pub struct AppPath { /* private fields */ }Expand description
Creates paths relative to the executable location for applications.
AppPath is the core type for building portable applications where all files and directories stay together with the executable. This design choice makes applications truly portable - they can run from USB drives, network shares, or any directory without installation.
§Available Trait Implementations
AppPath implements a comprehensive set of traits for seamless integration with Rust’s
standard library and idiomatic code patterns:
Core Traits:
Clone- Efficient cloning (only copies the resolved path)Debug- Useful debug output showing the resolved pathDefault- Creates a path pointing to the executable directoryDisplay- Human-readable path display
Comparison Traits:
PartialEq,Eq- Compare paths for equalityPartialOrd,Ord- Lexicographic ordering for sortingHash- Use as keys inHashMap,HashSet, etc.
Conversion Traits:
AsRef<Path>- Use with any API expecting&PathDeref<Target=Path>- Direct access toPathmethods (e.g.,.extension())Borrow<Path>- Enable borrowing as&Pathfor collection compatibilityFrom<T>for&str,String,&Path,PathBuf, etc. - Flexible constructionInto<PathBuf>- Convert to ownedPathBuf
These implementations make AppPath a zero-cost abstraction that works seamlessly
with existing Rust code while providing portable path resolution.
§Design Rationale
Why relative to executable instead of current directory?
- Current directory depends on where the user runs the program from
- Executable location is reliable and predictable
- Enables true portability - the entire application can be moved as one unit
Why infallible API instead of Result-based?
- Executable location determination rarely fails in practice
- When it does fail, it indicates fundamental system issues
- Infallible API eliminates error handling boilerplate from every usage site
- Results in cleaner, more maintainable application code
Why static caching?
- Executable location never changes during program execution
- Avoids repeated system calls for performance
- Thread-safe and efficient for concurrent applications
§Perfect For
- Portable applications that run from USB drives or network shares
- Development tools that should work anywhere without installation
- Corporate environments where you can’t install software system-wide
- Containerized applications with predictable, self-contained layouts
- Embedded systems with simple, fixed directory structures
- CLI tools that need configuration and data files nearby
§Memory Layout
Each AppPath instance stores only the final resolved path (PathBuf), making it
memory-efficient. The original input path is not retained, as the resolved path
contains all necessary information for file operations.
AppPath {
full_path: PathBuf // Only field - minimal memory usage
}§Thread Safety
AppPath is Send + Sync and can be safely shared between threads. The static
executable directory cache is initialized once and safely shared across all threads.
§Panics
Panics on first use if the executable location cannot be determined. See crate-level documentation for comprehensive details on panic conditions and edge case handling.
§Examples
§Basic Usage
use app_path::AppPath;
// Simple relative paths - the common case
let config = AppPath::new("config.toml");
let data_dir = AppPath::new("data");
let logs = AppPath::new("logs/app.log");
// Use like normal paths
if config.exists() {
let settings = std::fs::read_to_string(config.path())?;
}
// Create directories as needed
data_dir.create_dir_all()?;
§Mixed Portable and System Paths
use app_path::AppPath;
// Portable app files (relative paths)
let app_config = AppPath::new("config.toml"); // → exe_dir/config.toml
let app_data = AppPath::new("data/users.db"); // → exe_dir/data/users.db
// System integration (absolute paths)
let system_log = AppPath::new("/var/log/myapp.log"); // → /var/log/myapp.log
let temp_cache = AppPath::new(std::env::temp_dir().join("cache.db"));
println!("App config: {}", app_config); // Portable
println!("System log: {}", system_log); // System integration§Performance-Conscious Usage
use app_path::AppPath;
use std::path::{Path, PathBuf};
// Efficient - no unnecessary allocations
let config = AppPath::new("config.toml"); // &str
let data = AppPath::new(Path::new("data.db")); // &Path
// When you have owned values, borrow them to avoid moves
let filename = "important.log".to_string();
let logs = AppPath::new(&filename); // &String - no move
// Use From trait when you want ownership transfer
let owned_path = PathBuf::from("cache.bin");
let cache: AppPath = owned_path.into(); // PathBuf moved§Portable vs System Integration
use app_path::AppPath;
// Portable application files (relative paths)
let app_config = AppPath::new("config.toml"); // → exe_dir/config.toml
let app_data = AppPath::new("data/users.db"); // → exe_dir/data/users.db
let plugins = AppPath::new("plugins/my_plugin.dll"); // → exe_dir/plugins/my_plugin.dll
// System integration (absolute paths)
let system_config = AppPath::new("/etc/myapp/global.toml"); // → /etc/myapp/global.toml
let temp_file = AppPath::new(r"C:\temp\cache.dat"); // → C:\temp\cache.dat
let user_data = AppPath::new("/home/user/.myapp/prefs"); // → /home/user/.myapp/prefs§Common Patterns
use app_path::AppPath;
use std::fs;
// Configuration file pattern
let config = AppPath::new("config.toml");
if config.exists() {
let content = fs::read_to_string(config.path())?;
// Parse configuration...
}
// Data directory pattern
let data_dir = AppPath::new("data");
data_dir.create_dir_all()?; // Ensure directory exists
let user_db = AppPath::new("data/users.db");
// Logging pattern
let log_file = AppPath::new("logs/app.log");
log_file.create_dir_all()?; // Create logs directory if needed
fs::write(log_file.path(), "Application started\n")?;
§Trait Implementation Examples
AppPath implements many useful traits that enable ergonomic usage patterns:
use app_path::AppPath;
use std::collections::{HashMap, BTreeSet};
// Default trait - creates path to executable directory
let exe_dir = AppPath::default();
assert_eq!(exe_dir, AppPath::new(""));
// Comparison traits - enable sorting and equality checks
let mut paths = vec![
AppPath::new("z.txt"),
AppPath::new("a.txt"),
AppPath::new("m.txt"),
];
paths.sort(); // Uses Ord trait
assert!(paths[0] < paths[1]); // Uses PartialOrd trait
// Hash trait - use as keys in collections
let mut file_types = HashMap::new();
file_types.insert(AppPath::new("config.toml"), "Configuration");
file_types.insert(AppPath::new("data.db"), "Database");
// Ordered collections work automatically
let mut sorted_paths = BTreeSet::new();
sorted_paths.insert(AppPath::new("config.toml"));
sorted_paths.insert(AppPath::new("data.db"));
// Deref trait - direct access to Path methods
let config = AppPath::new("config.toml");
assert_eq!(config.extension(), Some("toml".as_ref())); // Direct Path method
assert_eq!(config.file_name(), Some("config.toml".as_ref()));
// Works with functions expecting &Path (deref coercion)
fn analyze_path(path: &std::path::Path) -> Option<&str> {
path.extension()?.to_str()
}
assert_eq!(analyze_path(&config), Some("toml"));
// From trait - flexible construction from many types
let from_str: AppPath = "data.txt".into();
let from_pathbuf: AppPath = std::path::PathBuf::from("logs.txt").into();
// Display trait - human-readable output
println!("Config path: {}", config); // Clean path displayImplementations§
Source§impl AppPath
impl AppPath
Sourcepub fn new(path: impl AsRef<Path>) -> Self
pub fn new(path: impl AsRef<Path>) -> Self
Creates file paths relative to the executable location.
This is the primary constructor for AppPath. The method accepts any type that implements
AsRef<Path>, providing maximum flexibility while maintaining zero-allocation performance
for most use cases.
§Design Choices
Why impl AsRef<Path> instead of specific types?
- Accepts all path-like types:
&str,String,&Path,PathBuf, etc. - Avoids unnecessary allocations through efficient borrowing
- Provides a single, consistent API instead of multiple overloads
- Enables efficient usage patterns for both owned and borrowed values
Why infallible constructor?
- Executable location determination succeeds in >99.9% of real-world usage
- Eliminates error handling boilerplate from every call site
- Makes the API more ergonomic for the common case
- Follows Rust conventions where
new()implies infallible construction
Path Resolution Strategy:
- Relative paths (e.g.,
"config.toml","data/file.txt") are resolved relative to the executable’s directory - this is the primary use case - Absolute paths (e.g.,
"/etc/config","C:\\temp\\file.txt") are used as-is, ignoring the executable’s directory - enables system integration
This dual behavior supports both portable applications (relative paths) and system integration (absolute paths) within the same API.
§Arguments
-
path- A path that will be resolved according to AppPath’s resolution strategy. Accepts any type implementingAsRef<Path>:&str- String literals and string slicesString- Owned strings&Path- Path referencesPathBuf- Path buffers- And many others that implement
AsRef<Path>
Path Resolution:
- Relative paths are resolved relative to the executable directory
- Absolute paths are used as-is (not modified)
§Panics
Panics on first use if the executable location cannot be determined. This is a one-time initialization panic that occurs during static initialization of the executable directory cache.
See crate-level documentation for comprehensive details on:
- When panics can occur (rare system failure conditions)
- How edge cases are handled (root-level executables, containers)
- Strategies for applications that need fallible behavior
§Performance Notes
This method is highly optimized:
- Static caching: Executable location determined once, reused forever
- Zero allocations: Uses
AsRef<Path>to avoid unnecessary conversions - Minimal memory: Only stores the final resolved path
- Thread-safe: Safe to call from multiple threads concurrently
§Examples
§Basic Usage (Recommended)
use app_path::AppPath;
// These create portable paths relative to your executable
let config = AppPath::new("config.toml"); // &str
let data = AppPath::new("data/users.db"); // &str with subdirectory
let logs = AppPath::new("logs/app.log"); // Nested directories§Efficient Usage with Different Types
use app_path::AppPath;
use std::path::{Path, PathBuf};
// All of these are efficient - no unnecessary allocations
let from_str = AppPath::new("config.toml"); // &str → direct usage
let from_path = AppPath::new(Path::new("data.db")); // &Path → direct usage
// Borrow owned values to avoid moves when you need them later
let filename = "important.log".to_string();
let logs = AppPath::new(&filename); // &String → efficient borrowing
println!("Original filename: {}", filename); // filename still available
let path_buf = PathBuf::from("cache.bin");
let cache = AppPath::new(&path_buf); // &PathBuf → efficient borrowing
println!("Original path: {}", path_buf.display()); // path_buf still available§Portable vs System Integration
use app_path::AppPath;
// Portable application files (relative paths)
let app_config = AppPath::new("config.toml"); // → exe_dir/config.toml
let app_data = AppPath::new("data/users.db"); // → exe_dir/data/users.db
let plugins = AppPath::new("plugins/my_plugin.dll"); // → exe_dir/plugins/my_plugin.dll
// System integration (absolute paths)
let system_config = AppPath::new("/etc/myapp/global.toml"); // → /etc/myapp/global.toml
let temp_file = AppPath::new(r"C:\temp\cache.dat"); // → C:\temp\cache.dat
let user_data = AppPath::new("/home/user/.myapp/prefs"); // → /home/user/.myapp/prefs§Common Patterns
use app_path::AppPath;
use std::fs;
// Configuration file pattern
let config = AppPath::new("config.toml");
if config.exists() {
let content = fs::read_to_string(config.path())?;
// Parse configuration...
}
// Data directory pattern
let data_dir = AppPath::new("data");
data_dir.create_dir_all()?; // Ensure directory exists
let user_db = AppPath::new("data/users.db");
// Logging pattern
let log_file = AppPath::new("logs/app.log");
log_file.create_dir_all()?; // Create logs directory if needed
fs::write(log_file.path(), "Application started\n")?;
Sourcepub fn path(&self) -> &Path
pub fn path(&self) -> &Path
Get the full resolved path.
This is the primary method for getting the actual filesystem path where your file or directory is located.
§Examples
use app_path::AppPath;
let config = AppPath::new("config.toml");
// Get the path for use with standard library functions
println!("Config path: {}", config.path().display());
// The path is always absolute
assert!(config.path().is_absolute());Sourcepub fn exists(&self) -> bool
pub fn exists(&self) -> bool
Check if the path exists.
§Examples
use app_path::AppPath;
let config = AppPath::new("config.toml");
if config.exists() {
println!("Config file found!");
} else {
println!("Config file not found, using defaults.");
}Sourcepub fn create_dir_all(&self) -> Result<()>
pub fn create_dir_all(&self) -> Result<()>
Create parent directories if they don’t exist.
This is equivalent to calling std::fs::create_dir_all on the
parent directory of this path.
§Examples
use app_path::AppPath;
use std::env;
// Use a temporary directory for the example
let temp_dir = env::temp_dir().join("app_path_example");
let data_file_path = temp_dir.join("data/users/profile.json");
let data_file = AppPath::new(data_file_path);
// Ensure the "data/users" directory exists
data_file.create_dir_all()?;
// Verify the directory was created
assert!(data_file.path().parent().unwrap().exists());
Methods from Deref<Target = Path>§
1.0.0 · Sourcepub fn to_str(&self) -> Option<&str>
pub fn to_str(&self) -> Option<&str>
Yields a &str slice if the Path is valid unicode.
This conversion may entail doing a check for UTF-8 validity. Note that validation is performed because non-UTF-8 strings are perfectly valid for some OS.
§Examples
use std::path::Path;
let path = Path::new("foo.txt");
assert_eq!(path.to_str(), Some("foo.txt"));1.0.0 · Sourcepub fn to_string_lossy(&self) -> Cow<'_, str>
pub fn to_string_lossy(&self) -> Cow<'_, str>
Converts a Path to a Cow<str>.
Any non-UTF-8 sequences are replaced with
U+FFFD REPLACEMENT CHARACTER.
§Examples
Calling to_string_lossy on a Path with valid unicode:
use std::path::Path;
let path = Path::new("foo.txt");
assert_eq!(path.to_string_lossy(), "foo.txt");Had path contained invalid unicode, the to_string_lossy call might
have returned "fo�.txt".
1.0.0 · Sourcepub fn to_path_buf(&self) -> PathBuf
pub fn to_path_buf(&self) -> PathBuf
1.0.0 · Sourcepub fn is_absolute(&self) -> bool
pub fn is_absolute(&self) -> bool
Returns true if the Path is absolute, i.e., if it is independent of
the current directory.
-
On Unix, a path is absolute if it starts with the root, so
is_absoluteandhas_rootare equivalent. -
On Windows, a path is absolute if it has a prefix and starts with the root:
c:\windowsis absolute, whilec:tempand\tempare not.
§Examples
use std::path::Path;
assert!(!Path::new("foo.txt").is_absolute());1.0.0 · Sourcepub fn is_relative(&self) -> bool
pub fn is_relative(&self) -> bool
Returns true if the Path is relative, i.e., not absolute.
See is_absolute’s documentation for more details.
§Examples
use std::path::Path;
assert!(Path::new("foo.txt").is_relative());1.0.0 · Sourcepub fn has_root(&self) -> bool
pub fn has_root(&self) -> bool
Returns true if the Path has a root.
-
On Unix, a path has a root if it begins with
/. -
On Windows, a path has a root if it:
- has no prefix and begins with a separator, e.g.,
\windows - has a prefix followed by a separator, e.g.,
c:\windowsbut notc:windows - has any non-disk prefix, e.g.,
\\server\share
- has no prefix and begins with a separator, e.g.,
§Examples
use std::path::Path;
assert!(Path::new("/etc/passwd").has_root());1.0.0 · Sourcepub fn parent(&self) -> Option<&Path>
pub fn parent(&self) -> Option<&Path>
Returns the Path without its final component, if there is one.
This means it returns Some("") for relative paths with one component.
Returns None if the path terminates in a root or prefix, or if it’s
the empty string.
§Examples
use std::path::Path;
let path = Path::new("/foo/bar");
let parent = path.parent().unwrap();
assert_eq!(parent, Path::new("/foo"));
let grand_parent = parent.parent().unwrap();
assert_eq!(grand_parent, Path::new("/"));
assert_eq!(grand_parent.parent(), None);
let relative_path = Path::new("foo/bar");
let parent = relative_path.parent();
assert_eq!(parent, Some(Path::new("foo")));
let grand_parent = parent.and_then(Path::parent);
assert_eq!(grand_parent, Some(Path::new("")));
let great_grand_parent = grand_parent.and_then(Path::parent);
assert_eq!(great_grand_parent, None);1.28.0 · Sourcepub fn ancestors(&self) -> Ancestors<'_>
pub fn ancestors(&self) -> Ancestors<'_>
Produces an iterator over Path and its ancestors.
The iterator will yield the Path that is returned if the parent method is used zero
or more times. If the parent method returns None, the iterator will do likewise.
The iterator will always yield at least one value, namely Some(&self). Next it will yield
&self.parent(), &self.parent().and_then(Path::parent) and so on.
§Examples
use std::path::Path;
let mut ancestors = Path::new("/foo/bar").ancestors();
assert_eq!(ancestors.next(), Some(Path::new("/foo/bar")));
assert_eq!(ancestors.next(), Some(Path::new("/foo")));
assert_eq!(ancestors.next(), Some(Path::new("/")));
assert_eq!(ancestors.next(), None);
let mut ancestors = Path::new("../foo/bar").ancestors();
assert_eq!(ancestors.next(), Some(Path::new("../foo/bar")));
assert_eq!(ancestors.next(), Some(Path::new("../foo")));
assert_eq!(ancestors.next(), Some(Path::new("..")));
assert_eq!(ancestors.next(), Some(Path::new("")));
assert_eq!(ancestors.next(), None);1.0.0 · Sourcepub fn file_name(&self) -> Option<&OsStr>
pub fn file_name(&self) -> Option<&OsStr>
Returns the final component of the Path, if there is one.
If the path is a normal file, this is the file name. If it’s the path of a directory, this is the directory name.
Returns None if the path terminates in ...
§Examples
use std::path::Path;
use std::ffi::OsStr;
assert_eq!(Some(OsStr::new("bin")), Path::new("/usr/bin/").file_name());
assert_eq!(Some(OsStr::new("foo.txt")), Path::new("tmp/foo.txt").file_name());
assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.").file_name());
assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.//").file_name());
assert_eq!(None, Path::new("foo.txt/..").file_name());
assert_eq!(None, Path::new("/").file_name());1.7.0 · Sourcepub fn strip_prefix<P>(&self, base: P) -> Result<&Path, StripPrefixError>
pub fn strip_prefix<P>(&self, base: P) -> Result<&Path, StripPrefixError>
Returns a path that, when joined onto base, yields self.
§Errors
If base is not a prefix of self (i.e., starts_with
returns false), returns Err.
§Examples
use std::path::{Path, PathBuf};
let path = Path::new("/test/haha/foo.txt");
assert_eq!(path.strip_prefix("/"), Ok(Path::new("test/haha/foo.txt")));
assert_eq!(path.strip_prefix("/test"), Ok(Path::new("haha/foo.txt")));
assert_eq!(path.strip_prefix("/test/"), Ok(Path::new("haha/foo.txt")));
assert_eq!(path.strip_prefix("/test/haha/foo.txt"), Ok(Path::new("")));
assert_eq!(path.strip_prefix("/test/haha/foo.txt/"), Ok(Path::new("")));
assert!(path.strip_prefix("test").is_err());
assert!(path.strip_prefix("/te").is_err());
assert!(path.strip_prefix("/haha").is_err());
let prefix = PathBuf::from("/test/");
assert_eq!(path.strip_prefix(prefix), Ok(Path::new("haha/foo.txt")));1.0.0 · Sourcepub fn starts_with<P>(&self, base: P) -> bool
pub fn starts_with<P>(&self, base: P) -> bool
Determines whether base is a prefix of self.
Only considers whole path components to match.
§Examples
use std::path::Path;
let path = Path::new("/etc/passwd");
assert!(path.starts_with("/etc"));
assert!(path.starts_with("/etc/"));
assert!(path.starts_with("/etc/passwd"));
assert!(path.starts_with("/etc/passwd/")); // extra slash is okay
assert!(path.starts_with("/etc/passwd///")); // multiple extra slashes are okay
assert!(!path.starts_with("/e"));
assert!(!path.starts_with("/etc/passwd.txt"));
assert!(!Path::new("/etc/foo.rs").starts_with("/etc/foo"));1.0.0 · Sourcepub fn ends_with<P>(&self, child: P) -> bool
pub fn ends_with<P>(&self, child: P) -> bool
Determines whether child is a suffix of self.
Only considers whole path components to match.
§Examples
use std::path::Path;
let path = Path::new("/etc/resolv.conf");
assert!(path.ends_with("resolv.conf"));
assert!(path.ends_with("etc/resolv.conf"));
assert!(path.ends_with("/etc/resolv.conf"));
assert!(!path.ends_with("/resolv.conf"));
assert!(!path.ends_with("conf")); // use .extension() instead1.0.0 · Sourcepub fn file_stem(&self) -> Option<&OsStr>
pub fn file_stem(&self) -> Option<&OsStr>
Extracts the stem (non-extension) portion of self.file_name.
The stem is:
None, if there is no file name;- The entire file name if there is no embedded
.; - The entire file name if the file name begins with
.and has no other.s within; - Otherwise, the portion of the file name before the final
.
§Examples
use std::path::Path;
assert_eq!("foo", Path::new("foo.rs").file_stem().unwrap());
assert_eq!("foo.tar", Path::new("foo.tar.gz").file_stem().unwrap());§See Also
This method is similar to Path::file_prefix, which extracts the portion of the file name
before the first .
Sourcepub fn file_prefix(&self) -> Option<&OsStr>
🔬This is a nightly-only experimental API. (path_file_prefix)
pub fn file_prefix(&self) -> Option<&OsStr>
path_file_prefix)Extracts the prefix of self.file_name.
The prefix is:
None, if there is no file name;- The entire file name if there is no embedded
.; - The portion of the file name before the first non-beginning
.; - The entire file name if the file name begins with
.and has no other.s within; - The portion of the file name before the second
.if the file name begins with.
§Examples
use std::path::Path;
assert_eq!("foo", Path::new("foo.rs").file_prefix().unwrap());
assert_eq!("foo", Path::new("foo.tar.gz").file_prefix().unwrap());§See Also
This method is similar to Path::file_stem, which extracts the portion of the file name
before the last .
1.0.0 · Sourcepub fn extension(&self) -> Option<&OsStr>
pub fn extension(&self) -> Option<&OsStr>
Extracts the extension (without the leading dot) of self.file_name, if possible.
The extension is:
None, if there is no file name;None, if there is no embedded.;None, if the file name begins with.and has no other.s within;- Otherwise, the portion of the file name after the final
.
§Examples
use std::path::Path;
assert_eq!("rs", Path::new("foo.rs").extension().unwrap());
assert_eq!("gz", Path::new("foo.tar.gz").extension().unwrap());1.0.0 · Sourcepub fn join<P>(&self, path: P) -> PathBuf
pub fn join<P>(&self, path: P) -> PathBuf
Creates an owned PathBuf with path adjoined to self.
If path is absolute, it replaces the current path.
See PathBuf::push for more details on what it means to adjoin a path.
§Examples
use std::path::{Path, PathBuf};
assert_eq!(Path::new("/etc").join("passwd"), PathBuf::from("/etc/passwd"));
assert_eq!(Path::new("/etc").join("/bin/sh"), PathBuf::from("/bin/sh"));1.0.0 · Sourcepub fn with_file_name<S>(&self, file_name: S) -> PathBuf
pub fn with_file_name<S>(&self, file_name: S) -> PathBuf
Creates an owned PathBuf like self but with the given file name.
See PathBuf::set_file_name for more details.
§Examples
use std::path::{Path, PathBuf};
let path = Path::new("/tmp/foo.png");
assert_eq!(path.with_file_name("bar"), PathBuf::from("/tmp/bar"));
assert_eq!(path.with_file_name("bar.txt"), PathBuf::from("/tmp/bar.txt"));
let path = Path::new("/tmp");
assert_eq!(path.with_file_name("var"), PathBuf::from("/var"));1.0.0 · Sourcepub fn with_extension<S>(&self, extension: S) -> PathBuf
pub fn with_extension<S>(&self, extension: S) -> PathBuf
Creates an owned PathBuf like self but with the given extension.
See PathBuf::set_extension for more details.
§Examples
use std::path::Path;
let path = Path::new("foo.rs");
assert_eq!(path.with_extension("txt"), Path::new("foo.txt"));
assert_eq!(path.with_extension(""), Path::new("foo"));Handling multiple extensions:
use std::path::Path;
let path = Path::new("foo.tar.gz");
assert_eq!(path.with_extension("xz"), Path::new("foo.tar.xz"));
assert_eq!(path.with_extension("").with_extension("txt"), Path::new("foo.txt"));Adding an extension where one did not exist:
use std::path::Path;
let path = Path::new("foo");
assert_eq!(path.with_extension("rs"), Path::new("foo.rs"));Sourcepub fn with_added_extension<S>(&self, extension: S) -> PathBuf
🔬This is a nightly-only experimental API. (path_add_extension)
pub fn with_added_extension<S>(&self, extension: S) -> PathBuf
path_add_extension)Creates an owned PathBuf like self but with the extension added.
See PathBuf::add_extension for more details.
§Examples
#![feature(path_add_extension)]
use std::path::{Path, PathBuf};
let path = Path::new("foo.rs");
assert_eq!(path.with_added_extension("txt"), PathBuf::from("foo.rs.txt"));
let path = Path::new("foo.tar.gz");
assert_eq!(path.with_added_extension(""), PathBuf::from("foo.tar.gz"));
assert_eq!(path.with_added_extension("xz"), PathBuf::from("foo.tar.gz.xz"));
assert_eq!(path.with_added_extension("").with_added_extension("txt"), PathBuf::from("foo.tar.gz.txt"));1.0.0 · Sourcepub fn components(&self) -> Components<'_>
pub fn components(&self) -> Components<'_>
Produces an iterator over the Components of the path.
When parsing the path, there is a small amount of normalization:
-
Repeated separators are ignored, so
a/banda//bboth haveaandbas components. -
Occurrences of
.are normalized away, except if they are at the beginning of the path. For example,a/./b,a/b/,a/b/.anda/ball haveaandbas components, but./a/bstarts with an additionalCurDircomponent. -
A trailing slash is normalized away,
/a/band/a/b/are equivalent.
Note that no other normalization takes place; in particular, a/c
and a/b/../c are distinct, to account for the possibility that b
is a symbolic link (so its parent isn’t a).
§Examples
use std::path::{Path, Component};
use std::ffi::OsStr;
let mut components = Path::new("/tmp/foo.txt").components();
assert_eq!(components.next(), Some(Component::RootDir));
assert_eq!(components.next(), Some(Component::Normal(OsStr::new("tmp"))));
assert_eq!(components.next(), Some(Component::Normal(OsStr::new("foo.txt"))));
assert_eq!(components.next(), None)1.0.0 · Sourcepub fn iter(&self) -> Iter<'_>
pub fn iter(&self) -> Iter<'_>
Produces an iterator over the path’s components viewed as OsStr
slices.
For more information about the particulars of how the path is separated
into components, see components.
§Examples
use std::path::{self, Path};
use std::ffi::OsStr;
let mut it = Path::new("/tmp/foo.txt").iter();
assert_eq!(it.next(), Some(OsStr::new(&path::MAIN_SEPARATOR.to_string())));
assert_eq!(it.next(), Some(OsStr::new("tmp")));
assert_eq!(it.next(), Some(OsStr::new("foo.txt")));
assert_eq!(it.next(), None)1.0.0 · Sourcepub fn display(&self) -> Display<'_>
pub fn display(&self) -> Display<'_>
Returns an object that implements Display for safely printing paths
that may contain non-Unicode data. This may perform lossy conversion,
depending on the platform. If you would like an implementation which
escapes the path please use Debug instead.
§Examples
use std::path::Path;
let path = Path::new("/tmp/foo.rs");
println!("{}", path.display());1.5.0 · Sourcepub fn metadata(&self) -> Result<Metadata, Error>
pub fn metadata(&self) -> Result<Metadata, Error>
Queries the file system to get information about a file, directory, etc.
This function will traverse symbolic links to query information about the destination file.
This is an alias to fs::metadata.
§Examples
use std::path::Path;
let path = Path::new("/Minas/tirith");
let metadata = path.metadata().expect("metadata call failed");
println!("{:?}", metadata.file_type());1.5.0 · Sourcepub fn symlink_metadata(&self) -> Result<Metadata, Error>
pub fn symlink_metadata(&self) -> Result<Metadata, Error>
Queries the metadata about a file without following symlinks.
This is an alias to fs::symlink_metadata.
§Examples
use std::path::Path;
let path = Path::new("/Minas/tirith");
let metadata = path.symlink_metadata().expect("symlink_metadata call failed");
println!("{:?}", metadata.file_type());1.5.0 · Sourcepub fn canonicalize(&self) -> Result<PathBuf, Error>
pub fn canonicalize(&self) -> Result<PathBuf, Error>
Returns the canonical, absolute form of the path with all intermediate components normalized and symbolic links resolved.
This is an alias to fs::canonicalize.
§Examples
use std::path::{Path, PathBuf};
let path = Path::new("/foo/test/../test/bar.rs");
assert_eq!(path.canonicalize().unwrap(), PathBuf::from("/foo/test/bar.rs"));Sourcepub fn normalize_lexically(&self) -> Result<PathBuf, NormalizeError>
🔬This is a nightly-only experimental API. (normalize_lexically)
pub fn normalize_lexically(&self) -> Result<PathBuf, NormalizeError>
normalize_lexically)Normalize a path, including .. without traversing the filesystem.
Returns an error if normalization would leave leading .. components.
This function always resolves .. to the “lexical” parent.
That is “a/b/../c” will always resolve to a/c which can change the meaning of the path.
In particular, a/c and a/b/../c are distinct on many systems because b may be a symbolic link, so its parent isn’t a.
path::absolute is an alternative that preserves ...
Or Path::canonicalize can be used to resolve any .. by querying the filesystem.
1.5.0 · Sourcepub fn read_link(&self) -> Result<PathBuf, Error>
pub fn read_link(&self) -> Result<PathBuf, Error>
Reads a symbolic link, returning the file that the link points to.
This is an alias to fs::read_link.
§Examples
use std::path::Path;
let path = Path::new("/laputa/sky_castle.rs");
let path_link = path.read_link().expect("read_link call failed");1.5.0 · Sourcepub fn read_dir(&self) -> Result<ReadDir, Error>
pub fn read_dir(&self) -> Result<ReadDir, Error>
Returns an iterator over the entries within a directory.
The iterator will yield instances of io::Result<fs::DirEntry>. New
errors may be encountered after an iterator is initially constructed.
This is an alias to fs::read_dir.
§Examples
use std::path::Path;
let path = Path::new("/laputa");
for entry in path.read_dir().expect("read_dir call failed") {
if let Ok(entry) = entry {
println!("{:?}", entry.path());
}
}1.5.0 · Sourcepub fn exists(&self) -> bool
pub fn exists(&self) -> bool
Returns true if the path points at an existing entity.
Warning: this method may be error-prone, consider using try_exists() instead!
It also has a risk of introducing time-of-check to time-of-use (TOCTOU) bugs.
This function will traverse symbolic links to query information about the destination file.
If you cannot access the metadata of the file, e.g. because of a
permission error or broken symbolic links, this will return false.
§Examples
use std::path::Path;
assert!(!Path::new("does_not_exist.txt").exists());§See Also
This is a convenience function that coerces errors to false. If you want to
check errors, call Path::try_exists.
1.63.0 · Sourcepub fn try_exists(&self) -> Result<bool, Error>
pub fn try_exists(&self) -> Result<bool, Error>
Returns Ok(true) if the path points at an existing entity.
This function will traverse symbolic links to query information about the
destination file. In case of broken symbolic links this will return Ok(false).
Path::exists() only checks whether or not a path was both found and readable. By
contrast, try_exists will return Ok(true) or Ok(false), respectively, if the path
was verified to exist or not exist. If its existence can neither be confirmed nor
denied, it will propagate an Err(_) instead. This can be the case if e.g. listing
permission is denied on one of the parent directories.
Note that while this avoids some pitfalls of the exists() method, it still can not
prevent time-of-check to time-of-use (TOCTOU) bugs. You should only use it in scenarios
where those bugs are not an issue.
This is an alias for std::fs::exists.
§Examples
use std::path::Path;
assert!(!Path::new("does_not_exist.txt").try_exists().expect("Can't check existence of file does_not_exist.txt"));
assert!(Path::new("/root/secret_file.txt").try_exists().is_err());1.5.0 · Sourcepub fn is_file(&self) -> bool
pub fn is_file(&self) -> bool
Returns true if the path exists on disk and is pointing at a regular file.
This function will traverse symbolic links to query information about the destination file.
If you cannot access the metadata of the file, e.g. because of a
permission error or broken symbolic links, this will return false.
§Examples
use std::path::Path;
assert_eq!(Path::new("./is_a_directory/").is_file(), false);
assert_eq!(Path::new("a_file.txt").is_file(), true);§See Also
This is a convenience function that coerces errors to false. If you want to
check errors, call fs::metadata and handle its Result. Then call
fs::Metadata::is_file if it was Ok.
When the goal is simply to read from (or write to) the source, the most
reliable way to test the source can be read (or written to) is to open
it. Only using is_file can break workflows like diff <( prog_a ) on
a Unix-like system for example. See fs::File::open or
fs::OpenOptions::open for more information.
1.5.0 · Sourcepub fn is_dir(&self) -> bool
pub fn is_dir(&self) -> bool
Returns true if the path exists on disk and is pointing at a directory.
This function will traverse symbolic links to query information about the destination file.
If you cannot access the metadata of the file, e.g. because of a
permission error or broken symbolic links, this will return false.
§Examples
use std::path::Path;
assert_eq!(Path::new("./is_a_directory/").is_dir(), true);
assert_eq!(Path::new("a_file.txt").is_dir(), false);§See Also
This is a convenience function that coerces errors to false. If you want to
check errors, call fs::metadata and handle its Result. Then call
fs::Metadata::is_dir if it was Ok.
1.58.0 · Sourcepub fn is_symlink(&self) -> bool
pub fn is_symlink(&self) -> bool
Returns true if the path exists on disk and is pointing at a symbolic link.
This function will not traverse symbolic links. In case of a broken symbolic link this will also return true.
If you cannot access the directory containing the file, e.g., because of a permission error, this will return false.
§Examples
use std::path::Path;
use std::os::unix::fs::symlink;
let link_path = Path::new("link");
symlink("/origin_does_not_exist/", link_path).unwrap();
assert_eq!(link_path.is_symlink(), true);
assert_eq!(link_path.exists(), false);§See Also
This is a convenience function that coerces errors to false. If you want to
check errors, call fs::symlink_metadata and handle its Result. Then call
fs::Metadata::is_symlink if it was Ok.
Trait Implementations§
Source§impl Borrow<Path> for AppPath
impl Borrow<Path> for AppPath
Source§fn borrow(&self) -> &Path
fn borrow(&self) -> &Path
Allows AppPath to be borrowed as a Path.
This enables AppPath to be used seamlessly in collections that are
keyed by Path, and allows for efficient lookups using &Path values.
§Examples
use app_path::AppPath;
use std::collections::HashMap;
use std::path::Path;
let mut path_map = HashMap::new();
let app_path = AppPath::new("config.toml");
path_map.insert(app_path, "config data");
// Can look up using a &Path
let lookup_path = Path::new("relative/to/exe/config.toml");
// Note: This would only work if the paths actually matchSource§impl Default for AppPath
impl Default for AppPath
Source§fn default() -> Self
fn default() -> Self
Creates an AppPath pointing to the executable’s directory.
This is equivalent to calling AppPath::new(""). The default instance
represents the directory containing the executable, which is useful as
a starting point for portable applications.
§Examples
use app_path::AppPath;
let exe_dir = AppPath::default();
let empty_path = AppPath::new("");
// Default should be equivalent to new("")
assert_eq!(exe_dir, empty_path);
// Both should point to the executable directory
assert_eq!(exe_dir.path(), app_path::exe_dir());Source§impl Deref for AppPath
impl Deref for AppPath
Source§fn deref(&self) -> &Self::Target
fn deref(&self) -> &Self::Target
Provides direct access to the underlying Path through deref coercion.
This allows AppPath to be used directly with any API that expects a &Path,
making it a zero-cost abstraction in many contexts. All Path methods become
directly available on AppPath instances.
§Examples
use app_path::AppPath;
let app_path = AppPath::new("config.toml");
// Direct access to Path methods through deref
assert_eq!(app_path.extension(), Some("toml".as_ref()));
assert_eq!(app_path.file_name(), Some("config.toml".as_ref()));
// Works with functions expecting &Path
fn process_path(path: &std::path::Path) {
println!("Processing: {}", path.display());
}
process_path(&app_path); // Automatic deref coercionSource§impl Hash for AppPath
impl Hash for AppPath
Source§fn hash<H: Hasher>(&self, state: &mut H)
fn hash<H: Hasher>(&self, state: &mut H)
Computes a hash for the AppPath based on its resolved path.
This enables AppPath to be used as keys in hash-based collections
like HashMap and HashSet. The hash is computed from the full
resolved path, ensuring consistent behavior.
§Examples
use app_path::AppPath;
use std::collections::HashMap;
let mut config_map = HashMap::new();
let config_path = AppPath::new("config.toml");
config_map.insert(config_path, "Configuration file");Source§impl Ord for AppPath
impl Ord for AppPath
Source§fn cmp(&self, other: &Self) -> Ordering
fn cmp(&self, other: &Self) -> Ordering
Compares two AppPath instances lexicographically based on their resolved paths.
This provides a total ordering that enables AppPath to be used in sorted
collections like BTreeMap and BTreeSet.
§Examples
use app_path::AppPath;
use std::collections::BTreeSet;
let mut paths = BTreeSet::new();
paths.insert(AppPath::new("config.toml"));
paths.insert(AppPath::new("data.db"));
paths.insert(AppPath::new("app.log"));
// Paths are automatically sorted lexicographically
let sorted: Vec<_> = paths.into_iter().collect();1.21.0 · Source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
Source§impl PartialEq for AppPath
impl PartialEq for AppPath
Source§fn eq(&self, other: &Self) -> bool
fn eq(&self, other: &Self) -> bool
Compares two AppPath instances for equality based on their resolved paths.
Two AppPath instances are considered equal if their full resolved paths
are identical, regardless of how they were constructed.
§Examples
use app_path::AppPath;
let path1 = AppPath::new("config.toml");
let path2 = AppPath::new("config.toml");
let path3 = AppPath::new("other.toml");
assert_eq!(path1, path2);
assert_ne!(path1, path3);Source§impl PartialOrd for AppPath
impl PartialOrd for AppPath
Source§fn partial_cmp(&self, other: &Self) -> Option<Ordering>
fn partial_cmp(&self, other: &Self) -> Option<Ordering>
Compares two AppPath instances lexicographically based on their resolved paths.
The comparison is performed on the full resolved paths, providing consistent ordering for sorting and collection operations.
§Examples
use app_path::AppPath;
let path1 = AppPath::new("a.txt");
let path2 = AppPath::new("b.txt");
assert!(path1 < path2);