1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
//! Core traits.
use crate::parsers::MapParser;
use crate::types::ParserOutput;
use crate::{ParseContext, Reported, Result};
/// Trait implemented by all parsers.
///
/// This is implemented by the built-in parsers, like `i32`, as well as
/// user-defined parsers created with `parser!`.
///
/// To run a parser, pass some text to [the `parse` method][Parser::parse].
pub trait Parser {
/// The type of value this parser produces from text.
type Output;
/// The type this parser produces internally before converting to the output type.
///
/// Some combinators use the `RawOutput` to determine how types should combine.
/// For example, if `A::RawOutput = ()`, then `A` produces no output;
/// and if `B::RawOutput = (i32,)` then `B` produces an integer;
/// `SequenceParser<A, B>::RawOutput` will then be `(i32,)`, the
/// result of concatenating the two raw tuples, rather than `((), i32)`.
///
/// However, `RawOutput` is very often a singleton tuple, and these are
/// awkward for users, so we convert to the `Output` type before presenting a
/// result to the user.
type RawOutput: ParserOutput<UserType = Self::Output>;
/// The type that implements matching, backtracking, and type conversion
/// for this parser, an implementation detail.
type Iter<'parse>: ParseIter<'parse, RawOutput = Self::RawOutput>
where
Self: 'parse;
/// Fully parse the given source string `s` and return the resulting value.
///
/// This is the main way of using a `Parser`.
///
/// This succeeds only if this parser matches the entire input string. It's
/// an error if any unmatched characters are left over at the end of `s`.
fn parse(&self, s: &str) -> Result<Self::Output> {
self.parse_raw(s).map(|v| v.into_user_type())
}
/// Produce a [parse iterator][ParseIter]. This is an internal implementation detail of
/// the parser and shouldn't normally be called directly from application code.
fn parse_iter<'parse>(
&'parse self,
context: &mut ParseContext<'parse>,
start: usize,
) -> Result<Self::Iter<'parse>, Reported>;
/// Like `parse` but produce the output in its [raw form][Self::RawOutput].
fn parse_raw(&self, s: &str) -> Result<Self::RawOutput> {
let mut ctx = ParseContext::new(s);
let mut it = match self.parse_iter(&mut ctx, 0) {
Ok(iter) => iter,
Err(Reported) => return Err(ctx.into_reported_error()),
};
while it.match_end() != s.len() {
ctx.error_extra(it.match_end());
if it.backtrack(&mut ctx).is_err() {
return Err(ctx.into_reported_error());
}
}
Ok(it.into_raw_output())
}
/// Produce a new parser that behaves like this parser but additionally
/// applies the given closure when producing the value.
///
/// ```
/// use aoc_parse::{parser, prelude::*};
/// let p = u32.map(|x| x * 1_000_001);
/// assert_eq!(p.parse("123").unwrap(), 123_000_123);
/// ```
///
/// This is used to implement the `=>` feature of `parser!`.
///
/// ```
/// # use aoc_parse::{parser, prelude::*};
/// let p = parser!(x:u32 => x * 1_000_001);
/// assert_eq!(p.parse("123").unwrap(), 123_000_123);
/// ```
///
/// The closure is called after the *overall* parse succeeds, as part of
/// turning the parse into Output values. This means the function
/// will not be called during a partly-successful parse that later fails.
///
/// ```
/// # use aoc_parse::{parser, prelude::*};
/// let p = parser!(("A" => panic!()) "B" "C");
/// assert!(p.parse("ABX").is_err());
///
/// let p2 = parser!({
/// (i32 => panic!()) " ft" => 1,
/// i32 " km" => 2,
/// });
/// assert_eq!(p2.parse("37 km").unwrap(), 2);
/// ```
fn map<T, F>(self, mapper: F) -> MapParser<Self, F>
where
Self: Sized,
F: Fn(Self::Output) -> T,
{
MapParser::new(self, mapper)
}
}
/// A parser in action. Some parsers can match in several different ways (for
/// example, in `foo* bar` backtracking is accomplished by `foo*` first
/// matching as much as possible, then backing off one match at a time), so
/// this is an iterator.
///
/// This doesn't return a `RawOutput` value from `next_parse` but instead waits
/// until you're sure you have a complete, successful parse, and are thus ready
/// to destroy the iterator. This helps us avoid building values only to drop
/// them later when some downstream parser fails to match, so it makes
/// backtracking faster. It also means we don't call `.map` closures until
/// there is a successful overall match and the values are actually needed.
pub trait ParseIter<'parse> {
/// The type this iterator can produce on a successful match.
type RawOutput;
/// Position at the end of the current match.
fn match_end(&self) -> usize;
/// Reject the current match and find the next-most-preferable match.
/// Returns true if another match was found, false if not.
///
/// Once this returns `false`, no more method calls should be made.
fn backtrack(&mut self, context: &mut ParseContext<'parse>) -> Result<(), Reported>;
/// Consume this iterator to extract data.
fn into_raw_output(self) -> Self::RawOutput;
}
impl<'a, P> Parser for &'a P
where
P: Parser + ?Sized,
{
type Output = P::Output;
type RawOutput = P::RawOutput;
type Iter<'parse> = P::Iter<'parse>
where
P: 'parse,
'a: 'parse;
fn parse_iter<'parse>(
&'parse self,
context: &mut ParseContext<'parse>,
start: usize,
) -> Result<Self::Iter<'parse>, Reported> {
<P as Parser>::parse_iter(self, context, start)
}
}