.len() == self.capacity() }
150
151 /// Returns the capacity left in the `ArrayVec`.
152 ///
153 /// ```
154 /// use arrayvec::ArrayVec;
155 ///
156 /// let mut array = ArrayVec::from([1, 2, 3]);
157 /// array.pop();
158 /// assert_eq!(array.remaining_capacity(), 1);
159 /// ```
160 pub const fn remaining_capacity(&self) -> usize {
161 self.capacity() - self.len()
162 }
163
164 /// Push `element` to the end of the vector.
165 ///
166 /// ***Panics*** if the vector is already full.
167 ///
168 /// ```
169 /// use arrayvec::ArrayVec;
170 ///
171 /// let mut array = ArrayVec::<_, 2>::new();
172 ///
173 /// array.push(1);
174 /// array.push(2);
175 ///
176 /// assert_eq!(&array[..], &[1, 2]);
177 /// ```
178 #[track_caller]
179 pub fn push(&mut self, element: T) {
180 self.try_push(element).unwrap()
181 }
182
183 /// Push `element` to the end of the vector.
184 ///
185 /// Return `Ok` if the push succeeds, or return an error if the vector
186 /// is already full.
187 ///
188 /// ```
189 /// use arrayvec::ArrayVec;
190 ///
191 /// let mut array = ArrayVec::<_, 2>::new();
192 ///
193 /// let push1 = array.try_push(1);
194 /// let push2 = array.try_push(2);
195 ///
196 /// assert!(push1.is_ok());
197 /// assert!(push2.is_ok());
198 ///
199 /// assert_eq!(&array[..], &[1, 2]);
200 ///
201 /// let overflow = array.try_push(3);
202 ///
203 /// assert!(overflow.is_err());
204 /// ```
205 pub const fn try_push(&mut self, element: T) -> Result<(), CapacityError<T>> {
206 if self.len() < Self::CAPACITY {
207 unsafe {
208 self.push_unchecked(element);
209 }
210 Ok(())
211 } else {
212 Err(CapacityError::new(element))
213 }
214 }
215
216 /// Push `element` to the end of the vector without checking the capacity.
217 ///
218 /// It is up to the caller to ensure the capacity of the vector is
219 /// sufficiently large.
220 ///
221 /// This method uses *debug assertions* to check that the arrayvec is not full.
222 ///
223 /// ```
224 /// use arrayvec::ArrayVec;
225 ///
226 /// let mut array = ArrayVec::<_, 2>::new();
227 ///
228 /// if array.len() + 2 <= array.capacity() {
229 /// unsafe {
230 /// array.push_unchecked(1);
231 /// array.push_unchecked(2);
232 /// }
233 /// }
234 ///
235 /// assert_eq!(&array[..], &[1, 2]);
236 /// ```
237 pub const unsafe fn push_unchecked(&mut self, element: T) {
238 let len = self.len();
239 debug_assert!(len < Self::CAPACITY);
240 ptr::write(self.as_mut_ptr().add(len), element);
241 self.set_len(len + 1);
242 }
243
244 /// Shortens the vector, keeping the first `len` elements and dropping
245 /// the rest.
246 ///
247 /// If `len` is greater than the vector’s current length this has no
248 /// effect.
249 ///
250 /// ```
251 /// use arrayvec::ArrayVec;
252 ///
253 /// let mut array = ArrayVec::from([1, 2, 3, 4, 5]);
254 /// array.truncate(3);
255 /// assert_eq!(&array[..], &[1, 2, 3]);
256 /// array.truncate(4);
257 /// assert_eq!(&array[..], &[1, 2, 3]);
258 /// ```
259 pub fn truncate(&mut self, new_len: usize) {
260 unsafe {
261 let len = self.len();
262 if new_len < len {
263 self.set_len(new_len);
264 let tail = slice::from_raw_parts_mut(self.as_mut_ptr().add(new_len), len - new_len);
265 ptr::drop_in_place(tail);
266 }
267 }
268 }
269
270 /// Remove all elements in the vector.
271 pub fn clear(&mut self) {
272 self.truncate(0)
273 }
274
275
276 /// Get pointer to where element at `index` would be
277 const unsafe fn get_unchecked_ptr(&mut self, index: usize) -> *mut T {
278 self.as_mut_ptr().add(index)
279 }
280
281 /// Insert `element` at position `index`.
282 ///
283 /// Shift up all elements after `index`.
284 ///
285 /// It is an error if the index is greater than the length or if the
286 /// arrayvec is full.
287 ///
288 /// ***Panics*** if the array is full or the `index` is out of bounds. See
289 /// `try_insert` for fallible version.
290 ///
291 /// ```
292 /// use arrayvec::ArrayVec;
293 ///
294 /// let mut array = ArrayVec::<_, 2>::new();
295 ///
296 /// array.insert(0, "x");
297 /// array.insert(0, "y");
298 /// assert_eq!(&array[..], &["y", "x"]);
299 ///
300 /// ```
301 #[track_caller]
302 pub fn insert(&mut self, index: usize, element: T) {
303 self.try_insert(index, element).unwrap()
304 }
305
306 /// Insert `element` at position `index`.
307 ///
308 /// Shift up all elements after `index`; the `index` must be less than
309 /// or equal to the length.
310 ///
311 /// Returns an error if vector is already at full capacity.
312 ///
313 /// ***Panics*** `index` is out of bounds.
314 ///
315 /// ```
316 /// use arrayvec::ArrayVec;
317 ///
318 /// let mut array = ArrayVec::<_, 2>::new();
319 ///
320 /// assert!(array.try_insert(0, "x").is_ok());
321 /// assert!(array.try_insert(0, "y").is_ok());
322 /// assert!(array.try_insert(0, "z").is_err());
323 /// assert_eq!(&array[..], &["y", "x"]);
324 ///
325 /// ```
326 pub const fn try_insert(&mut self, index: usize, element: T) -> Result<(), CapacityError<T>> {
327 if index > self.len() {
328 panic_oob!("try_insert", index, self.len())
329 }
330 if self.len() == self.capacity() {
331 return Err(CapacityError::new(element));
332 }
333 let len = self.len();
334
335 // follows is just like Vec<T>
336 unsafe { // infallible
337 // The spot to put the new value
338 {
339 let p: *mut _ = self.get_unchecked_ptr(index);
340 // Shift everything over to make space. (Duplicating the
341 // `index`th element into two consecutive places.)
342 ptr::copy(p, p.offset(1), len - index);
343 // Write it in, overwriting the first copy of the `index`th
344 // element.
345 ptr::write(p, element);
346 }
347 self.set_len(len + 1);
348 }
349 Ok(())
350 }
351
352 /// Remove the last element in the vector and return it.
353 ///
354 /// Return `Some(` *element* `)` if the vector is non-empty, else `None`.
355 ///
356 /// ```
357 /// use arrayvec::ArrayVec;
358 ///
359 /// let mut array = ArrayVec::<_, 2>::new();
360 ///
361 /// array.push(1);
362 ///
363 /// assert_eq!(array.pop(), Some(1));
364 /// assert_eq!(array.pop(), None);
365 /// ```
366 pub const fn pop(&mut self) -> Option<T> {
367 if self.len() == 0 {
368 return None;
369 }
370 unsafe {
371 let new_len = self.len() - 1;
372 self.set_len(new_len);
373 Some(ptr::read(self.as_ptr().add(new_len)))
374 }
375 }
376
377 /// Remove the element at `index` and swap the last element into its place.
378 ///
379 /// This operation is O(1).
380 ///
381 /// Return the *element* if the index is in bounds, else panic.
382 ///
383 /// ***Panics*** if the `index` is out of bounds.
384 ///
385 /// ```
386 /// use arrayvec::ArrayVec;
387 ///
388 /// let mut array = ArrayVec::from([1, 2, 3]);
389 ///
390 /// assert_eq!(array.swap_remove(0), 1);
391 /// assert_eq!(&array[..], &[3, 2]);
392 ///
393 /// assert_eq!(array.swap_remove(1), 2);
394 /// assert_eq!(&array[..], &[3]);
395 /// ```
396 pub const fn swap_remove(&mut self, index: usize) -> T {
397 union Transmute<T> {
398 mo: ManuallyDrop<Option<T>>,
399 mom: ManuallyDrop<Option<ManuallyDrop<T>>>,
400 }
401 // Wouldn't need this with const_precise_live_drops :(
402 let v = ManuallyDrop::new(self.swap_pop(index));
403 let v = ManuallyDrop::into_inner(unsafe { Transmute{mo: v}.mom });
404
405 match v {
406 Some(v) => {
407 return ManuallyDrop::into_inner(v)
408 },
409 None => {
410 panic_oob!("swap_remove", index, self.len())
411 }
412 }
413 }
414
415 /// Remove the element at `index` and swap the last element into its place.
416 ///
417 /// This is a checked version of `.swap_remove`.
418 /// This operation is O(1).
419 ///
420 /// Return `Some(` *element* `)` if the index is in bounds, else `None`.
421 ///
422 /// ```
423 /// use arrayvec::ArrayVec;
424 ///
425 /// let mut array = ArrayVec::from([1, 2, 3]);
426 ///
427 /// assert_eq!(array.swap_pop(0), Some(1));
428 /// assert_eq!(&array[..], &[3, 2]);
429 ///
430 /// assert_eq!(array.swap_pop(10), None);
431 /// ```
432 pub const fn swap_pop(&mut self, index: usize) -> Option<T> {
433 let len = self.len();
434 if index >= len {
435 return None;
436 }
437 self.as_mut_slice().swap(index, len - 1);
438 self.pop()
439 }
440
441 /// Remove the element at `index` and shift down the following elements.
442 ///
443 /// The `index` must be strictly less than the length of the vector.
444 ///
445 /// ***Panics*** if the `index` is out of bounds.
446 ///
447 /// ```
448 /// use arrayvec::ArrayVec;
449 ///
450 /// let mut array = ArrayVec::from([1, 2, 3]);
451 ///
452 /// let removed_elt = array.remove(0);
453 /// assert_eq!(removed_elt, 1);
454 /// assert_eq!(&array[..], &[2, 3]);
455 /// ```
456 pub const fn remove(&mut self, index: usize) -> T {
457 union Transmute<T> {
458 mo: ManuallyDrop<Option<T>>,
459 mom: ManuallyDrop<Option<ManuallyDrop<T>>>,
460 }
461 // Wouldn't need this with const_precise_live_drops :(
462 let v = ManuallyDrop::new(self.pop_at(index));
463 let v = ManuallyDrop::into_inner(unsafe { Transmute{mo: v}.mom });
464
465 match v {
466 Some(v) => {
467 return ManuallyDrop::into_inner(v)
468 },
469 None => {
470 panic_oob!("remove", index, self.len())
471 }
472 }
473 }
474
475 /// Remove the element at `index` and shift down the following elements.
476 ///
477 /// This is a checked version of `.remove(index)`. Returns `None` if there
478 /// is no element at `index`. Otherwise, return the element inside `Some`.
479 ///
480 /// ```
481 /// use arrayvec::ArrayVec;
482 ///
483 /// let mut array = ArrayVec::from([1, 2, 3]);
484 ///
485 /// assert!(array.pop_at(0).is_some());
486 /// assert_eq!(&array[..], &[2, 3]);
487 ///
488 /// assert!(array.pop_at(2).is_none());
489 /// assert!(array.pop_at(10).is_none());
490 /// ```
491 pub const fn pop_at(&mut self, index: usize) -> Option<T> {
492 let len = self.len();
493 if index >= len {
494 return None
495 }
496
497 unsafe { // infallible
498 // The spot to put take the value
499 let element = {
500 let p: *mut _ = self.get_unchecked_ptr(index);
501 // Read it out, the first copy of the `index`th
502 // element.
503 let element = ptr::read(p);
504 // Shift everything over to compact space. (overwriting the
505 // `index`th element)
506 ptr::copy(p.offset(1), p, len - index - 1);
507 element
508 };
509 self.set_len(len - 1);
510 Some(element)
511 }
512 }
513
514 /// Retains only the elements specified by the predicate.
515 ///
516 /// In other words, remove all elements `e` such that `f(&mut e)` returns false.
517 /// This method operates in place and preserves the order of the retained
518 /// elements.
519 ///
520 /// ```
521 /// use arrayvec::ArrayVec;
522 ///
523 /// let mut array = ArrayVec::from([1, 2, 3, 4]);
524 /// array.retain(|x| *x & 1 != 0 );
525 /// assert_eq!(&array[..], &[1, 3]);
526 /// ```
527 pub fn retain<F>(&mut self, mut f: F)
528 where F: FnMut(&mut T) -> bool
529 {
530 // Check the implementation of
531 // https://doc.rust-lang.org/std/vec/struct.Vec.html#method.retain
532 // for safety arguments (especially regarding panics in f and when
533 // dropping elements). Implementation closely mirrored here.
534
535 let original_len = self.len();
536 unsafe { self.set_len(0) };
537
538 struct BackshiftOnDrop<'a, T, const CAP: usize> {
539 v: &'a mut ArrayVec<T, CAP>,
540 processed_len: usize,
541 deleted_cnt: usize,
542 original_len: usize,
543 }
544
545 impl<T, const CAP: usize> Drop for BackshiftOnDrop<'_, T, CAP> {
546 fn drop(&mut self) {
547 if self.deleted_cnt > 0 {
548 unsafe {
549 ptr::copy(
550 self.v.as_ptr().add(self.processed_len),
551 self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
552 self.original_len - self.processed_len
553 );
554 }
555 }
556 unsafe {
557 self.v.set_len(self.original_len - self.deleted_cnt);
558 }
559 }
560 }
561
562 let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
563
564 #[inline(always)]
565 fn process_one<F: FnMut(&mut T) -> bool, T, const CAP: usize, const DELETED: bool>(
566 f: &mut F,
567 g: &mut BackshiftOnDrop<'_, T, CAP>
568 ) -> bool {
569 let cur = unsafe { g.v.as_mut_ptr().add(g.processed_len) };
570 if !f(unsafe { &mut *cur }) {
571 g.processed_len += 1;
572 g.deleted_cnt += 1;
573 unsafe { ptr::drop_in_place(cur) };
574 return false;
575 }
576 if DELETED {
577 unsafe {
578 let hole_slot = cur.sub(g.deleted_cnt);
579 ptr::copy_nonoverlapping(cur, hole_slot, 1);
580 }
581 }
582 g.processed_len += 1;
583 true
584 }
585
586 // Stage 1: Nothing was deleted.
587 while g.processed_len != original_len {
588 if !process_one::<F, T, CAP, false>(&mut f, &mut g) {
589 break;
590 }
591 }
592
593 // Stage 2: Some elements were deleted.
594 while g.processed_len != original_len {
595 process_one::<F, T, CAP, true>(&mut f, &mut g);
596 }
597
598 drop(g);
599 }
600
601 /// Returns the remaining spare capacity of the vector as a slice of
602 /// `MaybeUninit<T>`.
603 ///
604 /// The returned slice can be used to fill the vector with data (e.g. by
605 /// reading from a file) before marking the data as initialized using the
606 /// [`set_len`] method.
607 ///
608 /// [`set_len`]: ArrayVec::set_len
609 ///
610 /// # Examples
611 ///
612 /// ```
613 /// use arrayvec::ArrayVec;
614 ///
615 /// // Allocate vector big enough for 10 elements.
616 /// let mut v: ArrayVec<i32, 10> = ArrayVec::new();
617 ///
618 /// // Fill in the first 3 elements.
619 /// let uninit = v.spare_capacity_mut();
620 /// uninit[0].write(0);
621 /// uninit[1].write(1);
622 /// uninit[2].write(2);
623 ///
624 /// // Mark the first 3 elements of the vector as being initialized.
625 /// unsafe {
626 /// v.set_len(3);
627 /// }
628 ///
629 /// assert_eq!(&v[..], &[0, 1, 2]);
630 /// ```
631 pub const fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
632 let len = self.len();
633 self.xs.split_at_mut(len).1
634 }
635
636 /// Set the vector’s length without dropping or moving out elements
637 ///
638 /// This method is `unsafe` because it changes the notion of the
639 /// number of “valid” elements in the vector. Use with care.
640 ///
641 /// This method uses *debug assertions* to check that `length` is
642 /// not greater than the capacity.
643 pub const unsafe fn set_len(&mut self, length: usize) {
644 // type invariant that capacity always fits in LenUint
645 debug_assert!(length <= self.capacity());
646 self.len = length as LenUint;
647 }
648
649 /// Copy all elements from the slice and append to the `ArrayVec`.
650 ///
651 /// ```
652 /// use arrayvec::ArrayVec;
653 ///
654 /// let mut vec: ArrayVec<usize, 10> = ArrayVec::new();
655 /// vec.push(1);
656 /// vec.try_extend_from_slice(&[2, 3]).unwrap();
657 /// assert_eq!(&vec[..], &[1, 2, 3]);
658 /// ```
659 ///
660 /// # Errors
661 ///
662 /// This method will return an error if the capacity left (see
663 /// [`remaining_capacity`]) is smaller then the length of the provided
664 /// slice.
665 ///
666 /// [`remaining_capacity`]: #method.remaining_capacity
667 pub const fn try_extend_from_slice(&mut self, other: &[T]) -> Result<(), CapacityError>
668 where T: Copy,
669 {
670 if self.remaining_capacity() < other.len() {
671 return Err(CapacityError::new(()));
672 }
673
674 let self_len = self.len();
675 let other_len = other.len();
676
677 unsafe {
678 let dst = self.get_unchecked_ptr(self_len);
679 ptr::copy_nonoverlapping(other.as_ptr(), dst, other_len);
680 self.set_len(self_len + other_len);
681 }
682 Ok(())
683 }
684
685 /// Create a draining iterator that removes the specified range in the vector
686 /// and yields the removed items from start to end. The element range is
687 /// removed even if the iterator is not consumed until the end.
688 ///
689 /// Note: It is unspecified how many elements are removed from the vector,
690 /// if the `Drain` value is leaked.
691 ///
692 /// **Panics** if the starting point is greater than the end point or if
693 /// the end point is greater than the length of the vector.
694 ///
695 /// ```
696 /// use arrayvec::ArrayVec;
697 ///
698 /// let mut v1 = ArrayVec::from([1, 2, 3]);
699 /// let v2: ArrayVec<_, 3> = v1.drain(0..2).collect();
700 /// assert_eq!(&v1[..], &[3]);
701 /// assert_eq!(&v2[..], &[1, 2]);
702 /// ```
703 pub fn drain<R>(&mut self, range: R) -> Drain<T, CAP>
704 where R: RangeBounds<usize>
705 {
706 // Memory safety
707 //
708 // When the Drain is first created, it shortens the length of
709 // the source vector to make sure no uninitialized or moved-from elements
710 // are accessible at all if the Drain's destructor never gets to run.
711 //
712 // Drain will ptr::read out the values to remove.
713 // When finished, remaining tail of the vec is copied back to cover
714 // the hole, and the vector length is restored to the new length.
715 //
716 let len = self.len();
717 let start = match range.start_bound() {
718 Bound::Unbounded => 0,
719 Bound::Included(&i) => i,
720 Bound::Excluded(&i) => i.saturating_add(1),
721 };
722 let end = match range.end_bound() {
723 Bound::Excluded(&j) => j,
724 Bound::Included(&j) => j.saturating_add(1),
725 Bound::Unbounded => len,
726 };
727 self.drain_range(start, end)
728 }
729
730 fn drain_range(&mut self, start: usize, end: usize) -> Drain<T, CAP>
731 {
732 let len = self.len();
733
734 // bounds check happens here (before length is changed!)
735 let range_slice: *const _ = &self[start..end];
736
737 // Calling `set_len` creates a fresh and thus unique mutable references, making all
738 // older aliases we created invalid. So we cannot call that function.
739 self.len = start as LenUint;
740
741 unsafe {
742 Drain {
743 tail_start: end,
744 tail_len: len - end,
745 iter: (*range_slice).iter(),
746 vec: self as *mut _,
747 }
748 }
749 }
750
751 /// Return the inner fixed size array, if it is full to its capacity.
752 ///
753 /// Return an `Ok` value with the array if length equals capacity,
754 /// return an `Err` with self otherwise.
755 pub const fn into_inner(self) -> Result<[T; CAP], Self> {
756 if self.len() < self.capacity() {
757 Err(self)
758 } else {
759 unsafe { Ok(self.into_inner_unchecked()) }
760 }
761 }
762
763 /// Return the inner fixed size array.
764 ///
765 /// Safety:
766 /// This operation is safe if and only if length equals capacity.
767 pub const unsafe fn into_inner_unchecked(self) -> [T; CAP] {
768 debug_assert!(self.len() == self.capacity());
769 let ptr = self.as_ptr();
770 mem::forget(self);
771 ptr::read(ptr as *const [T; CAP])
772 }
773
774 /// Returns the ArrayVec, replacing the original with a new empty ArrayVec.
775 ///
776 /// ```
777 /// use arrayvec::ArrayVec;
778 ///
779 /// let mut v = ArrayVec::from([0, 1, 2, 3]);
780 /// assert_eq!([0, 1, 2, 3], v.take().into_inner().unwrap());
781 /// assert!(v.is_empty());
782 /// ```
783 pub const fn take(&mut self) -> Self {
784 mem::replace(self, Self::new_const())
785 }
786
787 /// Return a slice containing all elements of the vector.
788 pub const fn as_slice(&self) -> &[T] {
789 let len = self.len();
790 unsafe {
791 slice::from_raw_parts(self.as_ptr(), len)
792 }
793 }
794
795 /// Return a mutable slice containing all elements of the vector.
796 pub const fn as_mut_slice(&mut self) -> &mut [T] {
797 let len = self.len();
798 unsafe {
799 std::slice::from_raw_parts_mut(self.as_mut_ptr(), len)
800 }
801 }
802
803 /// Return a raw pointer to the vector's buffer.
804 pub const fn as_ptr(&self) -> *const T {
805 self.xs.as_ptr() as _
806 }
807
808 /// Return a raw mutable pointer to the vector's buffer.
809 pub const fn as_mut_ptr(&mut self) -> *mut T {
810 self.xs.as_mut_ptr() as _
811 }
812
813}
814
815impl<T, const CAP: usize> Deref for ArrayVec<T, CAP> {
816 type Target = [T];
817 #[inline]
818 fn deref(&self) -> &Self::Target {
819 self.as_slice()
820 }
821}
822
823impl<T, const CAP: usize> DerefMut for ArrayVec<T, CAP> {
824 #[inline]
825 fn deref_mut(&mut self) -> &mut Self::Target {
826 self.as_mut_slice()
827 }
828}
829
830
831/// Create an `ArrayVec` from an array.
832///
833/// ```
834/// use arrayvec::ArrayVec;
835///
836/// let mut array = ArrayVec::from([1, 2, 3]);
837/// assert_eq!(array.len(), 3);
838/// assert_eq!(array.capacity(), 3);
839/// ```
840impl<T, const CAP: usize> From<[T; CAP]> for ArrayVec<T, CAP> {
841 #[track_caller]
842 fn from(array: [T; CAP]) -> Self {
843 let array = ManuallyDrop::new(array);
844 let mut vec = <ArrayVec<T, CAP>>::new();
845 unsafe {
846 (&*array as *const [T; CAP] as *const [MaybeUninit<T>; CAP])
847 .copy_to_nonoverlapping(&mut vec.xs as *mut [MaybeUninit<T>; CAP], 1);
848 vec.set_len(CAP);
849 }
850 vec
851 }
852}
853
854
855/// Try to create an `ArrayVec` from a slice. This will return an error if the slice was too big to
856/// fit.
857///
858/// ```
859/// use arrayvec::ArrayVec;
860/// use std::convert::TryInto as _;
861///
862/// let array: ArrayVec<_, 4> = (&[1, 2, 3] as &[_]).try_into().unwrap();
863/// assert_eq!(array.len(), 3);
864/// assert_eq!(array.capacity(), 4);
865/// ```
866impl<T, const CAP: usize> std::convert::TryFrom<&[T]> for ArrayVec<T, CAP>
867 where T: Clone,
868{
869 type Error = CapacityError;
870
871 fn try_from(slice: &[T]) -> Result<Self, Self::Error> {
872 if Self::CAPACITY < slice.len() {
873 Err(CapacityError::new(()))
874 } else {
875 let mut array = Self::new();
876 array.extend_from_slice(slice);
877 Ok(array)
878 }
879 }
880}
881
882
883/// Iterate the `ArrayVec` with references to each element.
884///
885/// ```
886/// use arrayvec::ArrayVec;
887///
888/// let array = ArrayVec::from([1, 2, 3]);
889///
890/// for elt in &array {
891/// // ...
892/// }
893/// ```
894impl<'a, T: 'a, const CAP: usize> IntoIterator for &'a ArrayVec<T, CAP> {
895 type Item = &'a T;
896 type IntoIter = slice::Iter<'a, T>;
897 fn into_iter(self) -> Self::IntoIter { self.iter() }
898}
899
900/// Iterate the `ArrayVec` with mutable references to each element.
901///
902/// ```
903/// use arrayvec::ArrayVec;
904///
905/// let mut array = ArrayVec::from([1, 2, 3]);
906///
907/// for elt in &mut array {
908/// // ...
909/// }
910/// ```
911impl<'a, T: 'a, const CAP: usize> IntoIterator for &'a mut ArrayVec<T, CAP> {
912 type Item = &'a mut T;
913 type IntoIter = slice::IterMut<'a, T>;
914 fn into_iter(self) -> Self::IntoIter { self.iter_mut() }
915}
916
917/// Iterate the `ArrayVec` with each element by value.
918///
919/// The vector is consumed by this operation.
920///
921/// ```
922/// use arrayvec::ArrayVec;
923///
924/// for elt in ArrayVec::from([1, 2, 3]) {
925/// // ...
926/// }
927/// ```
928impl<T, const CAP: usize> IntoIterator for ArrayVec<T, CAP> {
929 type Item = T;
930 type IntoIter = IntoIter<T, CAP>;
931 fn into_iter(self) -> IntoIter<T, CAP> {
932 IntoIter { index: 0, v: self, }
933 }
934}
935
936
937#[cfg(feature = "zeroize")]
938/// "Best efforts" zeroing of the `ArrayVec`'s buffer when the `zeroize` feature is enabled.
939///
940/// The length is set to 0, and the buffer is dropped and zeroized.
941/// Cannot ensure that previous moves of the `ArrayVec` did not leave values on the stack.
942///
943/// ```
944/// use arrayvec::ArrayVec;
945/// use zeroize::Zeroize;
946/// let mut array = ArrayVec::from([1, 2, 3]);
947/// array.zeroize();
948/// assert_eq!(array.len(), 0);
949/// let data = unsafe { core::slice::from_raw_parts(array.as_ptr(), array.capacity()) };
950/// assert_eq!(data, [0, 0, 0]);
951/// ```
952impl<Z: zeroize::Zeroize, const CAP: usize> zeroize::Zeroize for ArrayVec<Z, CAP> {
953 fn zeroize(&mut self) {
954 // Zeroize all the contained elements.
955 self.iter_mut().zeroize();
956 // Drop all the elements and set the length to 0.
957 self.clear();
958 // Zeroize the backing array.
959 self.xs.zeroize();
960 }
961}
962
963/// By-value iterator for `ArrayVec`.
964pub struct IntoIter<T, const CAP: usize> {
965 index: usize,
966 v: ArrayVec<T, CAP>,
967}
968impl<T, const CAP: usize> IntoIter<T, CAP> {
969 /// Returns the remaining items of this iterator as a slice.
970 pub const fn as_slice(&self) -> &[T] {
971 self.v.as_slice().split_at(self.index).1
972 }
973
974 /// Returns the remaining items of this iterator as a mutable slice.
975 pub const fn as_mut_slice(&mut self) -> &mut [T] {
976 self.v.as_mut_slice().split_at_mut(self.index).1
977 }
978}
979
980impl<T, const CAP: usize> Iterator for IntoIter<T, CAP> {
981 type Item = T;
982
983 fn next(&mut self) -> Option<Self::Item> {
984 if self.index == self.v.len() {
985 None
986 } else {
987 unsafe {
988 let index = self.index;
989 self.index = index + 1;
990 Some(ptr::read(self.v.get_unchecked_ptr(index)))
991 }
992 }
993 }
994
995 fn size_hint(&self) -> (usize, Option<usize>) {
996 let len = self.v.len() - self.index;
997 (len, Some(len))
998 }
999}
1000
1001impl<T, const CAP: usize> DoubleEndedIterator for IntoIter<T, CAP> {
1002 fn next_back(&mut self) -> Option<Self::Item> {
1003 if self.index == self.v.len() {
1004 None
1005 } else {
1006 unsafe {
1007 let new_len = self.v.len() - 1;
1008 self.v.set_len(new_len);
1009 Some(ptr::read(self.v.get_unchecked_ptr(new_len)))
1010 }
1011 }
1012 }
1013}
1014
1015impl<T, const CAP: usize> ExactSizeIterator for IntoIter<T, CAP> { }
1016
1017impl<T, const CAP: usize> Drop for IntoIter<T, CAP> {
1018 fn drop(&mut self) {
1019 // panic safety: Set length to 0 before dropping elements.
1020 let index = self.index;
1021 let len = self.v.len();
1022 unsafe {
1023 self.v.set_len(0);
1024 let elements = slice::from_raw_parts_mut(
1025 self.v.get_unchecked_ptr(index),
1026 len - index);
1027 ptr::drop_in_place(elements);
1028 }
1029 }
1030}
1031
1032impl<T, const CAP: usize> Clone for IntoIter<T, CAP>
1033where T: Clone,
1034{
1035 fn clone(&self) -> IntoIter<T, CAP> {
1036 let mut v = ArrayVec::new();
1037 v.extend_from_slice(&self.v[self.index..]);
1038 v.into_iter()
1039 }
1040}
1041
1042impl<T, const CAP: usize> fmt::Debug for IntoIter<T, CAP>
1043where
1044 T: fmt::Debug,
1045{
1046 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1047 f.debug_list()
1048 .entries(&self.v[self.index..])
1049 .finish()
1050 }
1051}
1052
1053/// A draining iterator for `ArrayVec`.
1054pub struct Drain<'a, T: 'a, const CAP: usize> {
1055 /// Index of tail to preserve
1056 tail_start: usize,
1057 /// Length of tail
1058 tail_len: usize,
1059 /// Current remaining range to remove
1060 iter: slice::Iter<'a, T>,
1061 vec: *mut ArrayVec<T, CAP>,
1062}
1063
1064unsafe impl<'a, T: Sync, const CAP: usize> Sync for Drain<'a, T, CAP> {}
1065unsafe impl<'a, T: Send, const CAP: usize> Send for Drain<'a, T, CAP> {}
1066
1067impl<'a, T: 'a, const CAP: usize> Iterator for Drain<'a, T, CAP> {
1068 type Item = T;
1069
1070 fn next(&mut self) -> Option<Self::Item> {
1071 self.iter.next().map(|elt|
1072 unsafe {
1073 ptr::read(elt as *const _)
1074 }
1075 )
1076 }
1077
1078 fn size_hint(&self) -> (usize, Option<usize>) {
1079 self.iter.size_hint()
1080 }
1081}
1082
1083impl<'a, T: 'a, const CAP: usize> DoubleEndedIterator for Drain<'a, T, CAP>
1084{
1085 fn next_back(&mut self) -> Option<Self::Item> {
1086 self.iter.next_back().map(|elt|
1087 unsafe {
1088 ptr::read(elt as *const _)
1089 }
1090 )
1091 }
1092}
1093
1094impl<'a, T: 'a, const CAP: usize> ExactSizeIterator for Drain<'a, T, CAP> {}
1095
1096impl<'a, T: 'a, const CAP: usize> Drop for Drain<'a, T, CAP> {
1097 fn drop(&mut self) {
1098 // len is currently 0 so panicking while dropping will not cause a double drop.
1099
1100 // exhaust self first
1101 while let Some(_) = self.next() { }
1102
1103 if self.tail_len > 0 {
1104 unsafe {
1105 let source_vec = &mut *self.vec;
1106 // memmove back untouched tail, update to new length
1107 let start = source_vec.len();
1108 let tail = self.tail_start;
1109 let ptr = source_vec.as_mut_ptr();
1110 ptr::copy(ptr.add(tail), ptr.add(start), self.tail_len);
1111 source_vec.set_len(start + self.tail_len);
1112 }
1113 }
1114 }
1115}
1116
1117struct ScopeExitGuard<T, Data, F>
1118 where F: FnMut(&Data, &mut T)
1119{
1120 value: T,
1121 data: Data,
1122 f: F,
1123}
1124
1125impl<T, Data, F> Drop for ScopeExitGuard<T, Data, F>
1126 where F: FnMut(&Data, &mut T)
1127{
1128 fn drop(&mut self) {
1129 (self.f)(&self.data, &mut self.value)
1130 }
1131}
1132
1133
1134
1135/// Extend the `ArrayVec` with an iterator.
1136///
1137/// ***Panics*** if extending the vector exceeds its capacity.
1138impl<T, const CAP: usize> Extend<T> for ArrayVec<T, CAP> {
1139 /// Extend the `ArrayVec` with an iterator.
1140 ///
1141 /// ***Panics*** if extending the vector exceeds its capacity.
1142 #[track_caller]
1143 fn extend<I: IntoIterator<Item=T>>(&mut self, iter: I) {
1144 unsafe {
1145 self.extend_from_iter::<_, true>(iter)
1146 }
1147 }
1148}
1149
1150#[inline(never)]
1151#[cold]
1152#[track_caller]
1153const fn extend_panic() {
1154 panic!("ArrayVec: capacity exceeded in extend/from_iter");
1155}
1156
1157impl<T, const CAP: usize> ArrayVec<T, CAP> {
1158 /// Extend the arrayvec from the iterable.
1159 ///
1160 /// ## Safety
1161 ///
1162 /// Unsafe because if CHECK is false, the length of the input is not checked.
1163 /// The caller must ensure the length of the input fits in the capacity.
1164 #[track_caller]
1165 pub(crate) unsafe fn extend_from_iter<I, const CHECK: bool>(&mut self, iterable: I)
1166 where I: IntoIterator<Item = T>
1167 {
1168 let take = self.capacity() - self.len();
1169 let len = self.len();
1170 let mut ptr = raw_ptr_add(self.as_mut_ptr(), len);
1171 let end_ptr = raw_ptr_add(ptr, take);
1172 // Keep the length in a separate variable, write it back on scope
1173 // exit. To help the compiler with alias analysis and stuff.
1174 // We update the length to handle panic in the iteration of the
1175 // user's iterator, without dropping any elements on the floor.
1176 let mut guard = ScopeExitGuard {
1177 value: &mut self.len,
1178 data: len,
1179 f: move |&len, self_len| {
1180 **self_len = len as LenUint;
1181 }
1182 };
1183 let mut iter = iterable.into_iter();
1184 loop {
1185 if let Some(elt) = iter.next() {
1186 if ptr == end_ptr && CHECK { extend_panic(); }
1187 debug_assert_ne!(ptr, end_ptr);
1188 if mem::size_of::<T>() != 0 {
1189 ptr.write(elt);
1190 }
1191 ptr = raw_ptr_add(ptr, 1);
1192 guard.data += 1;
1193 } else {
1194 return; // success
1195 }
1196 }
1197 }
1198
1199 /// Extend the ArrayVec with clones of elements from the slice;
1200 /// the length of the slice must be <= the remaining capacity in the arrayvec.
1201 pub(crate) fn extend_from_slice(&mut self, slice: &[T])
1202 where T: Clone
1203 {
1204 let take = self.capacity() - self.len();
1205 debug_assert!(slice.len() <= take);
1206 unsafe {
1207 let slice = if take < slice.len() { &slice[..take] } else { slice };
1208 self.extend_from_iter::<_, false>(slice.iter().cloned());
1209 }
1210 }
1211}
1212
1213/// Rawptr add but uses arithmetic distance for ZST
1214const unsafe fn raw_ptr_add<T>(ptr: *mut T, offset: usize) -> *mut T {
1215 if mem::size_of::<T>() == 0 {
1216 // Special case for ZST
1217 ptr.cast::<u8>().wrapping_add(offset).cast::<T>()
1218 } else {
1219 ptr.add(offset)
1220 }
1221}
1222
1223/// Create an `ArrayVec` from an iterator.
1224///
1225/// ***Panics*** if the number of elements in the iterator exceeds the arrayvec's capacity.
1226impl<T, const CAP: usize> iter::FromIterator<T> for ArrayVec<T, CAP> {
1227 /// Create an `ArrayVec` from an iterator.
1228 ///
1229 /// ***Panics*** if the number of elements in the iterator exceeds the arrayvec's capacity.
1230 fn from_iter<I: IntoIterator<Item=T>>(iter: I) -> Self {
1231 let mut array = ArrayVec::new();
1232 array.extend(iter);
1233 array
1234 }
1235}
1236
1237impl<T, const CAP: usize> Clone for ArrayVec<T, CAP>
1238 where T: Clone
1239{
1240 fn clone(&self) -> Self {
1241 self.iter().cloned().collect()
1242 }
1243
1244 fn clone_from(&mut self, rhs: &Self) {
1245 // recursive case for the common prefix
1246 let prefix = cmp::min(self.len(), rhs.len());
1247 self[..prefix].clone_from_slice(&rhs[..prefix]);
1248
1249 if prefix < self.len() {
1250 // rhs was shorter
1251 self.truncate(prefix);
1252 } else {
1253 let rhs_elems = &rhs[self.len()..];
1254 self.extend_from_slice(rhs_elems);
1255 }
1256 }
1257}
1258
1259impl<T, const CAP: usize> Hash for ArrayVec<T, CAP>
1260 where T: Hash
1261{
1262 fn hash<H: Hasher>(&self, state: &mut H) {
1263 Hash::hash(&**self, state)
1264 }
1265}
1266
1267impl<T, const CAP: usize> PartialEq for ArrayVec<T, CAP>
1268 where T: PartialEq
1269{
1270 fn eq(&self, other: &Self) -> bool {
1271 **self == **other
1272 }
1273}
1274
1275impl<T, const CAP: usize> PartialEq<[T]> for ArrayVec<T, CAP>
1276 where T: PartialEq
1277{
1278 fn eq(&self, other: &[T]) -> bool {
1279 **self == *other
1280 }
1281}
1282
1283impl<T, const CAP: usize> Eq for ArrayVec<T, CAP> where T: Eq { }
1284
1285impl<T, const CAP: usize> Borrow<[T]> for ArrayVec<T, CAP> {
1286 fn borrow(&self) -> &[T] { self }
1287}
1288
1289impl<T, const CAP: usize> BorrowMut<[T]> for ArrayVec<T, CAP> {
1290 fn borrow_mut(&mut self) -> &mut [T] { self }
1291}
1292
1293impl<T, const CAP: usize> AsRef<[T]> for ArrayVec<T, CAP> {
1294 fn as_ref(&self) -> &[T] { self }
1295}
1296
1297impl<T, const CAP: usize> AsMut<[T]> for ArrayVec<T, CAP> {
1298 fn as_mut(&mut self) -> &mut [T] { self }
1299}
1300
1301impl<T, const CAP: usize> fmt::Debug for ArrayVec<T, CAP> where T: fmt::Debug {
1302 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) }
1303}
1304
1305impl<T, const CAP: usize> Default for ArrayVec<T, CAP> {
1306 /// Return an empty array
1307 fn default() -> ArrayVec<T, CAP> {
1308 ArrayVec::new()
1309 }
1310}
1311
1312impl<T, const CAP: usize> PartialOrd for ArrayVec<T, CAP> where T: PartialOrd {
1313 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
1314 (**self).partial_cmp(other)
1315 }
1316
1317 fn lt(&self, other: &Self) -> bool {
1318 (**self).lt(other)
1319 }
1320
1321 fn le(&self, other: &Self) -> bool {
1322 (**self).le(other)
1323 }
1324
1325 fn ge(&self, other: &Self) -> bool {
1326 (**self).ge(other)
1327 }
1328
1329 fn gt(&self, other: &Self) -> bool {
1330 (**self).gt(other)
1331 }
1332}
1333
1334impl<T, const CAP: usize> Ord for ArrayVec<T, CAP> where T: Ord {
1335 fn cmp(&self, other: &Self) -> cmp::Ordering {
1336 (**self).cmp(other)
1337 }
1338}
1339
1340#[cfg(feature="std")]
1341/// `Write` appends written data to the end of the vector.
1342///
1343/// Requires `features="std"`.
1344impl<const CAP: usize> io::Write for ArrayVec<u8, CAP> {
1345 fn write(&mut self, data: &[u8]) -> io::Result<usize> {
1346 let len = cmp::min(self.remaining_capacity(), data.len());
1347 let _result = self.try_extend_from_slice(&data[..len]);
1348 debug_assert!(_result.is_ok());
1349 Ok(len)
1350 }
1351 fn flush(&mut self) -> io::Result<()> { Ok(()) }
1352}
1353
1354#[cfg(feature="serde")]
1355/// Requires crate feature `"serde"`
1356impl<T: Serialize, const CAP: usize> Serialize for ArrayVec<T, CAP> {
1357 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
1358 where S: Serializer
1359 {
1360 serializer.collect_seq(self)
1361 }
1362}
1363
1364#[cfg(feature="serde")]
1365/// Requires crate feature `"serde"`
1366impl<'de, T: Deserialize<'de>, const CAP: usize> Deserialize<'de> for ArrayVec<T, CAP> {
1367 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
1368 where D: Deserializer<'de>
1369 {
1370 use serde::de::{Visitor, SeqAccess, Error};
1371 use std::marker::PhantomData;
1372
1373 struct ArrayVecVisitor<'de, T: Deserialize<'de>, const CAP: usize>(PhantomData<(&'de (), [T; CAP])>);
1374
1375 impl<'de, T: Deserialize<'de>, const CAP: usize> Visitor<'de> for ArrayVecVisitor<'de, T, CAP> {
1376 type Value = ArrayVec<T, CAP>;
1377
1378 fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
1379 write!(formatter, "an array with no more than {} items", CAP)
1380 }
1381
1382 fn visit_seq<SA>(self, mut seq: SA) -> Result<Self::Value, SA::Error>
1383 where SA: SeqAccess<'de>,
1384 {
1385 let mut values = ArrayVec::<T, CAP>::new();
1386
1387 while let Some(value) = seq.next_element()? {
1388 if let Err(_) = values.try_push(value) {
1389 return Err(SA::Error::invalid_length(CAP + 1, &self));
1390 }
1391 }
1392
1393 Ok(values)
1394 }
1395 }
1396
1397 deserializer.deserialize_seq(ArrayVecVisitor::<T, CAP>(PhantomData))
1398 }
1399}
1400
1401#[cfg(feature = "borsh")]
1402/// Requires crate feature `"borsh"`
1403impl<T, const CAP: usize> borsh::BorshSerialize for ArrayVec<T, CAP>
1404where
1405 T: borsh::BorshSerialize,
1406{
1407 fn serialize<W: borsh::io::Write>(&self, writer: &mut W) -> borsh::io::Result<()> {
1408 <[T] as borsh::BorshSerialize>::serialize(self.as_slice(), writer)
1409 }
1410}
1411
1412#[cfg(feature = "borsh")]
1413/// Requires crate feature `"borsh"`
1414impl<T, const CAP: usize> borsh::BorshDeserialize for ArrayVec<T, CAP>
1415where
1416 T: borsh::BorshDeserialize,
1417{
1418 fn deserialize_reader<R: borsh::io::Read>(reader: &mut R) -> borsh::io::Result<Self> {
1419 let mut values = Self::new();
1420 let len = <u32 as borsh::BorshDeserialize>::deserialize_reader(reader)?;
1421 for _ in 0..len {
1422 let elem = <T as borsh::BorshDeserialize>::deserialize_reader(reader)?;
1423 if let Err(_) = values.try_push(elem) {
1424 return Err(borsh::io::Error::new(
1425 borsh::io::ErrorKind::InvalidData,
1426 format!("Expected an array with no more than {} items", CAP),
1427 ));
1428 }
1429 }
1430
1431 Ok(values)
1432 }
1433}