# ArgMinMax
> Efficient argmin & argmax (in 1 function) with SIMD (SSE, AVX(2), AVX512, NEON) for `f16`, `f32`, `f64`, `i16`, `i32`, `i64`, `u16`, `u32`, `u64` on `ndarray::ArrayView1`
🚀 The function is generic over the type of the array, so it can be used on an `ndarray::ArrayView1<T>` where `T` can be `f16`*, `f32`, `f64`, `i16`, `i32`, `i64`, `u16`, `u32`, `u64`.
âš¡ **Runtime CPU feature detection** is used to select the most efficient implementation for the current CPU. This means that the same binary can be used on different CPUs without recompilation.
👀 The SIMD implementation contains **no if checks**, ensuring that the runtime of the function is independent of the input data its order (best-case = worst-case = average-case).
🪄 **Efficient support for f16 and uints**: through (bijective aka symmetric) bitwise operations, f16 (optional) and uints are converted to ordered integers, allowing to use integer SIMD instructions.
<small>*for `f16` you should enable the 'half' feature.</small>
## Installing
Add the following to your `Cargo.toml`:
```toml
[dependencies]
argminmax = "0.2"
```
## Example usage
```rust
use argminmax::ArgMinMax; // extension trait for ndarray::ArrayView1
use ndarray::Array1;
let arr: Vec<i32> = (0..200_000).collect();
let arr: Array1<i32> = Array1::from(arr);
let (min, max) = arr.view().argminmax(); // apply extension
println!("min: {}, max: {}", min, max);
println!("arr[min]: {}, arr[max]: {}", arr[min], arr[max]);
```
## Benchmarks
Benchmarks on my laptop *(AMD Ryzen 7 4800U, 1.8 GHz, 16GB RAM)* using [criterion](https://github.com/bheisler/criterion.rs) show that the function is 3-20x faster than the scalar implementation (depending of data type).
See `/benches/results`.
Run the benchmarks yourself with the following command:
```bash
## Tests
To run the tests use the following command:
```bash
cargo test --message-format=short --features half
```
## Limitations
Does not support NaNs. *(infinites are probably not supported *for f16* either).*
---
## Acknowledgements
Some parts of this library are inspired by the great work of [minimalrust](https://github.com/minimalrust)'s [argmm](https://github.com/minimalrust/argmm) project.