1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// Copyright (c) Aptos
// SPDX-License-Identifier: Apache-2.0

//! Internal module containing convenience utility functions mainly for testing

use crate::traits::Uniform;
use serde::{Deserialize, Serialize};

/// A deterministic seed for PRNGs related to keys
pub const TEST_SEED: [u8; 32] = [0u8; 32];

/// A keypair consisting of a private and public key
#[cfg_attr(feature = "cloneable-private-keys", derive(Clone))]
#[derive(Serialize, Deserialize, PartialEq, Eq)]
pub struct KeyPair<S, P>
where
    for<'a> P: From<&'a S>,
{
    /// the private key component
    pub private_key: S,
    /// the public key component
    pub public_key: P,
}

impl<S, P> From<S> for KeyPair<S, P>
where
    for<'a> P: From<&'a S>,
{
    fn from(private_key: S) -> Self {
        KeyPair {
            public_key: (&private_key).into(),
            private_key,
        }
    }
}

impl<S, P> Uniform for KeyPair<S, P>
where
    S: Uniform,
    for<'a> P: From<&'a S>,
{
    fn generate<R>(rng: &mut R) -> Self
    where
        R: ::rand::RngCore + ::rand::CryptoRng,
    {
        let private_key = S::generate(rng);
        private_key.into()
    }
}

/// A pair consisting of a private and public key
impl<S, P> Uniform for (S, P)
where
    S: Uniform,
    for<'a> P: From<&'a S>,
{
    fn generate<R>(rng: &mut R) -> Self
    where
        R: ::rand::RngCore + ::rand::CryptoRng,
    {
        let private_key = S::generate(rng);
        let public_key = (&private_key).into();
        (private_key, public_key)
    }
}

impl<Priv, Pub> std::fmt::Debug for KeyPair<Priv, Pub>
where
    Priv: Serialize,
    Pub: Serialize + for<'a> From<&'a Priv>,
{
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let mut v = bcs::to_bytes(&self.private_key).unwrap();
        v.extend(&bcs::to_bytes(&self.public_key).unwrap());
        write!(f, "{}", hex::encode(&v[..]))
    }
}

use crate::traits;
#[cfg(any(test, feature = "fuzzing"))]
use proptest::prelude::*;
use rand::prelude::IteratorRandom;
#[cfg(any(test, feature = "fuzzing"))]
use rand::{rngs::StdRng, SeedableRng};

/// Produces a uniformly random keypair from a seed
#[cfg(any(test, feature = "fuzzing"))]
pub fn uniform_keypair_strategy<Priv, Pub>() -> impl Strategy<Value = KeyPair<Priv, Pub>>
where
    Pub: Serialize + for<'a> From<&'a Priv>,
    Priv: Serialize + Uniform,
{
    // The no_shrink is because keypairs should be fixed -- shrinking would cause a different
    // keypair to be generated, which appears to not be very useful.
    any::<[u8; 32]>()
        .prop_map(|seed| {
            let mut rng = StdRng::from_seed(seed);
            KeyPair::<Priv, Pub>::generate(&mut rng)
        })
        .no_shrink()
}

/// Produces a uniformly random keypair from a seed and the user can alter this sleed slightly.
/// Useful for circumstances where you want two disjoint keypair generations that may interact with
/// each other.
#[cfg(any(test, feature = "fuzzing"))]
pub fn uniform_keypair_strategy_with_perturbation<Priv, Pub>(
    perturbation: u8,
) -> impl Strategy<Value = KeyPair<Priv, Pub>>
where
    Pub: Serialize + for<'a> From<&'a Priv>,
    Priv: Serialize + Uniform,
{
    // The no_shrink is because keypairs should be fixed -- shrinking would cause a different
    // keypair to be generated, which appears to not be very useful.
    any::<[u8; 32]>()
        .prop_map(move |mut seed| {
            for elem in seed.iter_mut() {
                *elem = elem.saturating_add(perturbation);
            }
            let mut rng = StdRng::from_seed(seed);
            KeyPair::<Priv, Pub>::generate(&mut rng)
        })
        .no_shrink()
}

/// Returns `subset_size` numbers picked uniformly at random from 0 to `max_set_size - 1` (inclusive).
pub fn random_subset<R>(mut rng: &mut R, max_set_size: usize, subset_size: usize) -> Vec<usize>
where
    R: ::rand::Rng + ?Sized,
{
    let mut vec = (0..max_set_size)
        .choose_multiple(&mut rng, subset_size)
        .into_iter()
        .collect::<Vec<usize>>();

    vec.sort_unstable();

    vec
}

/// Generates `num_signers` random key-pairs.
pub fn random_keypairs<R, PrivKey, PubKey>(
    mut rng: &mut R,
    num_signers: usize,
) -> Vec<KeyPair<PrivKey, PubKey>>
where
    R: ::rand::RngCore + ::rand::CryptoRng,
    PubKey: for<'a> std::convert::From<&'a PrivKey>,
    PrivKey: traits::Uniform,
{
    let mut key_pairs = vec![];
    for _ in 0..num_signers {
        key_pairs.push(KeyPair::<PrivKey, PubKey>::generate(&mut rng));
    }
    key_pairs
}

/// This struct provides a means of testing signing and verification through
/// BCS serialization and domain separation
#[cfg(any(test, feature = "fuzzing"))]
#[derive(Debug, Serialize, Deserialize)]
pub struct TestAptosCrypto(pub String);

// the following block is macro expanded from derive(CryptoHasher, BCSCryptoHash)

/// Cryptographic hasher for an BCS-serializable #item
#[cfg(any(test, feature = "fuzzing"))]
pub struct TestAptosCryptoHasher(crate::hash::DefaultHasher);
#[cfg(any(test, feature = "fuzzing"))]
impl ::core::clone::Clone for TestAptosCryptoHasher {
    #[inline]
    fn clone(&self) -> TestAptosCryptoHasher {
        match *self {
            TestAptosCryptoHasher(ref __self_0_0) => {
                TestAptosCryptoHasher(::core::clone::Clone::clone(&(*__self_0_0)))
            }
        }
    }
}
#[cfg(any(test, feature = "fuzzing"))]
static TEST_CRYPTO_SEED: crate::_once_cell::sync::OnceCell<[u8; 32]> =
    crate::_once_cell::sync::OnceCell::new();
#[cfg(any(test, feature = "fuzzing"))]
impl TestAptosCryptoHasher {
    fn new() -> Self {
        let name = crate::_serde_name::trace_name::<TestAptosCrypto>()
            .expect("The `CryptoHasher` macro only applies to structs and enums");
        TestAptosCryptoHasher(crate::hash::DefaultHasher::new(name.as_bytes()))
    }
}
#[cfg(any(test, feature = "fuzzing"))]
static TEST_CRYPTO_HASHER: crate::_once_cell::sync::Lazy<TestAptosCryptoHasher> =
    crate::_once_cell::sync::Lazy::new(TestAptosCryptoHasher::new);
#[cfg(any(test, feature = "fuzzing"))]
impl std::default::Default for TestAptosCryptoHasher {
    fn default() -> Self {
        TEST_CRYPTO_HASHER.clone()
    }
}
#[cfg(any(test, feature = "fuzzing"))]
impl crate::hash::CryptoHasher for TestAptosCryptoHasher {
    fn seed() -> &'static [u8; 32] {
        TEST_CRYPTO_SEED.get_or_init(|| {
            let name = crate::_serde_name::trace_name::<TestAptosCrypto>()
                .expect("The `CryptoHasher` macro only applies to structs and enums.")
                .as_bytes();
            crate::hash::DefaultHasher::prefixed_hash(name)
        })
    }
    fn update(&mut self, bytes: &[u8]) {
        self.0.update(bytes);
    }
    fn finish(self) -> crate::hash::HashValue {
        self.0.finish()
    }
}
#[cfg(any(test, feature = "fuzzing"))]
impl std::io::Write for TestAptosCryptoHasher {
    fn write(&mut self, bytes: &[u8]) -> std::io::Result<usize> {
        self.0.update(bytes);
        Ok(bytes.len())
    }
    fn flush(&mut self) -> std::io::Result<()> {
        Ok(())
    }
}
#[cfg(any(test, feature = "fuzzing"))]
impl crate::hash::CryptoHash for TestAptosCrypto {
    type Hasher = TestAptosCryptoHasher;
    fn hash(&self) -> crate::hash::HashValue {
        use crate::hash::CryptoHasher;
        let mut state = Self::Hasher::default();
        bcs::serialize_into(&mut state, &self)
            .expect("BCS serialization of TestAptosCrypto should not fail");
        state.finish()
    }
}

/// Produces a random TestAptosCrypto signable / verifiable struct.
#[cfg(any(test, feature = "fuzzing"))]
pub fn random_serializable_struct() -> impl Strategy<Value = TestAptosCrypto> {
    (String::arbitrary()).prop_map(TestAptosCrypto).no_shrink()
}