ares-server 0.2.2

A.R.E.S - Agentic Retrieval Enhanced Server: A production-grade agentic chatbot server with multi-provider LLM support, tool calling, RAG, and MCP integration
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
# A.R.E.S - Agentic Retrieval Enhanced Server

[![Crates.io](https://img.shields.io/crates/v/ares-server.svg)](https://crates.io/crates/ares-server)
[![Documentation](https://docs.rs/ares-server/badge.svg)](https://docs.rs/ares-server)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Rust](https://img.shields.io/badge/rust-1.91%2B-blue.svg)](https://www.rust-lang.org)
[![CI](https://github.com/dirmacs/ares/actions/workflows/ci.yml/badge.svg)](https://github.com/dirmacs/ares/actions/workflows/ci.yml)

![Ares Logo](./docs/ares.png)

A production-grade agentic chatbot server built in Rust with multi-provider LLM support, tool calling, RAG, MCP integration, and advanced research capabilities.

## Features

- πŸ€– **Multi-Provider LLM Support**: Ollama, OpenAI, LlamaCpp (direct GGUF loading)
- βš™οΈ **TOML Configuration**: Declarative configuration with hot-reloading
- 🎭 **Configurable Agents**: Define agents via [TOON (Token Oriented Object Notation)]https://toonformat.dev with custom models, tools, and prompts
- πŸ”„ **Workflow Engine**: Declarative workflow execution with agent routing
- 🏠 **Local-First Development**: Runs entirely locally with Ollama and SQLite by default
- πŸ”§ **Tool Calling**: Type-safe function calling with automatic schema generation
- 🎯 **Per-Agent Tool Filtering**: Restrict which tools each agent can access
- πŸ“‘ **Streaming**: Real-time streaming responses from all providers
- πŸ” **Authentication**: JWT-based auth with Argon2 password hashing
- πŸ’Ύ **Database**: Local SQLite (libsql) by default, optional Turso and Qdrant
- πŸ”Œ **MCP Support**: Pluggable Model Context Protocol server integration
- πŸ•ΈοΈ **Agent Framework**: Multi-agent orchestration with specialized agents
- πŸ“š **RAG**: Pluggable knowledge bases with semantic search
- 🧠 **Memory**: User personalization and context management
- πŸ”¬ **Deep Research**: Multi-step research with parallel subagents
- 🌐 **Web Search**: Built-in web search via [daedra]https://github.com/dirmacs/daedra (no API keys required)
- πŸ“– **OpenAPI**: Automatic API documentation generation
- πŸ§ͺ **Testing**: Comprehensive unit and integration tests
- βœ”οΈ **Config Validation**: Circular reference detection and unused config warnings

## Installation

A.R.E.S can be used as a **standalone server** or as a **library** in your Rust project.

### As a Library

Add to your `Cargo.toml`:

```toml
[dependencies]
ares-server = "0.2"
```

Basic usage:

```rust
use ares::{Provider, LLMClient};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create an Ollama provider
    let provider = Provider::Ollama {
        base_url: "http://localhost:11434".to_string(),
        model: "llama3.2:3b".to_string(),
    };

    // Create a client and generate a response
    let client = provider.create_client().await?;
    let response = client.generate("Hello, world!").await?;
    println!("{}", response);

    Ok(())
}
```

### As a Binary

```bash
# Install from crates.io
cargo install ares-server

# Run the server (requires ares.toml in current directory)
ares-server
```

## Quick Start (Development)

### Prerequisites

- **Rust 1.91+**: Install via [rustup]https://rustup.rs/
- **Ollama** (recommended): For local LLM inference - [Install Ollama]https://ollama.ai
- **just** (recommended): Command runner - [Install just]https://just.systems

### 1. Clone and Setup

```bash
git clone https://github.com/dirmacs/ares.git
cd ares
cp .env.example .env

# Or use just to set up everything:
just setup
```

### 2. Start Ollama (Recommended)

```bash
# Install a model
ollama pull ministral-3:3b
# Or: just ollama-pull

# Ollama runs automatically as a service, or start manually:
ollama serve
```

### 3. Build and Run

```bash
# Build with default features (local-db + ollama)
cargo build
# Or: just build

# Run the server
cargo run
# Or: just run
```

Server runs on `http://localhost:3000`

## Feature Flags

A.R.E.S uses Cargo features for conditional compilation:

### LLM Providers

| Feature | Description | Default |
|---------|-------------|---------|
| `ollama` | Ollama local inference | βœ… Yes |
| `openai` | OpenAI API (and compatible) | No |
| `llamacpp` | Direct GGUF model loading | No |
| `llamacpp-cuda` | LlamaCpp with CUDA | No |
| `llamacpp-metal` | LlamaCpp with Metal (macOS) | No |
| `llamacpp-vulkan` | LlamaCpp with Vulkan | No |

### Database Backends

| Feature | Description | Default |
|---------|-------------|---------|
| `local-db` | Local SQLite via libsql | βœ… Yes |
| `turso` | Remote Turso database | No |
| `qdrant` | Qdrant vector database | No |

### Feature Bundles

| Feature | Includes |
|---------|----------|
| `all-llm` | ollama + openai + llamacpp |
| `all-db` | local-db + turso + qdrant |
| `full` | All optional features |
| `minimal` | No optional features |

### Building with Features

```bash
# Default (ollama + local-db)
cargo build
# Or: just build

# With OpenAI support
cargo build --features "openai"
# Or: just build-features "openai"

# With direct GGUF loading
cargo build --features "llamacpp"

# With CUDA GPU acceleration
cargo build --features "llamacpp-cuda"

# Full feature set
cargo build --features "full"
# Or: just build-all

# Release build
cargo build --release
# Or: just build-release
```

## Configuration

A.R.E.S uses a **TOML configuration file** (`ares.toml`) for declarative configuration of all components. The server **requires** this file to start.

### Quick Start

```bash
# Copy the example config
cp ares.example.toml ares.toml

# Set required environment variables
export JWT_SECRET="your-secret-key-at-least-32-characters"
export API_KEY="your-api-key"
```

### Configuration File (ares.toml)

The configuration file defines providers, models, agents, tools, and workflows:

```toml
# Server settings
[server]
host = "127.0.0.1"
port = 3000
log_level = "info"

# Authentication (secrets loaded from env vars)
[auth]
jwt_secret_env = "JWT_SECRET"
api_key_env = "API_KEY"

# Database
[database]
url = "./data/ares.db"

# LLM Providers (define named providers)
[providers.ollama-local]
type = "ollama"
base_url = "http://localhost:11434"
default_model = "ministral-3:3b"

[providers.openai]  # Optional
type = "openai"
api_key_env = "OPENAI_API_KEY"
default_model = "gpt-4"

# Models (reference providers, set parameters)
[models.fast]
provider = "ollama-local"
model = "ministral-3:3b"
temperature = 0.7
max_tokens = 256

[models.balanced]
provider = "ollama-local"
model = "ministral-3:3b"
temperature = 0.7
max_tokens = 512

[models.smart]
provider = "ollama-local"
model = "qwen3-vl:2b"
temperature = 0.3
max_tokens = 1024

# Tools (define available tools)
[tools.calculator]
enabled = true
timeout_secs = 10

[tools.web_search]
enabled = true
timeout_secs = 30

# Agents (reference models and tools)
[agents.router]
model = "fast"
system_prompt = "You route requests to specialized agents..."

[agents.product]
model = "balanced"
tools = ["calculator"]                     # Tool filtering: only calculator
system_prompt = "You are a Product Agent..."

[agents.research]
model = "smart"
tools = ["web_search", "calculator"]       # Multiple tools
system_prompt = "You conduct research..."

# Workflows (define agent routing)
[workflows.default]
entry_agent = "router"
fallback_agent = "product"
max_depth = 5

[workflows.research_flow]
entry_agent = "research"
max_depth = 10
```

### Per-Agent Tool Filtering

Each agent can specify which tools it has access to:

```toml
[agents.restricted]
model = "balanced"
tools = ["calculator"]  # Only calculator, no web search

[agents.full_access]
model = "balanced"
tools = ["calculator", "web_search"]  # Both tools
```

If `tools` is empty or omitted, the agent has no tool access.

### Configuration Validation

The configuration is validated on load with:

- **Reference checking**: Models must reference valid providers, agents must reference valid models
- **Circular reference detection**: Workflows cannot have circular agent references
- **Environment variables**: All referenced env vars must be set

For warnings about unused configuration items (providers, models, tools not referenced by anything), the `validate_with_warnings()` method is available.

### Hot Reloading

Configuration changes are **automatically detected** and applied without restarting the server. Edit `ares.toml` and the changes will be picked up within 500ms.

### Environment Variables

The following environment variables **must** be set (referenced by `ares.toml`):

```bash
# Required
JWT_SECRET=your-secret-key-at-least-32-characters
API_KEY=your-api-key

# Optional (for OpenAI provider)
OPENAI_API_KEY=sk-...
```

### Legacy Environment Variables

For backward compatibility, these environment variables can also be used:

```bash
# Server
HOST=127.0.0.1
PORT=3000

# Database (local-first)
# Examples: ./data/ares.db | file:./data/ares.db | :memory:
DATABASE_URL=./data/ares.db

# Optional: Turso cloud (set both to enable)
# TURSO_URL=libsql://<your-db>-<your-org>.turso.io
# TURSO_AUTH_TOKEN=...

# LLM Provider - Ollama (default)
OLLAMA_URL=http://localhost:11434

# LLM Provider - OpenAI (optional)
# OPENAI_API_KEY=sk-...
# OPENAI_API_BASE=https://api.openai.com/v1
# OPENAI_MODEL=gpt-4

# LLM Provider - LlamaCpp (optional, highest priority if set)
# LLAMACPP_MODEL_PATH=/path/to/model.gguf

# Authentication
JWT_SECRET=your-secret-key-at-least-32-characters
API_KEY=your-api-key

# Optional: Qdrant for vector search
# QDRANT_URL=http://localhost:6334
# QDRANT_API_KEY=
```

### Provider Priority

When multiple providers are configured, they are selected in this order:

1. **LlamaCpp** - If `LLAMACPP_MODEL_PATH` is set
2. **OpenAI** - If `OPENAI_API_KEY` is set
3. **Ollama** - Default fallback (no API key required)

### Dynamic Configuration (TOON)

In addition to `ares.toml`, A.R.E.S supports **TOON (Token Oriented Object Notation)** files for behavioral configuration with hot-reloading:

```
config/
β”œβ”€β”€ agents/
β”‚   β”œβ”€β”€ router.toon
β”‚   β”œβ”€β”€ orchestrator.toon
β”‚   └── product.toon
β”œβ”€β”€ models/
β”‚   β”œβ”€β”€ fast.toon
β”‚   └── balanced.toon
β”œβ”€β”€ tools/
β”‚   └── calculator.toon
β”œβ”€β”€ workflows/
β”‚   └── default.toon
└── mcps/
    └── filesystem.toon
```

**Example TOON agent config** (`config/agents/router.toon`):

```toon
name: router
model: fast
max_tool_iterations: 5
parallel_tools: false
tools[0]:
system_prompt: |
  You are a router agent that directs requests to specialized agents.
```

**Enable TOON configs** in `ares.toml`:

```toml
[config]
agents_dir = "config/agents"
models_dir = "config/models"
tools_dir = "config/tools"
workflows_dir = "config/workflows"
mcps_dir = "config/mcps"
hot_reload = true
```

TOON files are automatically hot-reloaded when changed. See [docs/DIR-12-research.md](docs/DIR-12-research.md) for details.

### User-Created Agents API

Users can create custom agents stored in the database with TOON import/export:

```bash
# Create a custom agent
curl -X POST http://localhost:3000/api/agents \
  -H "Authorization: Bearer $TOKEN" \
  -H "Content-Type: application/json" \
  -d '{
    "name": "my-agent",
    "model": "balanced",
    "system_prompt": "You are a helpful assistant.",
    "tools": ["calculator"]
  }'

# Export as TOON
curl http://localhost:3000/api/agents/{id}/export \
  -H "Authorization: Bearer $TOKEN"

# Import from TOON
curl -X POST http://localhost:3000/api/agents/import \
  -H "Authorization: Bearer $TOKEN" \
  -H "Content-Type: text/plain" \
  -d 'name: imported-agent
model: fast
system_prompt: |
  You are an imported agent.'
```

## Architecture

```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                            ares.toml (Configuration)                         β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”‚
β”‚  β”‚providers β”‚  β”‚ models   β”‚  β”‚ agents   β”‚  β”‚  tools   β”‚  β”‚workflows β”‚     β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                               β”‚ Hot Reload
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                         AresConfigManager                                    β”‚
β”‚                    (Thread-safe config access)                               β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                               β”‚
       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
       β”‚                       β”‚                           β”‚
β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”         β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”            β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”
β”‚  Provider   β”‚         β”‚    Agent    β”‚            β”‚    Tool     β”‚
β”‚  Registry   β”‚         β”‚  Registry   β”‚            β”‚  Registry   β”‚
β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜         β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜            β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜
       β”‚                       β”‚                          β”‚
       β”‚                β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”                   β”‚
       β”‚                β”‚Configurable β”‚β—„β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
       β”‚                β”‚   Agent     β”‚  (filtered tools)
       β”‚                β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜
       β”‚                       β”‚
β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚      LLM Clients             β”‚                                               β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”      β”‚                                               β”‚
β”‚  β”‚Ollama  β”‚ β”‚OpenAI  β”‚      β”‚                                               β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β”‚                                               β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”                 β”‚                                               β”‚
β”‚  β”‚LlamaCppβ”‚                 β”‚                                               β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜                 β”‚                                               β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                         Workflow Engine                                      β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    execute_workflow()    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                  β”‚
β”‚  β”‚  Workflow   │─────────────────────────▢│  Agent      β”‚                  β”‚
β”‚  β”‚  Config     β”‚                          β”‚  Execution  β”‚                  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                          β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β”‚
      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      β”‚                       β”‚                   β”‚
β”Œβ”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”
β”‚  API Layer    β”‚     β”‚ Tool Calls   β”‚    β”‚  Knowledge  β”‚
β”‚  (Axum)       β”‚     β”‚              β”‚    β”‚    Bases    β”‚
β”‚ /api/chat     β”‚     β”‚ - Calculator β”‚    β”‚  - SQLite   β”‚
β”‚ /api/research β”‚     β”‚ - Web Search β”‚    β”‚  - Qdrant   β”‚
β”‚ /api/workflowsβ”‚     β”‚              β”‚    β”‚             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

### Key Components

- **AresConfigManager**: Thread-safe configuration management with hot-reloading
- **ProviderRegistry**: Creates LLM clients based on model configuration  
- **AgentRegistry**: Creates ConfigurableAgents from TOML configuration
- **ToolRegistry**: Manages available tools and their configurations
- **ConfigurableAgent**: Generic agent implementation that uses config for behavior
- **WorkflowEngine**: Executes declarative workflows defined in TOML

## API Documentation

Interactive Swagger UI available at: `http://localhost:3000/swagger-ui/`

### Authentication

#### Register
```bash
curl -X POST http://localhost:3000/api/auth/register \
  -H "Content-Type: application/json" \
  -d '{
    "email": "user@example.com",
    "password": "secure_password",
    "name": "John Doe"
  }'
```

#### Login
```bash
curl -X POST http://localhost:3000/api/auth/login \
  -H "Content-Type: application/json" \
  -d '{
    "email": "user@example.com",
    "password": "secure_password"
  }'
```

Response:
```json
{
  "access_token": "eyJ...",
  "refresh_token": "eyJ...",
  "expires_in": 900
}
```

### Chat

```bash
curl -X POST http://localhost:3000/api/chat \
  -H "Authorization: Bearer <access_token>" \
  -H "Content-Type: application/json" \
  -d '{
    "message": "What products do we have?",
    "agent_type": "product"
  }'
```

### Deep Research

```bash
curl -X POST http://localhost:3000/api/research \
  -H "Authorization: Bearer <access_token>" \
  -H "Content-Type: application/json" \
  -d '{
    "query": "Analyze market trends in renewable energy",
    "depth": 3,
    "max_iterations": 5
  }'
```

### Workflows

Workflows enable multi-agent orchestration. Define workflows in `ares.toml`:

```toml
[workflows.default]
entry_agent = "router"           # Starting agent
fallback_agent = "orchestrator"  # Used if routing fails
max_depth = 5                    # Maximum agent chain depth
max_iterations = 10              # Maximum total iterations
```

#### List Available Workflows

```bash
curl http://localhost:3000/api/workflows \
  -H "Authorization: Bearer <access_token>"
```

Response:
```json
["default", "research"]
```

#### Execute a Workflow

```bash
curl -X POST http://localhost:3000/api/workflows/default \
  -H "Authorization: Bearer <access_token>" \
  -H "Content-Type: application/json" \
  -d '{
    "query": "What are our Q4 product sales figures?"
  }'
```

Response:
```json
{
  "final_response": "Based on the Q4 data, our product sales were...",
  "steps_executed": 3,
  "agents_used": ["router", "sales", "product"],
  "reasoning_path": [
    {
      "agent_name": "router",
      "input": "What are our Q4 product sales figures?",
      "output": "sales",
      "timestamp": 1702500000,
      "duration_ms": 150
    },
    {
      "agent_name": "sales",
      "input": "What are our Q4 product sales figures?",
      "output": "For Q4 sales data, I'll need to check...",
      "timestamp": 1702500001,
      "duration_ms": 800
    },
    {
      "agent_name": "product",
      "input": "What are our Q4 product sales figures?",
      "output": "Based on the Q4 data, our product sales were...",
      "timestamp": 1702500002,
      "duration_ms": 650
    }
  ]
}
```

#### Workflow with Context

```bash
curl -X POST http://localhost:3000/api/workflows/default \
  -H "Authorization: Bearer <access_token>" \
  -H "Content-Type: application/json" \
  -d '{
    "query": "What are the sales figures?",
    "context": {
      "department": "electronics",
      "quarter": "Q4"
    }
  }'
```

## Tool Calling

A.R.E.S supports tool calling with Ollama models that support function calling (ministral-3:3b+, mistral, etc.):

### Built-in Tools

- **calculator**: Basic arithmetic operations
- **web_search**: Web search via DuckDuckGo (no API key required)

### Tool Calling Example

```rust
use ares::llm::{OllamaClient, OllamaToolCoordinator};
use ares::tools::registry::ToolRegistry;
use ares::tools::{Calculator, WebSearch};

// Set up tools
let mut registry = ToolRegistry::new();
registry.register

## Testing

A.R.E.S has comprehensive test coverage with both mocked and live tests.

### Unit & Integration Tests (Mocked)

```bash
# Run all tests (no external services required)
cargo test
# Or: just test

# Run with verbose output
cargo test -- --nocapture
# Or: just test-verbose
```

### Live Ollama Tests

Tests that connect to a **real Ollama instance** are available but **ignored by default**.

#### Prerequisites
- Running Ollama server at `http://localhost:11434`
- A model installed (e.g., `ollama pull ministral-3:3b`)

#### Running Live Tests

```bash
# Set the environment variable and run ignored tests
OLLAMA_LIVE_TESTS=1 cargo test --test ollama_live_tests -- --ignored
# Or: just test-ignored

# All tests (normal + ignored)
just test-all

# With verbose output
just test-all-verbose

# With custom Ollama URL or model
OLLAMA_URL=http://192.168.1.100:11434 OLLAMA_MODEL=mistral OLLAMA_LIVE_TESTS=1 \
  cargo test --test ollama_live_tests -- --ignored
```

Or add `OLLAMA_LIVE_TESTS=1` to your `.env` file.

### API Tests (Hurl)

End-to-end API tests using [Hurl](https://hurl.dev):

```bash
# Install Hurl
brew install hurl  # macOS

# Run API tests (server must be running)
just hurl

# Run with verbose output
just hurl-verbose

# Run specific test group
just hurl-health
just hurl-auth
just hurl-chat
```

See [CONTRIBUTING.md](CONTRIBUTING.md) for more testing details.

## Common Commands (just)

A.R.E.S uses [just](https://just.systems) as a command runner. Run `just --list` to see all available commands:

```bash
# Show all commands
just --list

# Build & Run
just build          # Build (debug)
just build-release  # Build (release)
just run            # Run server
just run-debug      # Run with debug logging

# Testing
just test           # Run tests
just test-verbose   # Run tests with output
just test-ignored   # Run live Ollama tests
just test-all       # Run all tests
just hurl           # Run API tests

# Code Quality
just lint           # Run clippy
just fmt            # Format code
just quality        # Run all quality checks

# Docker
just docker-up      # Start dev services
just docker-down    # Stop services
just docker-logs    # View logs

# Ollama
just ollama-pull    # Pull default model
just ollama-status  # Check if running

# Info
just info           # Show project info
just status         # Show environment status
```