1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
//! Iterators over a [`Rope<M>`]'s data.
//!
//! The iterators in Any-Ropey can be created from both [`Rope<M>`]s and
//! [`RopeSlice<M>`]s. When created from a [`RopeSlice<M>`], they iterate over
//! only the data that the [`RopeSlice<M>`] refers to.  For the [`Chunks`]
//! iterator, the data of the first and last yielded item will be correctly
//! truncated to match the bounds of the [`RopeSlice<M>`].
//!
//! # Reverse iteration
//!
//! All iterators in Ropey operate as a cursor that can move both forwards
//! and backwards over its contents.  This can be accomplished via the
//! `next()` and `prev()` methods on each iterator, or by using the `reverse()`
//! or `reversed()` methods to change the iterator's direction.
//!
//! Conceptually, an iterator in Any-Ropey is always positioned *between* the
//! elements it iterates over, and returns an element when it jumps over it
//! via the `next()` or `prev()` methods.
//!
//! For example, given the slice `[Width(1), Width(2), Width(5)]` and a an
//! iterator starting at the beginning of the slice, you would get the following
//! sequence of states and return values by repeatedly calling `next()` (the
//! vertical bar represents the position of the iterator):
//!
//! 0. `[|Width(1), Width(2), Width(5)]`
//! 1. `[Width(1), |Width(2), Width(5)] -> Some(Width(1))`
//! 2. `[Width(1), Width(2), |Width(5)] -> Some(Width(2))`
//! 3. `[Width(1), Width(2), Width(5)|] -> Some(Width(5))`
//! 4. `[Width(1), Width(2), Width(5)|] -> None`
//!
//! The `prev()` method operates identically, except moving in the opposite
//! direction.  And `reverse()` simply swaps the behavior of `prev()` and
//! `next()`.
//!
//! # Creating iterators at any position
//!
//! Iterators in Ropey can be created starting at any position in the rope.
//! This is accomplished with the [`Iter<M>`] and [`Chunks<M>`] iterators, which
//! can be created by various functions on a [`Rope<M>`].
//!
//! When an iterator is created this way, it is positioned such that a call to
//! `next()` will return the specified element, and a call to `prev()` will
//! return the element just before the specified one.
//!
//! Importantly, iterators created this way still have access to the entire
//! contents of the [`Rope<M>`]/[`RopeSlice<M>`] they were created from and the
//! contents before the specified position is not truncated.  For example, you
//! can create an [`Iter<M>`] iterator starting at the end of a [`Rope<M>`], and
//! then use the [`prev()`][Iter::prev] method to iterate backwards over all of
//! that [`Rope<M>`]'s elements.
//!
//! # A possible point of confusion
//!
//! The Rust standard library has an iterator trait [`DoubleEndedIterator`] with
//! a method [`rev()`]. While this method's name is //! very similar to Ropey's
//! [`reverse()`][Iter::reverse] method, its behavior is very different.
//!
//! [`DoubleEndedIterator`] actually provides two iterators: one starting at
//! each end of the collection, moving in opposite directions towards each
//! other. Calling [`rev()`] switches between those two iterators, changing not
//! only the direction of iteration but also its current position in the
//! collection.
//!
//! The [`reverse()`][Iter::reverse] method on AnyRopey's iterators, on the
//! other hand, reverses the direction of the iterator in-place, without
//! changing its position in the rope.
//!
//! [`Rope<M>`]: crate::rope::Rope
//! [`RopeSlice<M>`]: crate::slice::RopeSlice
//! [`rev()`]: Iterator::rev

use std::sync::Arc;

use crate::rope::Measurable;
use crate::slice_utils::{index_to_width, start_width_to_index, width_of};
use crate::tree::{max_children, max_len, Node, SliceInfo};

//==========================================================

/// An iterator over a [`Rope<M>`][crate::rope::Rope]'s elements.
#[derive(Debug, Clone)]
pub struct Iter<'a, M>
where
    M: Measurable,
    [(); max_len::<M>()]: Sized,
    [(); max_children::<M>()]: Sized,
{
    chunks: Chunks<'a, M>,
    cur_chunk: &'a [M],
    index: usize,
    width: usize,
    last_call_was_prev_impl: bool,
    total_len: usize,
    remaining_len: usize,
    is_reversed: bool,
}

impl<'a, M> Iter<'a, M>
where
    M: Measurable,
    [(); max_len::<M>()]: Sized,
    [(); max_children::<M>()]: Sized,
{
    pub(crate) fn new(node: &'a Arc<Node<M>>) -> Self {
        let mut chunk_iter = Chunks::new(node);
        let cur_chunk = if let Some(chunk) = chunk_iter.next() {
            chunk
        } else {
            &[]
        };
        Iter {
            chunks: chunk_iter,
            cur_chunk,
            index: 0,
            width: 0,
            last_call_was_prev_impl: false,
            total_len: node.slice_info().len as usize,
            remaining_len: node.slice_info().len as usize,
            is_reversed: false,
        }
    }

    #[inline(always)]
    pub(crate) fn new_with_range(
        node: &'a Arc<Node<M>>,
        index_range: (usize, usize),
        width_range: (usize, usize),
    ) -> Self {
        Iter::new_with_range_at_width(node, width_range.0, index_range, width_range)
    }

    pub(crate) fn new_with_range_at_width(
        node: &'a Arc<Node<M>>,
        at_width: usize,
        index_range: (usize, usize),
        width_range: (usize, usize),
    ) -> Self {
        let (mut chunks, mut chunk_start_index, mut chunk_start_width) =
            Chunks::new_with_range_at_width(node, at_width, index_range, width_range);

        let cur_chunk = if index_range.0 == index_range.1 {
            &[]
        } else if let Some(chunk) = chunks.next() {
            chunk
        } else {
            let chunk = chunks.prev().unwrap();
            chunks.next();
            chunk_start_index -= chunk.len();
            chunk_start_width -= chunk.iter().map(|m| m.width()).sum::<usize>();
            chunk
        };

        let index = start_width_to_index(cur_chunk, at_width - chunk_start_width);
        let width = index_to_width(cur_chunk, index) + chunk_start_width;

        Iter {
            chunks,
            cur_chunk,
            index,
            width,
            last_call_was_prev_impl: false,
            total_len: index_range.1 - index_range.0,
            remaining_len: index_range.1 - (index + chunk_start_index),
            is_reversed: false,
        }
    }

    #[inline(always)]
    pub(crate) fn from_slice(slice: &'a [M]) -> Self {
        Iter::from_slice_at(slice, 0)
    }

    pub(crate) fn from_slice_at(slice: &'a [M], width: usize) -> Self {
        let mut chunks = Chunks::from_slice(slice, false);
        let cur_chunk = if let Some(chunk) = chunks.next() {
            chunk
        } else {
            &[]
        };

        let index = start_width_to_index(slice, width);
        let width = index_to_width(slice, index);

        Iter {
            chunks,
            cur_chunk,
            index,
            width,
            last_call_was_prev_impl: false,
            total_len: slice.len(),
            remaining_len: slice.len() - index,
            is_reversed: false,
        }
    }

    /// Reverses the direction of the iterator in-place.
    ///
    /// In other words, swaps the behavior of [`prev()`][Self::prev]
    /// and [`next()`][Self::next].
    #[inline]
    pub fn reverse(&mut self) {
        self.is_reversed = !self.is_reversed;
    }

    /// Same as [`reverse()`][Self::reverse], but returns itself.
    ///
    /// This is useful when chaining iterator methods:
    ///
    /// ```rust
    /// # use any_rope::{Rope, Width};
    /// # let rope = Rope::from_slice(&[Width(1), Width(2), Width(5)]);
    /// // Print the rope's elements and their widths in reverse.
    /// for (width, element) in rope.iter_at_width(rope.width()).reversed() {
    ///     println!("{} {:?}", width, element);
    /// #   assert_eq!((width, element), rope.from_width(width));
    /// }
    #[inline]
    #[must_use]
    pub fn reversed(mut self) -> Self {
        self.reverse();
        self
    }

    /// Advances the iterator backwards and returns the previous value.
    ///
    /// Runs in amortized O(1) time and worst-case O(log N) time.
    #[inline(always)]
    pub fn prev(&mut self) -> Option<(usize, M)> {
        if !self.is_reversed {
            self.prev_impl()
        } else {
            self.next_impl()
        }
    }

    #[inline]
    fn prev_impl(&mut self) -> Option<(usize, M)> {
        // Put us back into a "prev" progression.
        if !self.last_call_was_prev_impl {
            self.chunks.prev();
            self.last_call_was_prev_impl = true;
        }

        // Progress the chunks iterator back if needed.
        if self.index == 0 {
            if let Some(chunk) = self.chunks.prev() {
                self.cur_chunk = chunk;
                self.index = self.cur_chunk.len();
            } else {
                return None;
            }
        }

        // Progress the byte counts and return the previous element.
        self.index -= 1;
        self.remaining_len += 1;
        self.width -= self.cur_chunk[self.index].width();
        return Some((self.width, self.cur_chunk[self.index]));
    }

    #[inline]
    fn next_impl(&mut self) -> Option<(usize, M)> {
        // Put us back into a "next" progression.
        if self.last_call_was_prev_impl {
            self.chunks.next();
            self.last_call_was_prev_impl = false;
        }

        // Progress the chunks iterator forward if needed.
        if self.index >= self.cur_chunk.len() {
            if let Some(chunk) = self.chunks.next() {
                self.cur_chunk = chunk;
                self.index = 0;
            } else {
                return None;
            }
        }

        // Progress the byte counts and return the next element.
        let element = self.cur_chunk[self.index];
        self.index += 1;
        self.remaining_len -= 1;

        let old_width = self.width;
        self.width += element.width();
        return Some((old_width, element));
    }
}

impl<'a, M> Iterator for Iter<'a, M>
where
    M: Measurable,
    [(); max_len::<M>()]: Sized,
    [(); max_children::<M>()]: Sized,
{
    type Item = (usize, M);

    /// Advances the iterator forward and returns the next value.
    ///
    /// Runs in amortized O(1) time and worst-case O(log N) time.
    #[inline(always)]
    fn next(&mut self) -> Option<(usize, M)> {
        if !self.is_reversed {
            self.next_impl()
        } else {
            self.prev_impl()
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let remaining = if !self.is_reversed {
            self.remaining_len
        } else {
            self.total_len - self.remaining_len
        };
        (remaining, Some(remaining))
    }
}

impl<'a, M> ExactSizeIterator for Iter<'a, M>
where
    M: Measurable,
    [(); max_len::<M>()]: Sized,
    [(); max_children::<M>()]: Sized,
{
}

//==========================================================

/// An iterator over a [`Rope<M>`]'s contiguous [`M`] chunks.
///
/// Internally, each [`Rope<M>`] stores [`M`]s as a segemented collection of
/// [`&[M]`][Measurable]. It is useful for situations such as:
///
/// - Streaming a [`Rope<M>`]'s elements data somewhere.
/// - Writing custom iterators over a [`Rope<M>`]'s data.
///
/// There are no guarantees about the size of yielded chunks, and there are
/// no guarantees about where the chunks are split.  For example, they may
/// be zero-sized.
///
/// [`M`]: Measurable
/// [`Rope<M>`]: crate::rope::Rope
#[derive(Debug, Clone)]
pub struct Chunks<'a, M>
where
    M: Measurable,
    [(); max_len::<M>()]: Sized,
    [(); max_children::<M>()]: Sized,
{
    iter: ChunksEnum<'a, M>,
    is_reversed: bool,
}

#[derive(Debug, Clone)]
enum ChunksEnum<'a, M>
where
    M: Measurable,
    [(); max_len::<M>()]: Sized,
    [(); max_children::<M>()]: Sized,
{
    Full {
        /// (node ref, index of current child)
        node_stack: Vec<(&'a Arc<Node<M>>, usize)>,
        /// Total lenght of the data range of the iterator.
        len: usize,
        /// The index of the current element relative to the data range start.
        index: isize,
    },
    Light {
        slice: &'a [M],
        is_end: bool,
    },
}

impl<'a, M> Chunks<'a, M>
where
    M: Measurable,
    [(); max_len::<M>()]: Sized,
    [(); max_children::<M>()]: Sized,
{
    #[inline(always)]
    pub(crate) fn new(node: &'a Arc<Node<M>>) -> Self {
        let info = node.slice_info();
        Chunks::new_with_range_at_index(node, 0, (0, info.len as usize), (0, info.width as usize)).0
    }

    #[inline(always)]
    pub(crate) fn new_with_range(
        node: &'a Arc<Node<M>>,
        index_range: (usize, usize),
        width_range: (usize, usize),
    ) -> Self {
        Chunks::new_with_range_at_index(node, index_range.0, index_range, width_range).0
    }

    /// The main workhorse function for creating new [`Chunks`] iterators.
    ///
    /// Creates a new [`Chunks`] iterator from the given node, starting the
    /// iterator at the chunk containing the element in `at_index`
    /// (i.e. the [`next()`][Self::next] method will yield the chunk containing
    /// that element). The range of the iterator is bounded by `index_range`.
    ///
    /// Both `at_index` and `index_range` are relative to the beginning of
    /// of the passed node.
    ///
    /// Passing an `at_index` equal to the max of `index_range` creates an
    /// iterator at the end of forward iteration.
    ///
    /// Returns the iterator and the index/width of its start relative
    /// to the start of the node.
    pub(crate) fn new_with_range_at_index(
        node: &Arc<Node<M>>,
        at_index: usize,
        index_range: (usize, usize),
        width_range: (usize, usize),
    ) -> (Chunks<M>, usize, usize) {
        debug_assert!(at_index >= index_range.0);
        debug_assert!(at_index <= index_range.1);

        // For convenience/readability.
        let start_index = index_range.0;
        let end_index = index_range.1;

        // Special-case for empty slice contents.
        if start_index == end_index {
            return (
                Chunks {
                    iter: ChunksEnum::Light {
                        slice: &[],
                        is_end: false,
                    },
                    is_reversed: false,
                },
                0,
                0,
            );
        }

        // If root is a leaf, return light version of the iter.
        if node.is_leaf() {
            let slice = &node.leaf_slice()[start_index..end_index];
            if at_index == end_index {
                return (
                    Chunks {
                        iter: ChunksEnum::Light {
                            slice,
                            is_end: true,
                        },
                        is_reversed: false,
                    },
                    slice.len(),
                    width_of(slice),
                );
            } else {
                return (
                    Chunks {
                        iter: ChunksEnum::Light {
                            slice,
                            is_end: false,
                        },
                        is_reversed: false,
                    },
                    0,
                    0,
                );
            }
        }

        // Create and populate the node stack, and determine the char index
        // within the first chunk, and byte index of the start of that chunk.
        let mut info = SliceInfo::new();
        let mut index = at_index as isize;
        let node_stack = {
            let mut node_stack: Vec<(&Arc<Node<M>>, usize)> = Vec::new();
            let mut node_ref = node;
            loop {
                match **node_ref {
                    Node::Leaf(ref slice) => {
                        if at_index < end_index || index == 0 {
                            index = info.len as isize - start_index as isize;
                        } else {
                            index =
                                (info.len as isize + slice.len() as isize) - start_index as isize;
                            info = SliceInfo {
                                len: index_range.1 as u64,
                                width: width_range.1 as u64,
                            };
                            node_stack.last_mut().unwrap().1 += 1;
                        }
                        break;
                    }
                    Node::Branch(ref children) => {
                        let (child_i, acc_info) = children.search_index(index as usize);
                        info += acc_info;
                        node_stack.push((node_ref, child_i));
                        node_ref = &children.nodes()[child_i];
                        index -= acc_info.len as isize;
                    }
                }
            }
            node_stack
        };

        // Create the iterator.
        (
            Chunks {
                iter: ChunksEnum::Full {
                    node_stack,
                    len: end_index - start_index,
                    index,
                },
                is_reversed: false,
            },
            (info.len as usize).max(index_range.0),
            (info.width as usize).max(width_range.0),
        )
    }

    #[inline(always)]
    pub(crate) fn new_with_range_at_width(
        node: &'a Arc<Node<M>>,
        at_width: usize,
        index_range: (usize, usize),
        width_range: (usize, usize),
    ) -> (Self, usize, usize) {
        let at_index = (node.get_first_chunk_at_width(at_width).1.len as usize).max(index_range.0);

        Chunks::new_with_range_at_index(node, at_index, index_range, width_range)
    }

    pub(crate) fn from_slice(slice: &'a [M], is_end: bool) -> Self {
        Chunks {
            iter: ChunksEnum::Light { slice, is_end },
            is_reversed: false,
        }
    }

    /// Reverses the direction of the iterator in-place.
    ///
    /// In other words, swaps the behavior of [`prev()`][Self::prev]
    /// and [`next()`][Self::next].
    #[inline]
    pub fn reverse(&mut self) {
        self.is_reversed = !self.is_reversed;
    }

    /// Same as [`reverse()`][Self::reverse], but returns itself.
    ///
    /// This is useful when chaining iterator methods:
    ///
    /// ```rust
    /// # use any_rope::{Rope, Width};
    /// # let rope = Rope::from_slice(
    /// #    &[Width(1), Width(2), Width(3), Width(0), Width(0)]
    /// # );
    /// // Enumerate the rope's chunks in reverse, starting from the end.
    /// for (index, chunk) in rope.chunks_at_index(rope.len()).0.reversed().enumerate() {
    ///     println!("{} {:?}", index, chunk);
    /// #   assert_eq!(chunk, rope.chunks().nth(rope.chunks().count() - index - 1).unwrap());
    /// }
    #[inline]
    #[must_use]
    pub fn reversed(mut self) -> Self {
        self.reverse();
        self
    }

    /// Advances the iterator backwards and returns the previous value.
    ///
    /// Runs in amortized O(1) time and worst-case O(log N) time.
    #[inline(always)]
    pub fn prev(&mut self) -> Option<&'a [M]> {
        if !self.is_reversed {
            self.prev_impl()
        } else {
            self.next_impl()
        }
    }

    fn prev_impl(&mut self) -> Option<&'a [M]> {
        match *self {
            Chunks {
                iter:
                    ChunksEnum::Full {
                        ref mut node_stack,
                        len,
                        ref mut index,
                    },
                ..
            } => {
                if *index <= 0 {
                    return None;
                }

                // Progress the node stack if needed.
                let mut stack_index = node_stack.len() - 1;
                if node_stack[stack_index].1 == 0 {
                    while node_stack[stack_index].1 == 0 {
                        if stack_index == 0 {
                            return None;
                        } else {
                            stack_index -= 1;
                        }
                    }
                    node_stack[stack_index].1 -= 1;
                    while stack_index < (node_stack.len() - 1) {
                        let child_i = node_stack[stack_index].1;
                        let node = &node_stack[stack_index].0.children().nodes()[child_i];
                        node_stack[stack_index + 1] = (node, node.child_count() - 1);
                        stack_index += 1;
                    }
                    node_stack[stack_index].1 += 1;
                }

                // Fetch the node and child index.
                let (node, ref mut child_i) = node_stack.last_mut().unwrap();
                *child_i -= 1;

                // Get the slice in the appropriate range.
                let slice = node.children().nodes()[*child_i].leaf_slice();
                *index -= slice.len() as isize;
                let slice = {
                    let start_byte = if *index < 0 { (-*index) as usize } else { 0 };
                    let end_byte = slice.len().min((len as isize - *index) as usize);
                    &slice[start_byte..end_byte]
                };

                // Return the slice.
                return Some(slice);
            }

            Chunks {
                iter:
                    ChunksEnum::Light {
                        slice,
                        ref mut is_end,
                    },
                ..
            } => {
                if !*is_end || slice.is_empty() {
                    return None;
                } else {
                    *is_end = false;
                    return Some(slice);
                }
            }
        }
    }

    fn next_impl(&mut self) -> Option<&'a [M]> {
        match *self {
            Chunks {
                iter:
                    ChunksEnum::Full {
                        ref mut node_stack,
                        len,
                        ref mut index,
                    },
                ..
            } => {
                if *index >= len as isize {
                    return None;
                }

                // Progress the node stack if needed.
                let mut stack_index = node_stack.len() - 1;
                if node_stack[stack_index].1 >= node_stack[stack_index].0.child_count() {
                    while node_stack[stack_index].1 >= (node_stack[stack_index].0.child_count() - 1)
                    {
                        if stack_index == 0 {
                            return None;
                        } else {
                            stack_index -= 1;
                        }
                    }
                    node_stack[stack_index].1 += 1;
                    while stack_index < (node_stack.len() - 1) {
                        let child_i = node_stack[stack_index].1;
                        let node = &node_stack[stack_index].0.children().nodes()[child_i];
                        node_stack[stack_index + 1] = (node, 0);
                        stack_index += 1;
                    }
                }

                // Fetch the node and child index.
                let (node, ref mut child_i) = node_stack.last_mut().unwrap();

                // Get the slice, sliced to the appropriate range.
                let leaf_slice = node.children().nodes()[*child_i].leaf_slice();
                let slice = {
                    let start_byte = if *index < 0 { (-*index) as usize } else { 0 };
                    let end_byte = leaf_slice.len().min((len as isize - *index) as usize);
                    &leaf_slice[start_byte..end_byte]
                };

                // Book keeping.
                *index += leaf_slice.len() as isize;
                *child_i += 1;

                // Return the slice.
                return Some(slice);
            }

            Chunks {
                iter:
                    ChunksEnum::Light {
                        slice,
                        ref mut is_end,
                    },
                ..
            } => {
                if *is_end || slice.is_empty() {
                    return None;
                } else {
                    *is_end = true;
                    return Some(slice);
                }
            }
        }
    }
}

impl<'a, M> Iterator for Chunks<'a, M>
where
    M: Measurable,
    [(); max_len::<M>()]: Sized,
    [(); max_children::<M>()]: Sized,
{
    type Item = &'a [M];

    /// Advances the iterator forward and returns the next value.
    ///
    /// Runs in amortized O(1) time and worst-case O(log N) time.
    #[inline(always)]
    fn next(&mut self) -> Option<&'a [M]> {
        if !self.is_reversed {
            self.next_impl()
        } else {
            self.prev_impl()
        }
    }
}

#[cfg(test)]
mod tests {
    #![allow(clippy::while_let_on_iterator)]
    use super::*;
    use crate::{Rope, Width};

    fn pseudo_random() -> Vec<Width> {
        (0..1400)
            .into_iter()
            .map(|num| match num % 14 {
                0 => Width(1),
                1 => Width(2),
                2 => Width(4),
                3 => Width(0),
                4 => Width(0),
                5 => Width(5),
                6 => Width(1),
                7 => Width(1),
                8 => Width(2),
                9 => Width(8),
                10 => Width(0),
                11 => Width(0),
                12 => Width(3),
                13 => Width(0),
                _ => unreachable!(),
            })
            .collect()
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_01() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        for ((_, from_rope), from_vec) in rope.iter().zip(pseudo_random().iter().map(|test| *test))
        {
            assert_eq!(from_rope, from_vec);
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_02() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let mut iter = rope.iter();
        while let Some(_) = iter.next() {}

        let mut i = pseudo_random().len();
        while let Some((_, element)) = iter.prev() {
            i -= 1;
            assert_eq!(element, pseudo_random()[i]);
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_03() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let mut iter = rope.iter();

        iter.next();
        iter.prev();
        assert_eq!(None, iter.prev());
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_04() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let mut iter = rope.iter();
        while let Some(_) = iter.next() {}

        iter.prev();
        iter.next();
        assert_eq!(None, iter.next());
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_05() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let mut iter = rope.iter();

        assert_eq!(None, iter.prev());
        iter.next();
        iter.prev();
        assert_eq!(None, iter.prev());
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_06() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let mut iter = rope.iter();
        while let Some(_) = iter.next() {}

        assert_eq!(None, iter.next());
        iter.prev();
        iter.next();
        assert_eq!(None, iter.next());
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_07() {
        let mut iter = Iter::from_slice(&[Width(1)]);

        assert_eq!(Some((0, Width(1))), iter.next());
        assert_eq!(None, iter.next());
        assert_eq!(Some((0, Width(1))), iter.prev());
        assert_eq!(None, iter.prev());
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_08() {
        let width_vec = pseudo_random();
        let mut iter = Iter::from_slice(width_vec.as_slice());

        assert_eq!(iter.next(), Some((0, Width(1))));
        assert_eq!(iter.next(), Some((1, Width(2))));
        assert_eq!(iter.next(), Some((3, Width(4))));
        assert_eq!(iter.next(), Some((7, Width(0))));
        assert_eq!(iter.next(), Some((7, Width(0))));
        assert_eq!(iter.next(), Some((7, Width(5))));
        assert_eq!(iter.next(), Some((12, Width(1))));
        assert_eq!(iter.next(), Some((13, Width(1))));
        assert_eq!(iter.next(), Some((14, Width(2))));
        assert_eq!(iter.next(), Some((16, Width(8))));
        assert_eq!(iter.next(), Some((24, Width(0))));
        assert_eq!(iter.next(), Some((24, Width(0))));
        assert_eq!(iter.next(), Some((24, Width(3))));
        assert_eq!(iter.next(), Some((27, Width(0))));
        assert_eq!(iter.next(), Some((27, Width(1))));
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_at_01() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let slice = rope.width_slice(..79);
        let mut iter = slice.iter_at(56);

        assert_eq!(iter.next(), Some((55, Width(2))));
        assert_eq!(iter.next(), Some((57, Width(4))));
        assert_eq!(iter.next(), Some((61, Width(0))));
        assert_eq!(iter.next(), Some((61, Width(0))));
        assert_eq!(iter.next(), Some((61, Width(5))));
        assert_eq!(iter.next(), Some((66, Width(1))));
        assert_eq!(iter.next(), Some((67, Width(1))));
        assert_eq!(iter.next(), Some((68, Width(2))));
        assert_eq!(iter.next(), Some((70, Width(8))));
        assert_eq!(iter.next(), Some((78, Width(0))));
        assert_eq!(iter.next(), Some((78, Width(0))));
        assert_eq!(iter.next(), Some((78, Width(3))));
        assert_eq!(iter.next(), None);
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_at_02() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let mut bytes = rope.iter_at_width(rope.width());
        // Iterating at the end, when there are zero width elements, always yields them.
        assert_eq!(bytes.next(), Some((2700, Width(0))));
        assert_eq!(bytes.next(), None);
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_at_03() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let mut iter_1 = rope.iter_at_width(rope.width());
        let width_vec = pseudo_random();
        // Skip the last element, since it's zero width.
        let mut iter_2 = width_vec.iter().take(1399).map(|lipsum| *lipsum);

        while let Some(b) = iter_2.next_back() {
            assert_eq!(iter_1.prev().map(|(_, element)| element), Some(b));
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn exact_size_iter_01() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let slice = rope.width_slice(34..75);

        let mut len = slice.len();
        let mut iter = slice.iter();
        assert_eq!(len, iter.len());

        while let Some(_) = iter.next() {
            len -= 1;
            assert_eq!(len, iter.len());
        }

        iter.next();
        iter.next();
        iter.next();
        iter.next();
        iter.next();
        iter.next();
        iter.next();
        assert_eq!(iter.len(), 0);
        assert_eq!(len, 0);
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn exact_size_iter_02() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let slice = rope.width_slice(34..300);

        let mut len = 0;
        let mut iter = slice.iter_at(slice.width());

        assert_eq!(len, iter.len());

        while iter.prev().is_some() {
            len += 1;
            assert_eq!(len, iter.len());
        }

        assert_eq!(iter.len(), slice.len());
        iter.prev();
        iter.prev();
        iter.prev();
        iter.prev();
        iter.prev();
        iter.prev();
        iter.prev();
        assert_eq!(iter.len(), slice.len());
        assert_eq!(len, slice.len());
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn exact_size_iter_03() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let slice = rope.width_slice(34..34);
        let mut iter = slice.iter();

        assert_eq!(iter.next(), Some((34, Width(0))));
        assert_eq!(iter.next(), Some((34, Width(0))));
        assert_eq!(iter.next(), None);
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_reverse_01() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let mut iter = rope.iter();
        let mut stack = Vec::new();

        for _ in 0..32 {
            stack.push(iter.next().unwrap());
        }
        iter.reverse();
        for _ in 0..32 {
            assert_eq!(stack.pop(), iter.next());
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_reverse_02() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let mut iter = rope.iter_at_width(rope.len() / 3);
        let mut stack = Vec::new();

        for _ in 0..32 {
            stack.push(iter.next().unwrap());
        }
        iter.reverse();
        for _ in 0..32 {
            assert_eq!(stack.pop(), iter.next());
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn chunks_01() {
        let rope = Rope::from_slice(pseudo_random().as_slice());

        let mut index = 0;
        for chunk in rope.chunks() {
            assert_eq!(chunk, &pseudo_random()[index..(index + chunk.len())]);
            index += chunk.len();
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn chunks_02() {
        let rope = Rope::<Width>::from_slice(&[]);
        let mut iter = rope.chunks();

        assert_eq!(None, iter.next());
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn chunks_03() {
        let rope = Rope::from_slice(pseudo_random().as_slice());

        let mut iter = rope.chunks();

        assert_eq!(None, iter.prev());
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn chunks_04() {
        let rope = Rope::from_slice(pseudo_random().as_slice());

        let mut chunks = Vec::new();
        let mut iter = rope.chunks();

        while let Some(slice) = iter.next() {
            chunks.push(slice);
        }

        while let Some(slice) = iter.prev() {
            assert_eq!(slice, chunks.pop().unwrap());
        }

        assert!(chunks.is_empty());
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn chunks_at_01() {
        let rope = Rope::from_slice(pseudo_random().as_slice());

        for i in 0..rope.len() {
            let (chunk, index, width) = rope.chunk_at_index(i);
            let (mut chunks, slice_index, slice_width) = rope.chunks_at_index(i);

            assert_eq!(index, slice_index);
            assert_eq!(width, slice_width);
            assert_eq!(Some(chunk), chunks.next());
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn chunks_at_02() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let slice = rope.width_slice(34..301);

        let (mut chunks, _, _) = slice.chunks_at_index(slice.len());
        assert_eq!(chunks.next(), None);

        let (mut chunks, _, _) = slice.chunks_at_index(slice.len());
        assert_eq!(slice.chunks().last(), chunks.prev());
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn chunks_at_03() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let slice = rope.width_slice(34..34);

        let (mut chunks, _, _) = slice.chunks_at_index(0);
        assert_eq!(chunks.next(), Some([Width(0)].as_slice()));
        assert!(chunks.next().is_some());

        let (mut chunks, _, _) = slice.chunks_at_index(0);
        assert_eq!(chunks.prev(), None);
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn chunks_reverse_01() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let mut iter = rope.chunks();
        let mut stack = Vec::new();

        for _ in 0..8 {
            stack.push(iter.next().unwrap());
        }
        iter.reverse();
        for _ in 0..8 {
            assert_eq!(stack.pop().unwrap(), iter.next().unwrap());
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn chunks_reverse_02() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let mut iter = rope.chunks_at_width(rope.width() / 3).0;
        let mut stack = Vec::new();

        for _ in 0..8 {
            stack.push(iter.next().unwrap());
        }
        iter.reverse();
        for _ in 0..8 {
            assert_eq!(stack.pop().unwrap(), iter.next().unwrap());
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn chunks_reverse_03() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let mut iter = rope.chunks_at_width(rope.width() / 3).0;
        let mut stack = Vec::new();

        iter.reverse();
        for _ in 0..8 {
            stack.push(iter.next().unwrap());
        }
        iter.reverse();
        for _ in 0..8 {
            assert_eq!(stack.pop().unwrap(), iter.next().unwrap());
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn chunks_reverse_04() {
        let mut iter = Chunks::from_slice(&[Width(5), Width(0)], false);

        assert_eq!(Some([Width(5), Width(0)].as_slice()), iter.next());
        assert_eq!(None, iter.next());
        iter.reverse();
        assert_eq!(Some([Width(5), Width(0)].as_slice()), iter.next());
        assert_eq!(None, iter.next());
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_sliced_01() {
        let rope = Rope::from_slice(pseudo_random().as_slice());

        let slice_start = 34;
        let slice_end = 301;
        let slice_start_byte = rope.start_width_to_index(slice_start);
        let s_end_byte = rope.end_width_to_index(slice_end);

        let slice_1 = rope.width_slice(slice_start..slice_end);
        let slice_2 = &pseudo_random()[slice_start_byte..s_end_byte];

        let mut slice_1_iter = slice_1.iter();
        let mut slice_2_iter = slice_2.iter().map(|lipsum| *lipsum);

        assert_eq!(slice_1, slice_2);
        assert_eq!(slice_1.from_index(0).1, slice_2[0]);
        for _ in 0..(slice_2.len() + 1) {
            assert_eq!(
                slice_1_iter.next().map(|(_, element)| element),
                slice_2_iter.next()
            );
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_at_sliced_02() {
        let rope = Rope::from_slice(pseudo_random().as_slice());
        let slice = rope.width_slice(34..300);
        let mut iter = slice.iter_at(slice.width());
        // Yields None, since we're iterating in the middle of a Width(4) element.
        assert_eq!(iter.next(), None);
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_at_sliced_03() {
        let rope = Rope::from_slice(pseudo_random().as_slice());

        let slice_start = 34;
        let slice_end = 300;
        let slice_start_byte = rope.start_width_to_index(slice_start);
        let s_end_byte = rope.end_width_to_index(slice_end);

        let slice_1 = rope.width_slice(slice_start..slice_end);
        let slice_2 = &pseudo_random()[slice_start_byte..s_end_byte];

        let mut bytes_1 = slice_1.iter_at(slice_1.width());
        let mut bytes_2 = slice_2.iter().map(|lipsum| *lipsum);
        while let Some(b) = bytes_2.next_back() {
            assert_eq!(bytes_1.prev().map(|(_, element)| element), Some(b));
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn iter_at_sliced_reverse_01() {
        let rope = Rope::from_slice(pseudo_random().as_slice());

        let slice_start = 34;
        let slice_end = 301;
        let slice = rope.width_slice(slice_start..slice_end);

        let mut iter = slice.iter_at(slice.len() / 3);
        let mut stack = Vec::new();
        for _ in 0..32 {
            stack.push(iter.next().unwrap());
        }
        iter.reverse();
        for _ in 0..32 {
            assert_eq!(stack.pop(), iter.next());
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn chunks_sliced_01() {
        let rope = Rope::from_slice(pseudo_random().as_slice());

        let slice_start = 34;
        let slice_end = 301;
        let slice_start_index = rope.start_width_to_index(slice_start);
        let slice_end_index = rope.end_width_to_index(slice_end);

        let slice_1 = rope.width_slice(slice_start..slice_end);
        let slice_2 = &pseudo_random()[slice_start_index..slice_end_index];

        let mut index = 0;
        for chunk in slice_1.chunks() {
            assert_eq!(chunk, &slice_2[index..(index + chunk.len())]);
            index += chunk.len();
        }

        assert_eq!(index, slice_2.len());
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn chunks_sliced_reverse_01() {
        let rope = Rope::from_slice(pseudo_random().as_slice());

        let slice_start = 34;
        let slice_end = 301;
        let slice = rope.width_slice(slice_start..slice_end);

        let mut iter = slice.chunks();
        let mut stack = Vec::new();
        for _ in 0..8 {
            stack.push(iter.next().unwrap());
        }
        iter.reverse();
        for _ in 0..8 {
            assert_eq!(stack.pop(), iter.next());
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn empty_iter() {
        let rope = Rope::<Width>::from_slice(&[]);
        let rope: Vec<Width> = rope.iter().map(|(_, element)| element).collect();
        assert_eq!(&*rope, [].as_slice())
    }
}