1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
//! # 🖼️ Render API
//!
//! Immediate mode rendering API for drawing 2D and 3D meshes on screen.
//!
//! Unlike the World API, which has persistent entities, in the Render API you list everything that should
//! be drawn every frame, hence immediate mode.
//!
//! The Render API supports the creation of textures through a [`TextureBuilder`].
//! Textures are created from image data and can be "wrapped around" surfaces to add
//! another level of artistic control to your game.
//!
//! # Examples
//!
//! Given a valid texture named `texture` created with the [`TextureBuilder`], you
//! can draw a textured 2D square in screen space like so:
//!
//! ``` no_run
//! use ark_api::render::{Rectangle};
//! use ark_api::{Vec2, ColorRgba8};
//!
//! // We draw two triangles, reusing some of the vertices:
//! let indices = [
//! [0, 1, 2], // first triangle
//! [1, 2, 3], // second triangle
//! ];
//!
//! // We can specify a region to which to clip our triangles.
//! // In this case, we don't want to clip.
//! let clip_rect = Rectangle {
//! min_x: 0.0,
//! min_y: 0.0,
//! max_x: 1_000_000.0,
//! max_y: 1_000_000.0,
//! };
//!
//! // Render API expects positions in physical pixel coordinates,
//! // so we multiply our local coordinates with dpi_factor:
//! let dpi_factor = applet().window_state().dpi_factor;
//!
//! let positions = [
//! dpi_factor * Vec2::new(50.0, 50.0), // 0
//! dpi_factor * Vec2::new(50.0, 300.0), // 1
//! dpi_factor * Vec2::new(300.0, 50.0), // 2
//! dpi_factor * Vec2::new(300.0, 300.0), // 3
//! ];
//! let colors = [
//! ColorRgba8([255, 0, 0, 255]), // 0
//! ColorRgba8([0, 255, 0, 255]), // 1
//! ColorRgba8([0, 0, 255, 255]), // 2
//! ColorRgba8([255, 255, 255, 255]), // 3
//! ];
//!
//! let uvs = [
//! Vec2::new(0.0, 0.0), // 0
//! Vec2::new(0.0, 1.0), // 1
//! Vec2::new(1.0, 0.0), // 2
//! Vec2::new(1.0, 1.0), // 3
//! ];
//!
//! render().draw_textured_triangles(&clip_rect, &texture, &indices, &positions, &colors, &uvs)?;
//! # Ok::<(), ark_api::Error>(())
//! ```
mod ffi {
pub use crate::ffi::render_v0::*;
pub use crate::ffi::render_v1::*;
}
use crate::{Error, Mesh, MeshData};
use bitflags::bitflags;
pub use ffi::{
BoneTransform, GltfFlags, Rectangle, RenderMaterial, RenderMeshInstance2 as RenderMeshInstance,
RenderMeshSection, RenderMeshStyleFlags, RenderMeshVisibilityFlags, TextureFormat,
TextureHandle,
};
use macaw::{ColorRgba8, IsoTransform, Mat4, Vec2, Vec3, Vec4};
use static_assertions::assert_eq_size;
use std::{fmt::Debug, mem::size_of, num::NonZeroU64, sync::Arc};
mod render_util;
#[doc(hidden)]
pub use crate::ffi::render_v1::API as FFI_API;
bitflags! {
/// Flags to specify attributes about mesh data when creating meshes.
#[cfg_attr(feature = "with_serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "with_speedy", derive(speedy::Writable, speedy::Readable))]
#[repr(C)]
pub struct RenderMeshCreateFlags : u32 {
/// Specifies that the colors provided in the mesh creation data are premultiplied alpha.
const PREMULTIPLIED_ALPHA = 0b0000_0001;
}
}
/// Adjusts the style of drawn meshes.
#[derive(Copy, Clone, Debug, PartialEq)]
#[repr(C)]
pub struct RenderMeshStyle {
/// Diffuse color tint (RGBA multiplier). Premultiplied alpha.
diffuse_tint: Vec4,
/// Style flags
flags: RenderMeshStyleFlags,
/// Visibility Flags
visibility_flags: RenderMeshVisibilityFlags,
pad: [u8; 11], // ensure 16-byte alignment
}
assert_eq_size!(RenderMeshStyle, ffi::RenderMeshStyle);
impl RenderMeshStyle {
/// Creates a mesh style with a diffuse tint
pub fn new(diffuse_tint: Vec4) -> Self {
Self {
diffuse_tint,
flags: RenderMeshStyleFlags::default(),
visibility_flags: RenderMeshVisibilityFlags::all(),
pad: Default::default(),
}
}
}
impl Default for RenderMeshStyle {
fn default() -> Self {
Self {
diffuse_tint: Vec4::ONE,
flags: RenderMeshStyleFlags::default(),
visibility_flags: RenderMeshVisibilityFlags::all(),
pad: Default::default(),
}
}
}
impl From<RenderMeshStyle> for ffi::RenderMeshStyle {
fn from(style: RenderMeshStyle) -> Self {
// Visibility flags are only part of `ffi::RenderMeshStyle2`
assert!(style.visibility_flags == RenderMeshVisibilityFlags::all(), "Visibility flags can only be used in combination with `draw_meshes_with_materials_and_styles`");
Self {
diffuse_tint: style.diffuse_tint.into(),
flags: style.flags,
pad: Default::default(),
}
}
}
impl From<RenderMeshStyle> for ffi::RenderMeshStyle2 {
fn from(style: RenderMeshStyle) -> Self {
Self {
diffuse_tint: style.diffuse_tint.into(),
flags: style.flags,
visibility_flags: style.visibility_flags,
pad: Default::default(),
}
}
}
/// Create `RenderMeshStyle` through builder pattern
#[derive(Default, Debug, Clone, Copy)]
pub struct RenderMeshStyleBuilder {
style: RenderMeshStyle,
}
impl RenderMeshStyleBuilder {
/// Creates a new builder
pub fn new() -> Self {
Self::default()
}
/// Set diffuse color tinting (RGBA multiplier), standard alpha behavior. Default is `Vec4::ONE` (no tint).
pub fn with_diffuse_tint(&mut self, mut tint: Vec4) -> &mut Self {
tint.x *= tint.w;
tint.y *= tint.w;
tint.z *= tint.w;
self.style.diffuse_tint = tint;
self
}
/// Set diffuse color tinting (RGBA multiplier), premultiplied alpha. Default is `Vec4::ONE` (no tint).
pub fn with_diffuse_tint_premultiplied(&mut self, tint: Vec4) -> &mut Self {
self.style.diffuse_tint = tint;
self
}
/// Sets lighting toggle
pub fn with_lighting(&mut self, e: bool) -> &mut Self {
self.style.flags.set(RenderMeshStyleFlags::LIGHTING, e);
self
}
/// Sets flat shading toggle. Flat shading gives smooth objects a faceted look, by not
/// interpolating normals across surfaces before lighting.
pub fn with_flat_shading(&mut self, e: bool) -> &mut Self {
self.style.flags.set(RenderMeshStyleFlags::FLAT_SHADING, e);
self
}
/// Will make the mesh face the camera at all times, can be handy for things like particles or
/// ui.
pub fn with_billboard_rendering(&mut self, e: bool) -> &mut Self {
self.style.flags.set(RenderMeshStyleFlags::BILLBOARD, e);
self
}
/// Will make the mesh two-sided (backface culling is not applied). Only recommended for solid
/// meshes (and even then, when you don't need this, don't use it).
pub fn with_two_sided(&mut self, e: bool) -> &mut Self {
self.style.flags.set(RenderMeshStyleFlags::TWO_SIDED, e);
self
}
/// Enables depth testing for the mesh. If depth testing is disabled, the mesh will be drawn
/// last, and will be drawn on top of everything else. On by default.
pub fn with_depth_test(&mut self, e: bool) -> &mut Self {
self.style.flags.set(RenderMeshStyleFlags::DEPTH_TEST, e);
self
}
/// Enables depth writing for the mesh. NOTE: only used for SDF meshes for backwards compatibility
/// reasons.
pub fn with_depth_write(&mut self, e: bool) -> &mut Self {
self.style.flags.set(RenderMeshStyleFlags::DEPTH_WRITE, e);
self
}
/// Set the visibility flags of a mesh which allows you to disable, reflections, globalillumination, shadows and primary rendering.
pub fn with_visibility_flags(&mut self, flags: RenderMeshVisibilityFlags) -> &mut Self {
self.style.visibility_flags = flags;
self
}
/// Builds mesh style
pub fn build(&self) -> RenderMeshStyle {
self.style
}
}
/// Create `RenderMaterial` through builder pattern
#[derive(Default, Debug, Clone)]
pub struct RenderMaterialBuilder {
desc: RenderMaterial,
}
impl RenderMaterialBuilder {
/// Creates a new builder
pub fn new() -> Self {
Self::default()
}
/// Set diffuse albedo color. Default is `Vec3::ONE`
pub fn with_diffuse_albedo(&mut self, albedo: Vec3) -> &mut Self {
self.desc.diffuse_albedo = albedo.into();
self
}
/// Set the transparency. Default is `1.0`
pub fn with_alpha(&mut self, alpha: f32) -> &mut Self {
self.desc.alpha = alpha;
self
}
/// Set emissive color (can exceed `Vec3::ONE`). Default is `Vec3::ZERO`.
pub fn with_emissive_color(&mut self, color: Vec3) -> &mut Self {
self.desc.emissive_color = color.into();
self
}
/// Set the perceptual roughness
pub fn with_roughness(&mut self, perceptual_roughness: f32) -> &mut Self {
self.desc.perceptual_roughness = perceptual_roughness;
self
}
/// Set the metallicness
pub fn with_metallic(&mut self, metallic: f32) -> &mut Self {
self.desc.metallic = metallic;
self
}
/// Builds material
pub fn build(&self) -> RenderMaterial {
self.desc
}
}
/// Converts an `IsoTransform` to a `BoneTransform`. Lossless.
pub fn bone_transform_from_iso(iso: &IsoTransform) -> BoneTransform {
BoneTransform {
pos: iso.translation().into(),
_padding: 0.0,
rot: iso.rotation().into(),
}
}
/// Colored 3D line
#[derive(Debug, Copy, Clone)]
#[repr(transparent)]
pub struct Line(ffi::Line);
impl Line {
/// Creates line with single color
pub fn new(pos0: Vec3, pos1: Vec3, color: ColorRgba8) -> Self {
Self(ffi::Line {
pos0: pos0.into(),
pos1: pos1.into(),
color0: color.0,
color1: color.0,
})
}
}
/// Gives access to rendering specific functionality like drawing 2D triangles.
///
/// Use the `require_render_api` macro's `render()` function to get an instance of [`Render`].
/// See the module level documentation for an example.
///
/// A `Render` object can be cheaply cloned.
#[derive(Clone)]
pub struct Render {
_private: (),
}
// Canvas rendering
impl Render {
#[doc(hidden)]
pub fn __create() -> Self {
Self { _private: () }
}
/// Draw colored 2D triangles in screen space (physical pixel coordinates).
///
/// * `colors` - Assumes premultiplied alpha.
#[inline]
pub fn draw_triangles(
&self,
clip_rect: &Rectangle,
indices: impl AsRef<[[u32; 3]]>,
positions: impl AsRef<[Vec2]>,
colors: impl AsRef<[ColorRgba8]>,
) {
let indices = render_util::u32_slice_from_triangle_index(indices.as_ref());
let positions = render_util::f32_slice_from_vec2(positions.as_ref());
let colors = render_util::u8_slice_from_srgba(colors.as_ref());
ffi::draw_triangles_2d(clip_rect, indices, positions, colors);
}
/// Draw colored 2D textured triangles in screen space (physical pixel coordinates).
///
/// * `colors` - Assumes premultiplied alpha.
#[inline]
pub fn draw_textured_triangles(
&self,
clip_rect: &Rectangle,
texture: TextureHandle,
indices: impl AsRef<[[u32; 3]]>,
positions: impl AsRef<[Vec2]>,
colors: impl AsRef<[ColorRgba8]>,
uvs: impl AsRef<[Vec2]>,
) {
let indices = render_util::u32_slice_from_triangle_index(indices.as_ref());
let positions = render_util::f32_slice_from_vec2(positions.as_ref());
let colors = render_util::u8_slice_from_srgba(colors.as_ref());
let uvs = render_util::f32_slice_from_vec2(uvs.as_ref());
ffi::draw_textured_triangles_2d(clip_rect, texture, indices, positions, colors, uvs);
}
/// Draws 3D debug lines.
///
/// These are simple but fast primitive lines that are meant to quickly get something up
/// with little overhead, when you just need to visualize something for debugging.
/// They will never deliver a polished look, so do not use for user-facing things.
#[inline]
pub fn draw_debug_lines(&self, lines: &[Line]) {
// SAFETY: Line is transparent newtype, a cast here is both safe and justified
let lines = unsafe { &*(lines as *const [Line] as *const [ffi::Line]) };
ffi::draw_debug_lines(lines);
}
/// Creates a mesh.
///
/// NOTE: Normals can be automatically generated by the engine. Simply set `normals`
/// to `None` in `mesh.data`.
pub fn create_mesh(&self, mesh: &Mesh, flags: RenderMeshCreateFlags) -> RenderMesh {
self.create_mesh_with_materials_and_sections(mesh, flags, &[], &[])
}
/// Creates a mesh with a material.
///
/// NOTE: Normals can be automatically generated by the engine. Simply set `normals`
/// to `None` in `mesh.data`.
pub fn create_mesh_with_material(
&self,
mesh: &Mesh,
flags: RenderMeshCreateFlags,
material: RenderMaterial,
) -> RenderMesh {
self.create_mesh_with_materials_and_sections(mesh, flags, &[material], &[])
}
/// Creates a mesh with multiple materials split by sections.
///
/// The mesh can be split into multiple sections with different materials.
/// If no sections are provided the entire mesh will be a single section.
/// NOTE: Normals can be automatically generated by the engine. Simply set `normals`
/// to `None` in `mesh.data`.
pub fn create_mesh_with_materials_and_sections(
&self,
mesh: &Mesh,
flags: RenderMeshCreateFlags,
materials: &[RenderMaterial],
sections: &[RenderMeshSection],
) -> RenderMesh {
let mesh_data = mesh.data.as_ref().expect("Can't create mesh without data");
let mut streams: Vec<ffi::MeshStreamLayout> = vec![];
// indices
if !mesh_data.indices.is_empty() {
streams.push(ffi::MeshStreamLayout {
semantic: ffi::MeshStreamSemantic::Indices,
component_format: ffi::MeshComponentFormat::UInt32,
component_count: 1,
buffer_ptr: mesh_data.indices.as_ptr() as u32,
buffer_size: (mesh_data.indices.len() * size_of::<u32>()) as u32,
});
}
// positions
streams.push(ffi::MeshStreamLayout {
semantic: ffi::MeshStreamSemantic::Positions,
component_format: ffi::MeshComponentFormat::Float32,
component_count: 3,
buffer_ptr: mesh_data.positions.as_ptr() as u32,
buffer_size: (mesh_data.positions.len() * size_of::<[f32; 3]>()) as u32,
});
// normals
if let Some(normals) = &mesh_data.normals {
streams.push(ffi::MeshStreamLayout {
semantic: ffi::MeshStreamSemantic::Normals,
component_format: ffi::MeshComponentFormat::Float32,
component_count: 3,
buffer_ptr: normals.as_ptr() as u32,
buffer_size: (normals.len() * size_of::<[f32; 3]>()) as u32,
});
}
// colors
let is_premul = flags.contains(RenderMeshCreateFlags::PREMULTIPLIED_ALPHA);
// This is scary! We need to allocate the data outside of any if statement, because we pass
// in `arr.as_ptr() as u32` into `create_mesh`. That means the data still needs to be alive
// at the point of the call, so we allocate this temporary variable to live long enough.
let premul_data = if is_premul {
Default::default()
} else {
mesh_data.colors.as_ref().map(|colors| {
colors
.iter()
.map(|color| {
let mut linear: Vec4 = (*color).into();
linear.x *= linear.w;
linear.y *= linear.w;
linear.z *= linear.w;
linear.into()
})
.collect::<Vec<_>>()
})
};
if let Some(colors) = if is_premul {
&mesh_data.colors
} else {
&premul_data
} {
streams.push(ffi::MeshStreamLayout {
semantic: ffi::MeshStreamSemantic::Colors,
component_format: ffi::MeshComponentFormat::UInt8,
component_count: 4,
buffer_ptr: colors.as_ptr() as u32,
buffer_size: (colors.len() * size_of::<[u8; 4]>()) as u32,
});
}
RenderMesh::new(ffi::create_named_mesh_with_materials_and_sections(
ffi::MeshPrimitiveTopology::TriangleList,
&streams[..],
materials,
sections,
&mesh_data.name,
))
}
/// Loads a mesh from directly provided GLTF data.
///
/// Supports .gltf and .glb, and a single additional buffer file.
/// `buffer_name` is not used directly, but might be used for validation.
pub fn create_mesh_from_gltf(
&self,
debug_name: &str,
gltf_data: &[u8],
buffer_data: &[u8],
flags: GltfFlags,
) -> Result<RenderMesh, Error> {
Ok(RenderMesh::new(ffi::create_mesh_from_gltf_with_flags_name(
debug_name,
gltf_data,
buffer_data,
flags.bits(),
)?))
}
/// Creates a mesh from a GLTF resource handle and additional buffer resource handle.
pub fn create_mesh_from_gltf_resource(
&self,
debug_name: &str,
gltf_resource: ffi::ResourceHandleRepr,
buffer_resource: Option<ffi::ResourceHandleRepr>,
flags: GltfFlags,
) -> Result<RenderMesh, Error> {
Ok(RenderMesh::new(ffi::create_mesh_from_gltf_resource(
debug_name,
gltf_resource,
buffer_resource.unwrap_or(ffi::INVALID_RESOURCE_HANDLE),
flags.bits(),
)?))
}
/// Draws a single mesh.
///
/// It is OK to drop the [`RenderMesh`] in the same frame after calling
/// this, it will still be drawn.
///
/// When drawing multiple meshes, prefer to use [`Render::draw_meshes`] instead for improved performance.
///
/// If you are drawing the same mesh over multiple frames, pick a unique-enough `instance_id` and
/// pass the same one every frame. Pass 0 if you can't come up with one, but you'll end up with
/// rendering artifacts on quick movements.
///
/// # Errors
///
/// Under normal safe circumstances, this function cannot error. However, errors through the
/// underlying API can happen - for example, if the raw handle inside `mesh` has already been
/// destroyed (via unsafe code).
pub fn draw_mesh(
&self,
mesh: &RenderMesh,
world_transform: &Mat4,
style: &RenderMeshStyle,
instance_id: Option<InstanceId>,
) {
self.draw_meshes(&[RenderMeshInstance {
world_transform: world_transform.to_cols_array(),
mesh: mesh.handle,
style: (*style).into(),
instance_id: instance_id.map_or(0, |id| id.0.get()),
materials_offset: 0,
materials_len: 0,
mesh_styles_index: 0,
_pad: [0; 4],
}]);
}
/// Draws multiple meshes.
///
/// Use [`RenderMeshInstanceBuilder`] to create a [`RenderMeshInstance`].
///
/// It is OK to drop the [`RenderMesh`] in the same frame after calling
/// this, it will still be drawn.
///
/// # Errors
///
/// Under normal safe circumstances, this function cannot error. However, errors through the
/// underlying API can happen - for example, if the raw handle inside `mesh` has already been
/// destroyed (via unsafe code).
///
/// If an error occurs drawing one or more of the meshes in the list, *no* meshes in the list
/// will be drawn, and an error is returned.
pub fn draw_meshes(&self, mesh_instances: &[RenderMeshInstance]) {
ffi::draw_meshes2(mesh_instances);
}
/// Draws multiple meshes with a list of material overrides.
///
/// Use [`RenderMeshInstanceBuilder`] to create a [`RenderMeshInstance`].
///
/// It is okay to drop the [`RenderMesh`] in the same frame after calling
/// this, it will still be drawn.
///
/// The material ID inside the meshes will be used to index into the `material_overrides` list offsetted by [`RenderMeshInstance::materials_offset`].
/// If no override is provided for an index the meshes original material will be used.
pub fn draw_meshes_with_materials(
&self,
mesh_instances: &[RenderMeshInstance],
material_overrides: &[RenderMaterial],
) {
ffi::draw_meshes_with_materials(mesh_instances, material_overrides);
}
/// Draws multiple meshes with a list of material and style overrides.
///
/// Use [`RenderMeshInstanceBuilder`] to create a [`RenderMeshInstance`].
///
/// It is okay to drop the [`RenderMesh`] in the same frame after calling
/// this, it will still be drawn.
///
/// The material ID inside the meshes will be used to index into the `material_overrides` list offsetted by [`RenderMeshInstance::materials_offset`].
/// If no override is provided for an index the meshes original material will be used.
pub fn draw_meshes_with_materials_and_styles(
&self,
mesh_instances: &[RenderMeshInstance],
material_overrides: &[RenderMaterial],
mesh_style_overrides: &[RenderMeshStyle],
) {
let mesh_style_overrides: Vec<ffi::RenderMeshStyle2> =
mesh_style_overrides.iter().map(|s| (*s).into()).collect();
ffi::draw_meshes_with_materials_and_styles(
mesh_instances,
material_overrides,
&mesh_style_overrides,
);
}
/// Allocate a new texture.
///
/// # Example
///
/// ``` no_run
/// # let render = Render::__create();
/// let data = [255, 0, 0, 255,
/// 0, 255, 0, 255];
/// let texture = render
/// .create_texture()
/// .name("my_texture")
/// .dimension(2, 1)
/// .format(TextureFormat::R8G8B8A8_SRGB) // can be omitted - this is the default
/// .data(pixels)
/// .build()?;
/// ```
pub fn create_texture(&self) -> TextureBuilder<'_> {
TextureBuilder::new(self)
}
/// Creates a new SDF function from [Saft](https://docs.rs/saft) opcodes and constants.
pub fn create_sdf_model(
&self,
opcodes: &[u32],
constants: &[f32],
bounding_box: &macaw::BoundingBox,
) -> Result<SdfModel, Error> {
let bbox = ffi::BoundingBox {
min: bounding_box.min.into(),
max: bounding_box.max.into(),
};
let handle = ffi::create_sdf_model(opcodes, constants, &bbox)?;
Ok(SdfModel(handle))
}
}
/// Builder for creating textures.
///
/// This is used to control all the various configuration options and such
/// to create a texture. More documentation is provided on each method itself.
#[derive(Copy, Clone, Default)]
pub struct TextureBuilder<'a> {
name: Option<&'a str>,
description: Option<ffi::TextureDescription>,
data: Option<&'a [u8]>,
}
impl<'a> TextureBuilder<'a> {
/// Use [`Render::create_texture`] instead
#[inline]
fn new(_: &Render) -> Self {
Default::default()
}
/// Set the texture data of the texture.
///
/// See [`Render::create_texture`] for an example.
#[inline]
pub fn data(&mut self, buffer: &'a [u8]) -> &mut Self {
self.data = Some(buffer);
self
}
/// Set the width and height of the texture's description.
///
/// For valid texture dimensions, `width` * `height` * [`TextureFormat::bytes_per_pixel`]
/// should be equal to the texture's buffer length.
///
/// See [`Render::create_texture`] for an example.
#[inline]
pub fn dimensions(&mut self, width: usize, height: usize) -> &mut Self {
let mut desc = self.description.unwrap_or(ffi::TextureDescription {
width: 0,
height: 0,
depth: 1,
format: TextureFormat::R8G8B8A8_SRGB,
mipmaps: 1,
array_len: 1,
texture_type: ffi::TextureType::D2,
});
desc.width = width as u64;
desc.height = height as u64;
self.description = Some(desc);
self
}
/// Set the format of the texture's description.
///
/// For a valid texture format, [`TextureFormat::bytes_per_pixel`] * the texture
/// dimensions' `width` * `height` should be equal to the texture's buffer length.
///
/// See [`Render::create_texture`] for an example.
#[inline]
pub fn format(&mut self, format: TextureFormat) -> &mut Self {
let mut desc = self.description.unwrap_or(ffi::TextureDescription {
width: 0,
height: 0,
depth: 1,
format: TextureFormat::R8G8B8A8_SRGB,
mipmaps: 1,
array_len: 1,
texture_type: ffi::TextureType::D2,
});
desc.format = format;
self.description = Some(desc);
self
}
/// Set the name of the texture.
///
/// Although optional, setting the name of a texture is highly recommended
/// as it improves the debugging experience significantly.
///
/// The default is "unnamed".
#[inline]
pub fn name(&mut self, name: &'a str) -> &mut Self {
self.name = Some(name);
self
}
/// Build the texture.
///
/// See [`Render::create_texture`] for an example.
///
/// # Errors
///
/// Returns an [`Error::InvalidArguments`] if the texture buffer's length doesn't match
/// up against the texture's dimensions and [`TextureFormat`] or if the texture dimensions
/// have values lower or equal to 0.
#[inline]
pub fn build(&self) -> Result<Texture, Error> {
let name = self.name.unwrap_or("unnamed");
let desc = self.description.unwrap_or(ffi::TextureDescription {
width: 0,
height: 0,
depth: 1,
format: TextureFormat::R8G8B8A8_SRGB,
mipmaps: 1,
array_len: 1,
texture_type: ffi::TextureType::D2,
});
let data = self.data.unwrap_or(&[]);
let handle = ffi::create_texture(name, &desc, data).map_err(Error::from)?;
Ok(Texture {
handle: Arc::new(handle),
name: Arc::new(name.to_string()),
description: Arc::new(desc),
})
}
}
/// Immutable texture object stored in GPU memory.
///
/// Internally this uses reference counting, so cloning a is very cheap and reuses the texture contents
pub struct Texture {
handle: Arc<TextureHandle>,
name: Arc<String>,
description: Arc<ffi::TextureDescription>,
}
impl Texture {
/// Retrieves the texture's name.
#[inline]
pub fn name(&self) -> &str {
(*self.name).as_str()
}
/// Updates a subrectangle of a texture with new data.
///
/// Added mainly for egui support, but might have other interesting uses.
pub fn update_rectangle(&self, pos_x: u32, pos_y: u32, width: u32, height: u32, data: &[u8]) {
ffi::update_texture(*self.handle, pos_x, pos_y, width, height, data);
}
/// Retrieves the texture's format.
#[inline]
pub fn format(&self) -> TextureFormat {
self.description.format
}
/// Retrieves the texture's dimensions.
#[inline]
pub fn dimensions(&self) -> (usize, usize, usize) {
let desc = *self.description;
(
desc.width as usize,
desc.height as usize,
desc.depth as usize,
)
}
// these are not exposed yet as we only support 2D textures without mipmaps and not arrays right now
/*
/// Retrieves the texture's type.
#[inline]
pub fn texture_type(&self) -> TextureType {
self.description.texture_type
}
/// Retrieves the amount of mipmaps the texture have.
#[inline]
pub fn mipmaps(&self) -> usize {
self.description.mipmaps as usize
}
/// Retrieves the amount of texture array slices in the texture.
///
/// This will be 0 if the texture is not a texture array
#[inline]
pub fn array_len(&self) -> usize {
self.description.mipmaps as usize
}
*/
/// Retrieves the texture's handle.
#[inline]
pub fn handle(&self) -> TextureHandle {
*self.handle
}
}
impl Drop for Texture {
fn drop(&mut self) {
if Arc::strong_count(&self.handle) == 1 {
ffi::destroy_texture(*self.handle);
}
}
}
impl Clone for Texture {
fn clone(&self) -> Self {
Self {
handle: Arc::clone(&self.handle),
name: Arc::clone(&self.name),
description: Arc::clone(&self.description),
}
}
}
impl Debug for Texture {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("Texture")
.field("name", &self.name())
.field("description", &*self.description)
.finish()
}
}
/// Stable instance ID for identifying an instance over frame.
///
/// This may be typically stored in an option like [`Option<InstanceId>`] as not all instances have an ID,
/// when used that way the option won't take any extra space, the type will remain 64-bits
#[derive(PartialEq, Debug, Eq, Hash, Copy, Clone)]
#[cfg_attr(feature = "with_serde", derive(serde::Serialize, serde::Deserialize))]
pub struct InstanceId(pub NonZeroU64);
impl InstanceId {
/// Create a non-zero instance id. If zero is provided this function will return `None`.
pub fn new(id: u64) -> Option<Self> {
NonZeroU64::new(id).map(Self)
}
}
/// A handle to a mesh.
pub struct RenderMesh {
handle: ffi::RenderMeshHandle,
}
impl Drop for RenderMesh {
fn drop(&mut self) {
ffi::destroy_mesh(self.handle);
}
}
impl RenderMesh {
fn new(handle: ffi::RenderMeshHandle) -> Self {
Self { handle }
}
/// Returns the raw handle. Useful when constructing raw [`RenderMeshInstance`] structs without the builder.
pub fn raw_handle(&self) -> ffi::RenderMeshHandle {
self.handle
}
/// Generic way to get mesh data streams from FFI
fn get_mesh_data_stream<T: Sized + Clone>(
&self,
ty: ffi::MeshStreamSemantic,
mesh_info: &ffi::MeshDataInfo,
) -> Vec<T> {
// Early out for optional attributes.
if (ty == ffi::MeshStreamSemantic::Colors
&& !mesh_info.flags.contains(ffi::MeshDataInfoFlags::COLORS))
|| (ty == ffi::MeshStreamSemantic::TexCoords
&& !mesh_info.flags.contains(ffi::MeshDataInfoFlags::TEX_COORDS))
{
return vec![];
}
let num_elements = if ty == ffi::MeshStreamSemantic::Indices {
mesh_info.num_indices
} else {
mesh_info.num_vertices
} as usize;
let bytes = ffi::get_mesh_data_stream(self.handle, ty);
assert!((bytes.len() % size_of::<T>()) == 0);
let result =
unsafe { std::slice::from_raw_parts(bytes.as_ptr().cast::<T>(), num_elements) }
.to_vec();
assert_eq!(result.len(), num_elements);
result
}
/// Retrieve a `MeshData` from the host.
/// This function should be called sparingly since the data is not cached.
pub fn retrieve_mesh_data(&self) -> MeshData {
let info = ffi::get_mesh_data_info(self.handle);
let indices = self.get_mesh_data_stream(ffi::MeshStreamSemantic::Indices, &info);
let positions = self.get_mesh_data_stream(ffi::MeshStreamSemantic::Positions, &info);
let normals = self.get_mesh_data_stream(ffi::MeshStreamSemantic::Normals, &info);
let colors = if info.flags.contains(ffi::MeshDataInfoFlags::COLORS) {
Some(self.get_mesh_data_stream(ffi::MeshStreamSemantic::Colors, &info))
} else {
None
};
MeshData {
name: ffi::get_mesh_data_name(self.handle),
positions,
normals: Some(normals),
indices,
colors,
}
}
}
/// Creates `RenderMeshInstance` through the builder pattern
#[derive(Debug, Clone)]
pub struct RenderMeshInstanceBuilder {
pub(crate) inst: RenderMeshInstance,
}
impl RenderMeshInstanceBuilder {
/// Creates a new builder from a [`RenderMesh`].
pub fn new(mesh: &RenderMesh) -> Self {
Self {
inst: RenderMeshInstance {
world_transform: Mat4::IDENTITY.to_cols_array(),
mesh: mesh.handle,
style: RenderMeshStyle::default().into(),
instance_id: 0,
materials_offset: 0,
materials_len: 0,
mesh_styles_index: 0,
_pad: [0; 4],
},
}
}
/// Set world transform. Default is [`Mat4::IDENTITY`]
pub fn with_world_transform(&mut self, world_transform: &Mat4) -> &mut Self {
self.inst.world_transform = world_transform.to_cols_array();
self
}
/// Set the style. Default is [`RenderMeshStyle::default()`]
pub fn with_style(&mut self, style: &RenderMeshStyle) -> &mut Self {
self.inst.style = (*style).into();
self
}
/// Set the instance id. Default is `0` which means no instance id.
pub fn with_instance_id(&mut self, instance_id: InstanceId) -> &mut Self {
self.inst.instance_id = instance_id.0.get();
self
}
/// Set the materials offset. Default is `0`.
/// This is the offset the instance will use to read into the material overrides provided with [`Render::draw_meshes_with_materials`].
pub fn with_materials_offset(&mut self, offset: u32) -> &mut Self {
self.inst.materials_offset = offset;
self
}
/// Set the materials length. Default is `0`.
///
/// This is the number of material overrides the instance will use [`Render::draw_meshes_with_materials`].
/// By default it will take all materials after the offset
pub fn with_materials_len(&mut self, len: u32) -> &mut Self {
self.inst.materials_len = len;
self
}
/// Set the materials offset. Default is `0`.
/// This is the index of the mesh style in the `mesh_style_overrides` list passed into [`Render::draw_meshes_with_materials_and_styles`].
/// If the index is not valid in the overrides list it will use the `RenderMeshInstance::style` variable instead.
pub fn with_mesh_styles_index(&mut self, idx: u32) -> &mut Self {
self.inst.mesh_styles_index = idx;
self
}
/// Builds the mesh instance
pub fn build(&self) -> RenderMeshInstance {
self.inst
}
}
/// Specified an SDF instance to be rendered.
pub struct SdfInstanceData {
/// World transform. Prefer to use this for moving the instance rather than modifying the program.
pub world_from_instance: [f32; 16],
/// Set this if you use any dynamic data to update the program. With the current mesh rendering, bad idea.
pub dynamic_data_length: u32,
/// Controls how the instance will be rendered.
pub style: RenderMeshStyle,
/// Higher value will render in higher detail.
pub detail_bias: f32,
/// If you can, set to something unique that's consistent between each rendered frame.
pub instance_id: Option<InstanceId>,
}
/// An Sdf (signed distance field) that can be rendered directly.
///
/// It can also be used as the shape of a bone.
/// Unlike the procedural api, ref counting is not built in, wrap it in an Arc if you need it.
pub struct SdfModel(ffi::SdfHandle);
/// Simple Saft Sdf graph rendering. Any parameter can be directly modified by changing the dynamic constants.
/// Changing `dynamic_constants` will result in full re-meshing.
impl SdfModel {
/// Renders the Sdf function.
///
/// In `instance_data` you can specify a world transform and other parameters.
/// Changing the shape through `dynamic_constants` may incur a performance hit due to remeshing.
pub fn draw(
&self,
instance_data: &[SdfInstanceData],
dynamic_constants: &[f32],
bounding_boxes: &[macaw::BoundingBox],
) {
// TODO: Make bboxes compatible so we can transmute (or maybe just use macaw directly in the FFI?).
let bounding_boxes = bounding_boxes
.iter()
.map(|b| ffi::BoundingBox {
min: b.min.into(),
max: b.max.into(),
})
.collect::<Vec<_>>();
let mut instances = Vec::with_capacity(instance_data.len());
let mut dynamic_data_offset = 0;
let mut bounding_box_index = 0;
for instance in instance_data {
instances.push(ffi::SdfInstanceData2 {
world_from_instance: instance.world_from_instance,
dynamic_data_offset,
dynamic_data_length: instance.dynamic_data_length,
bounding_box_index,
style: instance.style.into(),
instance_id: instance.instance_id.map_or(0, |id| id.0.get()),
detail_bias: instance.detail_bias,
reserved: [0; 4],
});
if instance.dynamic_data_length > 0 {
bounding_box_index += 1;
dynamic_data_offset += instance.dynamic_data_length;
}
}
ffi::draw_sdf_model2(self.0, &instances, dynamic_constants, &bounding_boxes);
}
}
impl Drop for SdfModel {
fn drop(&mut self) {
ffi::destroy_sdf_model(self.0);
}
}