Skip to main content

Commands

Enum Commands 

Source
pub enum Commands {
Show 39 variants Run {
Show 22 fields source: String, positional_prompt: Option<String>, input: Option<PathBuf>, prompt: Option<String>, max_tokens: usize, stream: bool, language: Option<String>, task: Option<String>, format: String, no_gpu: bool, gpu: bool, offline: bool, benchmark: bool, trace: bool, trace_steps: Option<Vec<String>>, trace_verbose: bool, trace_output: Option<PathBuf>, trace_level: String, trace_payload: bool, profile: bool, chat: bool, verbose: bool,
}, Serve { file: PathBuf, port: u16, host: String, no_cors: bool, no_metrics: bool, no_gpu: bool, gpu: bool, batch: bool, trace: bool, trace_level: String, profile: bool, }, Inspect { file: PathBuf, vocab: bool, filters: bool, weights: bool, json: bool, }, Debug { file: PathBuf, drama: bool, hex: bool, strings: bool, limit: usize, }, Validate { file: PathBuf, quality: bool, strict: bool, min_score: Option<u8>, }, Diff { file1: PathBuf, file2: PathBuf, weights: bool, values: bool, filter: Option<String>, limit: usize, transpose_aware: bool, json: bool, }, Tensors { file: PathBuf, stats: bool, filter: Option<String>, limit: usize, json: bool, }, Trace { file: PathBuf, layer: Option<String>, reference: Option<PathBuf>, json: bool, verbose: bool, payload: bool, diff: bool, interactive: bool, }, Lint { file: PathBuf, }, Explain { code: Option<String>, file: Option<PathBuf>, tensor: Option<String>, }, Canary { command: CanaryCommands, }, Export { file: PathBuf, format: String, output: PathBuf, quantize: Option<String>, }, Import { source: String, output: Option<PathBuf>, arch: String, quantize: Option<String>, strict: bool, preserve_q4k: bool, tokenizer: Option<PathBuf>, enforce_provenance: bool, allow_no_config: bool, }, Pull { model_ref: String, force: bool, }, List, Rm { model_ref: String, }, Convert { file: PathBuf, quantize: Option<String>, compress: Option<String>, output: PathBuf, force: bool, }, Merge { files: Vec<PathBuf>, strategy: String, output: PathBuf, weights: Option<Vec<f32>>, }, Tui { file: Option<PathBuf>, }, Cbtop {
Show 16 fields model: Option<String>, attach: Option<String>, model_path: Option<PathBuf>, headless: bool, json: bool, output: Option<PathBuf>, ci: bool, throughput: Option<f64>, brick_score: Option<u32>, warmup: usize, iterations: usize, speculative: bool, speculation_k: usize, draft_model: Option<PathBuf>, concurrent: usize, simulated: bool,
}, Probar { file: PathBuf, output: PathBuf, format: String, golden: Option<PathBuf>, layer: Option<String>, }, CompareHf { file: PathBuf, hf: String, tensor: Option<String>, threshold: f64, json: bool, }, Hex {
Show 14 fields file: PathBuf, tensor: Option<String>, limit: usize, stats: bool, list: bool, json: bool, header: bool, blocks: bool, distribution: bool, contract: bool, entropy: bool, raw: bool, offset: String, width: usize,
}, Tree { file: PathBuf, filter: Option<String>, format: String, sizes: bool, depth: Option<usize>, }, Flow { file: PathBuf, layer: Option<String>, component: String, verbose: bool, }, Chat {
Show 14 fields file: PathBuf, temperature: f32, top_p: f32, max_tokens: usize, system: Option<String>, inspect: bool, no_gpu: bool, gpu: bool, trace: bool, trace_steps: Option<Vec<String>>, trace_verbose: bool, trace_output: Option<PathBuf>, trace_level: String, profile: bool,
}, Bench { file: PathBuf, warmup: usize, iterations: usize, max_tokens: usize, prompt: Option<String>, fast: bool, brick: Option<String>, }, Eval { file: PathBuf, dataset: String, text: Option<String>, max_tokens: usize, threshold: f32, }, Profile {
Show 22 fields file: PathBuf, granular: bool, format: String, focus: Option<String>, detect_naive: bool, threshold: f64, compare_hf: Option<String>, energy: bool, perf_grade: bool, callgraph: bool, fail_on_naive: bool, output: Option<PathBuf>, ci: bool, assert_throughput: Option<f64>, assert_p99: Option<f64>, assert_p50: Option<f64>, warmup: usize, measure: usize, tokens: usize, ollama: bool, no_gpu: bool, compare: Option<PathBuf>,
}, Qa {
Show 22 fields file: PathBuf, assert_tps: Option<f64>, assert_speedup: Option<f64>, assert_gpu_speedup: Option<f64>, skip_golden: bool, skip_throughput: bool, skip_ollama: bool, skip_gpu_speedup: bool, skip_contract: bool, skip_format_parity: bool, skip_ptx_parity: bool, safetensors_path: Option<PathBuf>, iterations: usize, warmup: usize, max_tokens: usize, json: bool, verbose: bool, min_executed: Option<usize>, previous_report: Option<PathBuf>, regression_threshold: Option<f64>, skip_gpu_state: bool, skip_metadata: bool,
}, Parity { file: PathBuf, prompt: String, assert: bool, }, PtxMap { file: PathBuf, kernel: Option<String>, reverse: Option<String>, json: bool, verbose: bool, prefill: bool, }, Ptx { file: Option<PathBuf>, kernel: Option<String>, strict: bool, bugs: bool, json: bool, verbose: bool, }, Tune { file: Option<PathBuf>, method: String, rank: Option<u32>, vram: f64, plan: bool, model: Option<String>, freeze_base: bool, train_data: Option<PathBuf>, json: bool, }, Showcase { auto_verify: bool, step: Option<String>, tier: String, model_dir: PathBuf, baseline: String, zram: bool, runs: usize, gpu: bool, json: bool, verbose: bool, quiet: bool, }, Check { file: PathBuf, no_gpu: bool, }, Rosetta { action: RosettaCommands, }, Publish { directory: PathBuf, repo_id: String, model_name: Option<String>, license: String, pipeline_tag: String, library_name: Option<String>, tags: Option<Vec<String>>, message: Option<String>, dry_run: bool, }, Oracle { source: Option<String>, family: Option<String>, size: Option<String>, compliance: bool, tensors: bool, stats: bool, explain: bool, kernels: bool, validate: bool, full: bool, },
}

Variants§

§

Run

Run model directly (auto-download, cache, execute)

Fields

§source: String

Model source: local path, hf://org/repo, or URL

§positional_prompt: Option<String>

Text prompt (positional): apr run model.gguf "What is 2+2?"

§input: Option<PathBuf>

Input file (audio, text, etc.)

§prompt: Option<String>

Text prompt for generation (for LLM models)

§max_tokens: usize

Maximum tokens to generate (default: 32)

§stream: bool

Enable streaming output

§language: Option<String>

Language code (for ASR models)

§task: Option<String>

Task (transcribe, translate)

§format: String

Output format (text, json, srt, vtt)

§no_gpu: bool

Disable GPU acceleration

§gpu: bool

Force GPU acceleration

§offline: bool

Offline mode: block all network access (Sovereign AI compliance)

§benchmark: bool

Benchmark mode: output performance metrics (tok/s, latency)

§trace: bool

Enable inference tracing (APR-TRACE-001)

§trace_steps: Option<Vec<String>>

Trace specific steps only (comma-separated)

§trace_verbose: bool

Verbose tracing (show tensor values)

§trace_output: Option<PathBuf>

Save trace output to JSON file

§trace_level: String

Trace detail level (none, basic, layer, payload)

§trace_payload: bool

Shorthand for –trace –trace-level payload (tensor value inspection)

§profile: bool

Enable inline Roofline profiling (PMAT-SHOWCASE-METHODOLOGY-001)

§chat: bool

Apply chat template for Instruct models (GAP-UX-001)

Wraps prompt in ChatML format for Qwen2, LLaMA, Mistral Instruct models. Format: <|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n

§verbose: bool

Show verbose output (model loading, backend info)

§

Serve

Start inference server (REST API, streaming, metrics)

Fields

§file: PathBuf

Path to model file

§port: u16

Port to listen on

§host: String

Host to bind to

§no_cors: bool

Disable CORS

§no_metrics: bool

Disable Prometheus metrics endpoint

§no_gpu: bool

Disable GPU acceleration

§gpu: bool

Force GPU acceleration (requires CUDA)

§batch: bool

Enable batched GPU inference for 2X+ throughput

§trace: bool

Enable inference tracing (PMAT-SHOWCASE-METHODOLOGY-001)

§trace_level: String

Trace detail level (none, basic, layer)

§profile: bool

Enable inline Roofline profiling (adds X-Profile headers)

§

Inspect

Inspect model metadata, vocab, and structure

Fields

§file: PathBuf

Path to .apr model file

§vocab: bool

Show vocabulary details

§filters: bool

Show filter/security details

§weights: bool

Show weight statistics

§json: bool

Output as JSON

§

Debug

Simple debugging output (“drama” mode available)

Fields

§file: PathBuf

Path to .apr model file

§drama: bool

Theatrical “drama” mode output

§hex: bool

Show hex dump

§strings: bool

Extract ASCII strings

§limit: usize

Limit output lines

§

Validate

Validate model integrity and quality

Fields

§file: PathBuf

Path to .apr model file

§quality: bool

Show 100-point quality assessment

§strict: bool

Strict validation (fail on warnings)

§min_score: Option<u8>

Minimum score to pass (0-100)

§

Diff

Compare two models

Fields

§file1: PathBuf

First model file

§file2: PathBuf

Second model file

§weights: bool

Show weight-level differences

§values: bool

Compare actual tensor values with statistical analysis

§filter: Option<String>

Filter tensors by name pattern (for –values)

§limit: usize

Maximum number of tensors to compare (for –values)

§transpose_aware: bool

Account for transpose when comparing (GGUF col-major vs APR row-major)

§json: bool

Output as JSON

§

Tensors

List tensor names and shapes

Fields

§file: PathBuf

Path to .apr model file

§stats: bool

Show tensor statistics (mean, std, min, max)

§filter: Option<String>

Filter tensors by name pattern

§limit: usize

Limit number of tensors shown (0 = unlimited)

§json: bool

Output as JSON

§

Trace

Layer-by-layer trace analysis

Fields

§file: PathBuf

Path to .apr model file

§layer: Option<String>

Filter layers by name pattern

§reference: Option<PathBuf>

Compare with reference model

§json: bool

Output as JSON

§verbose: bool

Verbose output with per-layer stats

§payload: bool

Trace payload through model

§diff: bool

Diff mode

§interactive: bool

Interactive mode

§

Lint

Check for best practices and conventions

Fields

§file: PathBuf

Path to .apr model file

§

Explain

Explain errors, architecture, and tensors

Fields

§code: Option<String>

Explain a specific error code

§file: Option<PathBuf>

Path to .apr model file (optional context)

§tensor: Option<String>

Explain a specific tensor

§

Canary

Manage canary tests for regression

Fields

§command: CanaryCommands
§

Export

Export model to other formats

Fields

§file: PathBuf

Path to .apr model file

§format: String

Output format (onnx, safetensors, gguf)

§output: PathBuf

Output file path

§quantize: Option<String>

Apply quantization during export (int8, int4, fp16)

§

Import

Import from external formats (hf://org/repo, local files, URLs)

Fields

§source: String

Source: hf://org/repo, local file, or URL

§output: Option<PathBuf>

Output .apr file path (default: derived from source name)

§arch: String

Model architecture (whisper, llama, bert, auto)

§quantize: Option<String>

Quantization (int8, int4, fp16)

§strict: bool

Strict mode: reject unverified architectures and fail on validation errors

§preserve_q4k: bool

Preserve Q4K quantization for fused kernel inference (GGUF only) Uses realizar’s Q4K converter instead of dequantizing to F32

§tokenizer: Option<PathBuf>

PMAT-232: External tokenizer.json for weights-only GGUF files. Required if the GGUF has no embedded tokenizer vocabulary.

§enforce_provenance: bool

F-GT-001: Enforce provenance chain. Rejects pre-baked GGUF imports (only SafeTensors sources allowed). Ensures single-provenance testing.

§allow_no_config: bool

GH-223: Allow import without config.json (default: error). Without config.json, hyperparameters like rope_theta are inferred from tensor shapes and may be wrong, producing garbage output.

§

Pull

Download and cache model from HuggingFace (Ollama-like UX)

Fields

§model_ref: String

Model reference (alias, hf:// URI, or org/repo)

§force: bool

Force re-download even if cached

§

List

List cached models

§

Rm

Remove model from cache

Fields

§model_ref: String

Model reference to remove

§

Convert

Convert/optimize model

Fields

§file: PathBuf

Path to .apr model file

§quantize: Option<String>

Quantize to format (int8, int4, fp16, q4k)

§compress: Option<String>

Compress output (none, zstd, zstd-max, lz4)

§output: PathBuf

Output file path

§force: bool

Force overwrite existing files

§

Merge

Merge multiple models

Fields

§files: Vec<PathBuf>

Model files to merge

§strategy: String

Merge strategy (average, weighted, ties)

§output: PathBuf

Output file path

§weights: Option<Vec<f32>>

Weights for weighted merge (comma-separated, e.g., “0.7,0.3”)

§

Tui

Interactive terminal UI

Fields

§file: Option<PathBuf>

Path to .apr model file

§

Cbtop

ComputeBrick pipeline monitor (cbtop)

Fields

§model: Option<String>

Model name (e.g., qwen2.5-coder-1.5b)

§attach: Option<String>

Attach to running realizar process

§model_path: Option<PathBuf>

Path to GGUF model file for real profiling

§headless: bool

Run in headless mode (no TUI, for CI/automation)

§json: bool

Output JSON format (requires –headless)

§output: Option<PathBuf>

Output file path (requires –headless)

§ci: bool

CI mode: exit with code 1 if thresholds not met

§throughput: Option<f64>

Minimum throughput threshold in tok/s (for –ci)

§brick_score: Option<u32>

Minimum brick score threshold 0-100 (for –ci)

§warmup: usize

Number of warmup iterations before measurement

§iterations: usize

Number of measurement iterations

§speculative: bool

PAR-100: Enable speculative decoding benchmark

§speculation_k: usize

PAR-100: Number of tokens to draft speculatively (default: 4)

§draft_model: Option<PathBuf>

PAR-099: Path to draft model for speculative decoding

§concurrent: usize

PAR-102: Number of concurrent requests

§simulated: bool

Use simulated data (for CI testing only)

§

Probar

Export for probar visual testing

Fields

§file: PathBuf

Path to .apr model file

§output: PathBuf

Output directory for test artifacts

§format: String

Export format: json, png, or both

§golden: Option<PathBuf>

Golden reference directory for comparison

§layer: Option<String>

Filter layers by name pattern

§

CompareHf

Compare APR model against HuggingFace source

Fields

§file: PathBuf

Path to .apr model file

§hf: String

HuggingFace repo ID (e.g., openai/whisper-tiny)

§tensor: Option<String>

Filter tensors by name pattern

§threshold: f64

Comparison threshold (default: 1e-5)

§json: bool

Output as JSON

§

Hex

Format-aware binary forensics (10X better than xxd)

Fields

§file: PathBuf

Path to model file (APR, GGUF, or SafeTensors)

§tensor: Option<String>

Filter tensors by name pattern

§limit: usize

Limit bytes/values to display

§stats: bool

Show tensor statistics

§list: bool

List tensor names only

§json: bool

Output as JSON

§header: bool

Annotated file header (magic, version, tensor count, metadata)

§blocks: bool

Q4K/Q6K/Q8_0 super-block structure with field annotations

§distribution: bool

Value histogram + entropy + kurtosis analysis

§contract: bool

Layout contract verification overlay per tensor

§entropy: bool

Per-region byte entropy analysis

§raw: bool

Raw bytes (like xxd but format-aware, with ASCII column)

§offset: String

Start at byte offset (supports 0x prefix for hex)

§width: usize

Bytes per row for raw output (default: 16)

§

Tree

Model architecture tree view

Fields

§file: PathBuf

Path to .apr model file

§filter: Option<String>

Filter by component pattern

§format: String

Output format: ascii, dot, mermaid, json

§sizes: bool

Show tensor sizes

§depth: Option<usize>

Maximum tree depth

§

Flow

Data flow visualization

Fields

§file: PathBuf

Path to .apr model file

§layer: Option<String>

Filter by layer pattern

§component: String

Component to visualize: full, encoder, decoder, etc.

§verbose: bool

Verbose output with statistics

§

Chat

Interactive chat with language model

Fields

§file: PathBuf

Path to .apr model file

§temperature: f32

Sampling temperature (0 = greedy, higher = more random)

§top_p: f32

Nucleus sampling threshold

§max_tokens: usize

Maximum tokens to generate per response

§system: Option<String>

System prompt to set model behavior

§inspect: bool

Show inspection info (top-k probs, tokens/sec)

§no_gpu: bool

Disable GPU acceleration (use CPU)

§gpu: bool

Force GPU acceleration (requires CUDA)

§trace: bool

Enable inference tracing (APR-TRACE-001)

§trace_steps: Option<Vec<String>>

Trace specific steps only (comma-separated)

§trace_verbose: bool

Verbose tracing

§trace_output: Option<PathBuf>

Save trace output to JSON file

§trace_level: String

Trace detail level (none, basic, layer, payload)

§profile: bool

Enable inline Roofline profiling (PMAT-SHOWCASE-METHODOLOGY-001)

§

Bench

Benchmark throughput (spec H12: >= 10 tok/s)

Fields

§file: PathBuf

Path to model file

§warmup: usize

Number of warmup iterations

§iterations: usize

Number of measurement iterations

§max_tokens: usize

Max tokens to generate per iteration

§prompt: Option<String>

Test prompt

§fast: bool

Use realizar for fast inference (vs aprender baseline)

§brick: Option<String>

Benchmark specific brick

§

Eval

Evaluate model perplexity (spec H13: PPL <= 20)

Fields

§file: PathBuf

Path to model file

§dataset: String

Dataset: wikitext-2, lambada, or custom

§text: Option<String>

Custom text (when dataset=custom)

§max_tokens: usize

Maximum tokens to evaluate

§threshold: f32

Perplexity threshold for pass/fail

§

Profile

Deep profiling with Roofline analysis

Fields

§file: PathBuf

Path to model file

§granular: bool

Layer-by-layer granular analysis

§format: String

Output format (human, json, flamegraph)

§focus: Option<String>

Focus on specific operation

§detect_naive: bool

Detect naive implementations

§threshold: f64

GFLOPS threshold for naive detection

§compare_hf: Option<String>

Compare against HuggingFace baseline

§energy: bool

Measure energy consumption (requires RAPL)

§perf_grade: bool

Compute performance grade (vs Ollama baseline)

§callgraph: bool

Show call graph

§fail_on_naive: bool

Exit non-zero if naive implementation detected

§output: Option<PathBuf>

Output file path for flamegraph SVG (GH-174, PMAT-182)

§ci: bool

Enable CI mode with assertion checks (exits 1 on failure)

§assert_throughput: Option<f64>

Minimum throughput in tok/s (CI assertion, exits 1 if below)

§assert_p99: Option<f64>

Maximum p99 latency in ms (CI assertion, exits 1 if above)

§assert_p50: Option<f64>

Maximum p50 latency in ms (CI assertion, exits 1 if above)

§warmup: usize

Warmup passes before measurement (default: 3)

§measure: usize

Measurement passes (default: 10)

§tokens: usize

Number of tokens to generate per measurement pass (default: 32)

§ollama: bool

Compare against Ollama baseline (runs ollama for comparison)

§no_gpu: bool

Disable GPU (force CPU-only profiling)

§compare: Option<PathBuf>

Compare against another model format (F-PROFILE-011)

§

Qa

Falsifiable QA checklist for model releases

Fields

§file: PathBuf

Path to model file

§assert_tps: Option<f64>

Minimum throughput threshold in tok/s

§assert_speedup: Option<f64>

Minimum speedup vs Ollama

§assert_gpu_speedup: Option<f64>

Minimum GPU vs CPU speedup (F-PERF-042)

§skip_golden: bool

Skip golden output test

§skip_throughput: bool

Skip throughput benchmark

§skip_ollama: bool

Skip Ollama parity comparison

§skip_gpu_speedup: bool

Skip GPU vs CPU speedup test (F-PERF-042)

§skip_contract: bool

Skip tensor contract validation (PMAT-235)

§skip_format_parity: bool

Skip cross-format parity test (F-QUAL-032)

§skip_ptx_parity: bool

Skip PTX parity validation (GH-219)

§safetensors_path: Option<PathBuf>

SafeTensors model path for cross-format parity test (F-QUAL-032)

§iterations: usize

Number of benchmark iterations

§warmup: usize

Number of warmup iterations

§max_tokens: usize

Maximum tokens to generate

§json: bool

Output as JSON (for CI integration)

§verbose: bool

Verbose output

§min_executed: Option<usize>

Minimum number of gates that must execute (fail if fewer)

§previous_report: Option<PathBuf>

Previous QA report for regression detection

§regression_threshold: Option<f64>

Maximum allowed performance regression ratio (default: 0.10 = 10%)

§skip_gpu_state: bool

Skip GPU state isolation test

§skip_metadata: bool

Skip metadata plausibility validation (Bug 210, GH-222)

§

Parity

GPU/CPU parity check (PMAT-232: genchi genbutsu — see where GPU diverges)

Fields

§file: PathBuf

Path to GGUF model file

§prompt: String

Prompt text (default: “What is 2+2?”)

§assert: bool

Assert parity (exit non-zero on divergence)

§

PtxMap

Model-to-PTX source mapping (Mieruka: make GPU kernel dispatch visible)

Fields

§file: PathBuf

Path to GGUF model file

§kernel: Option<String>

Filter to specific kernel (e.g., –kernel Q4KGemv)

§reverse: Option<String>

Reverse lookup: kernel name -> which layers/steps use it

§json: bool

Output as JSON

§verbose: bool

Full PTX snippets and detailed analysis

§prefill: bool

Show batched prefill kernel variants instead of decode

§

Ptx

PTX analysis and bug detection (trueno-explain: register pressure, roofline, 15+ bug detectors)

Fields

§file: Option<PathBuf>

Path to a PTX source file

§kernel: Option<String>

Analyze a named kernel from trueno-gpu

§strict: bool

Strict mode (no performance whitelist)

§bugs: bool

Show only bug analysis (skip register/memory/roofline)

§json: bool

Output as JSON

§verbose: bool

Verbose output (include PTX source listing)

§

Tune

ML tuning: LoRA/QLoRA configuration and memory planning (GH-176)

Fields

§file: Option<PathBuf>

Path to model file (optional if using –model)

§method: String

Tuning method: auto, full, lora, qlora

§rank: Option<u32>

LoRA rank (default: auto-selected)

§vram: f64

Available VRAM in GB

§plan: bool

Only plan configuration, don’t train

§model: Option<String>

Model size for planning (e.g., “7B”, “1.5B”)

§freeze_base: bool

Freeze base model weights

§train_data: Option<PathBuf>

Training data file (JSONL format)

§json: bool

Output as JSON (for CI integration)

§

Showcase

Qwen2.5-Coder showcase demo

Fields

§auto_verify: bool

Run all steps with auto-verification

§step: Option<String>

Run specific step

§tier: String

Model tier: tiny (0.5B), small (1.5B), medium (7B), large (32B)

§model_dir: PathBuf

Model directory

§baseline: String

Baselines to compare: llama-cpp,ollama

§zram: bool

Enable ZRAM compression

§runs: usize

Number of benchmark runs (spec: minimum 30)

§gpu: bool

Force GPU acceleration

§json: bool

Output results as JSON

§verbose: bool

Verbose output

§quiet: bool

Quiet mode (errors only)

§

Check

Model self-test: 10-stage pipeline integrity check (APR-TRACE-001)

Fields

§file: PathBuf

Path to model file

§no_gpu: bool

Disable GPU acceleration

§

Rosetta

Rosetta Stone - Universal model format converter (PMAT-ROSETTA-001)

Fields

§action: RosettaCommands
§

Publish

Publish model to HuggingFace Hub (APR-PUB-001)

Fields

§directory: PathBuf

Directory containing model files to publish

§repo_id: String

HuggingFace repository ID (e.g., paiml/whisper-apr-tiny)

§model_name: Option<String>

Model display name

§license: String

License (SPDX identifier, default: mit)

§pipeline_tag: String

Pipeline tag (e.g., automatic-speech-recognition, text-generation)

§library_name: Option<String>

Library name (e.g., whisper-apr, aprender)

§tags: Option<Vec<String>>

Additional tags (comma-separated)

§message: Option<String>

Commit message

§dry_run: bool

Dry run (preview without uploading)

§

Oracle

Model Oracle: identify family, size, constraints, and contract compliance

Three modes: apr oracle - Analyze local model file apr oracle hf://org/repo - Query HuggingFace API apr oracle –family qwen2 - Describe contract from YAML

Fields

§source: Option<String>

Model file path or hf:// URI

§family: Option<String>

Show contract for a model family (e.g., qwen2, llama, whisper, bert)

§size: Option<String>

Filter to a specific size variant (e.g., 0.5b, 7b)

§compliance: bool

Run full contract compliance check

§tensors: bool

List all tensor shapes

§stats: bool

Show statistical analysis (GQA, memory, FFN, FLOPS)

§explain: bool

Show architecture explanations with literature references

§kernels: bool

Show kernel compatibility report (quantization, TPS estimates)

§validate: bool

Cross-validate contract against HuggingFace config.json

§full: bool

Enable all analysis sections (stats + explain + kernels + validate)

Trait Implementations§

Source§

impl Debug for Commands

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl FromArgMatches for Commands

Source§

fn from_arg_matches(__clap_arg_matches: &ArgMatches) -> Result<Self, Error>

Instantiate Self from ArgMatches, parsing the arguments as needed. Read more
Source§

fn from_arg_matches_mut( __clap_arg_matches: &mut ArgMatches, ) -> Result<Self, Error>

Instantiate Self from ArgMatches, parsing the arguments as needed. Read more
Source§

fn update_from_arg_matches( &mut self, __clap_arg_matches: &ArgMatches, ) -> Result<(), Error>

Assign values from ArgMatches to self.
Source§

fn update_from_arg_matches_mut<'b>( &mut self, __clap_arg_matches: &mut ArgMatches, ) -> Result<(), Error>

Assign values from ArgMatches to self.
Source§

impl Subcommand for Commands

Source§

fn augment_subcommands<'b>(__clap_app: Command) -> Command

Append to Command so it can instantiate Self via FromArgMatches::from_arg_matches_mut Read more
Source§

fn augment_subcommands_for_update<'b>(__clap_app: Command) -> Command

Append to Command so it can instantiate self via FromArgMatches::update_from_arg_matches_mut Read more
Source§

fn has_subcommand(__clap_name: &str) -> bool

Test whether Self can parse a specific subcommand

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> Downcast<T> for T

Source§

fn downcast(&self) -> &T

Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> PolicyExt for T
where T: ?Sized,

Source§

fn and<P, B, E>(self, other: P) -> And<T, P>
where T: Policy<B, E>, P: Policy<B, E>,

Create a new Policy that returns Action::Follow only if self and other return Action::Follow. Read more
Source§

fn or<P, B, E>(self, other: P) -> Or<T, P>
where T: Policy<B, E>, P: Policy<B, E>,

Create a new Policy that returns Action::Follow if either self or other returns Action::Follow. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> Upcast<T> for T

Source§

fn upcast(&self) -> Option<&T>

Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> Allocation for T
where T: RefUnwindSafe + Send + Sync,

Source§

impl<A, B, T> HttpServerConnExec<A, B> for T
where B: Body,

Source§

impl<T> WasmNotSend for T
where T: Send,

Source§

impl<T> WasmNotSendSync for T

Source§

impl<T> WasmNotSync for T
where T: Sync,