1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::hash::Hash;
use std::sync::Arc;
use crate::time::Clock;
use crate::time::SystemClock;
pub struct BackoffTracker<T> {
field: HashMap<T, BackoffEntry>,
clock: Arc<dyn Clock>,
config: BackoffConfig,
}
impl<T> Default for BackoffTracker<T> {
fn default() -> Self {
Self::new(Arc::new(SystemClock::default()), BackoffConfig::default())
}
}
impl<T> BackoffTracker<T> {
pub fn new(clock: Arc<dyn Clock>, config: BackoffConfig) -> Self {
Self {
field: HashMap::new(),
clock,
config,
}
}
}
/// High level management of code execution using backoff tracking primitives.
impl<'t, T: Eq + Hash + 't> BackoffTracker<T> {
/// Use this if you'd like to rate limit some code regardless of its outcome.
///
/// Triggers an event on any execution. see `backoff_generic`.
pub fn backoff<F: Fn() -> X, X>(&mut self, id: T, f: F) -> Option<X> {
self.backoff_generic(id, f, false, |_| true)
}
/// Use this if you'd like to rate limit some code regardless of its
/// outcome, but not if other events occur in between.
///
/// Triggers an event on any execution. see `backoff_generic` and
/// `singular_event`
pub fn backoff_singular<F: Fn() -> X, X>(&mut self, id: T, f: F) -> Option<X> {
self.backoff_generic(id, f, true, |_| true)
}
/// Use this if you'd like to rate limit some code when it fails.
/// Triggers an event on Err. see `backoff_generic`.
pub fn backoff_errors<F, O, E>(&mut self, id: T, f: F) -> Option<Result<O, E>>
where
F: Fn() -> Result<O, E>,
{
self.backoff_generic(id, f, false, Result::is_err)
}
/// Use this if you'd like to rate limit some code when it succeeds.
/// Triggers an event on Ok. see `backoff_generic`.
pub fn backoff_oks<F, O, E>(&mut self, id: T, f: F) -> Option<Result<O, E>>
where
F: Fn() -> Result<O, E>,
{
self.backoff_generic(id, f, false, Result::is_ok)
}
/// Generic function used by other `backoff_` functions.
///
/// Run the code if ready. Trigger an event when the predicate is true
/// Returns None if the execution was skipped due to not being ready.
pub fn backoff_generic<F, X, P>(
&mut self,
id: T,
f: F,
singular: bool,
predicate: P,
) -> Option<X>
where
F: Fn() -> X,
P: Fn(&X) -> bool,
{
if self.is_ready(&id) {
let result = f();
if predicate(&result) {
if singular && !self.field.contains_key(&id) {
self.field = HashMap::new();
}
self.event(id);
}
Some(result)
} else {
None
}
}
}
/// Primitives to track the backoff
impl<'t, T: Eq + Hash + 't> BackoffTracker<T> {
pub fn event(&mut self, item: T) {
let now = self.clock.current_timestamp();
match self.field.entry(item) {
Entry::Vacant(entry) => {
entry.insert(BackoffEntry {
count: 1,
last: now,
delay: self.config.initial_delay(),
});
}
Entry::Occupied(mut entry) => {
let BackoffEntry { count, last, delay } = entry.get();
if last + delay < now {
let delay = match self.config.strategy {
BackoffStrategy::Exponential(b) => {
std::cmp::min(delay * b, self.config.max_delay)
}
BackoffStrategy::Cliff(c) => {
if count > &c {
self.config.max_delay
} else {
self.config.min_delay
}
}
};
entry.insert(BackoffEntry {
count: count + 1,
last: now,
delay,
});
}
}
}
}
/// Like `event`, but it clears all history of other events when a new event
/// is received.
///
/// Use this when you only need to backoff events that are consecutive
/// duplicates, but don't need to backoff events if different events occur
/// in between.
pub fn singular_event(&mut self, item: T) {
if !self.field.contains_key(&item) {
self.field = HashMap::new();
}
self.event(item);
}
pub fn clear(&mut self, item: &T) {
if self.field.contains_key(item) {
self.field.remove(item);
}
}
pub fn clear_many<'a>(&mut self, items: impl IntoIterator<Item = &'a T>)
where
't: 'a,
{
for item in items {
self.field.remove(item);
}
}
pub fn is_ready(&self, item: &T) -> bool {
match self.field.get(item) {
Some(x) => self.clock.current_timestamp() > x.last + x.delay,
None => true,
}
}
}
/// Events must not be recorded here if they occurred...
/// - within a delay window
/// - before the last `clear`
struct BackoffEntry {
/// Total quantity of registered events that occurred outside a delay window.
count: u64,
/// The time that the last event occurred outside a delay window.
last: u64,
/// The time window to wait since last_event before being "ready"
delay: u64,
}
pub struct BackoffConfig {
pub min_delay: u64,
pub max_delay: u64,
pub strategy: BackoffStrategy,
}
impl BackoffConfig {
/// Simple rate limiter with a constant rate, doesn't backoff progressively.
pub fn constant(period: u64) -> Self {
Self {
min_delay: period,
max_delay: period,
strategy: BackoffStrategy::Cliff(0),
}
}
/// Once an event occurs, it will never be ready again unless cleared.
pub fn once() -> Self {
Self {
min_delay: u64::MAX,
max_delay: u64::MAX,
strategy: BackoffStrategy::Cliff(0),
}
}
pub fn initial_delay(&self) -> u64 {
match self.strategy {
BackoffStrategy::Cliff(0) => self.max_delay,
_ => self.min_delay,
}
}
}
impl Default for BackoffConfig {
fn default() -> Self {
Self {
min_delay: 30,
max_delay: 3600,
strategy: Default::default(),
}
}
}
pub enum BackoffStrategy {
/// The wrapped integer is the base b of the exponential b^n where n is the
/// number of events. Each event will trigger a delay b times as large as
/// the prior delay.
Exponential(u64),
/// Cliff means you wait exactly the minimum delay for some number of
/// events, then you suddenly switch to waiting the maximum interval for
/// each event. The wrapped integer is the number of times to delay with the
/// minimum interval before switching to the max interval.
Cliff(u64),
}
impl Default for BackoffStrategy {
fn default() -> Self {
// 3 is the closest integer to Euler's constant, which makes it the
// obvious choice as a standard base for an exponential. It also
// subjectively feels to me like a generally satisfying rate of cooldown
// in most cases, where 2 feels overly aggressive.
BackoffStrategy::Exponential(3)
}
}