antimony-lang 0.7.0

The Antimony programming language
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
use super::parser::Parser;
use crate::ast::types::Type;
use crate::ast::*;
use crate::lexer::Keyword;
use crate::lexer::{TokenKind, Value};
use std::collections::HashMap;
/**
 * Copyright 2020 Garrit Franke
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
use std::collections::HashSet;
use std::convert::TryFrom;

impl Parser {
    pub fn parse_module(&mut self) -> Result<Module, String> {
        let mut functions = Vec::new();
        let mut structs = Vec::new();
        let mut imports = HashSet::new();
        let globals = Vec::new();

        while self.has_more() {
            let next = self.peek()?;
            match next.kind {
                TokenKind::Keyword(Keyword::Function) => functions.push(self.parse_function()?),
                TokenKind::Keyword(Keyword::Import) => {
                    imports.insert(self.parse_import()?);
                }
                TokenKind::Keyword(Keyword::Struct) => {
                    structs.push(self.parse_struct_definition()?)
                }
                _ => return Err(format!("Unexpected token: {}", next.raw)),
            }
        }

        // TODO: Populate imports

        Ok(Module {
            func: functions,
            structs,
            globals,
            path: self.path.clone(),
            imports,
        })
    }

    fn parse_struct_definition(&mut self) -> Result<StructDef, String> {
        self.match_keyword(Keyword::Struct)?;
        let name = self.match_identifier()?;

        self.match_token(TokenKind::CurlyBracesOpen)?;
        let mut fields = Vec::new();
        let mut methods = Vec::new();
        while self.peek_token(TokenKind::CurlyBracesClose).is_err() {
            let next = self.peek()?;
            match next.kind {
                TokenKind::Keyword(Keyword::Function) => {
                    methods.push(self.parse_function()?);
                }
                TokenKind::Identifier(_) => fields.push(self.parse_typed_variable()?),
                _ => {
                    return Err(
                        self.make_error_msg(next.pos, "Expected struct field or method".into())
                    )
                }
            }
        }
        self.match_token(TokenKind::CurlyBracesClose)?;
        Ok(StructDef {
            name,
            fields,
            methods,
        })
    }

    fn parse_typed_variable_list(&mut self) -> Result<Vec<Variable>, String> {
        let mut args = Vec::new();

        // If there is an argument
        if let TokenKind::Identifier(_) = self.peek()?.kind {
            // Parse first argument
            args.push(self.parse_typed_variable()?);
            // Then continue to parse arguments
            // as long as a comma token is found
            while self.peek_token(TokenKind::Comma).is_ok() {
                self.match_token(TokenKind::Comma)?;
                args.push(self.parse_typed_variable()?);
            }
        }

        Ok(args)
    }

    fn parse_typed_variable(&mut self) -> Result<Variable, String> {
        let next = self.next()?;
        if let TokenKind::Identifier(name) = next.kind {
            return Ok(Variable {
                name,
                ty: Some(self.parse_type()?),
            });
        }

        Err(format!("Argument could not be parsed: {}", next.raw))
    }

    fn parse_block(&mut self) -> Result<Statement, String> {
        self.match_token(TokenKind::CurlyBracesOpen)?;

        let mut statements = vec![];
        let mut scope = vec![];

        // Parse statements until a curly brace is encountered
        while self.peek_token(TokenKind::CurlyBracesClose).is_err() {
            let statement = self.parse_statement()?;

            // If the current statement is a variable declaration,
            // let the scope know
            if let Statement::Declare { variable, value: _ } = &statement {
                // TODO: Not sure if we should clone here
                scope.push(variable.to_owned());
            }

            statements.push(statement);
        }

        self.match_token(TokenKind::CurlyBracesClose)?;

        Ok(Statement::Block { statements, scope })
    }

    /// To reduce code duplication, this method can be either be used to parse a function or a method.
    /// If a function is parsed, the `fn` keyword is matched.
    /// If a method is parsed, `fn` will be omitted
    fn parse_function(&mut self) -> Result<Function, String> {
        self.match_keyword(Keyword::Function)?;
        let name = self.match_identifier()?;

        self.match_token(TokenKind::BraceOpen)?;

        let arguments: Vec<Variable> = match self.peek()? {
            t if t.kind == TokenKind::BraceClose => Vec::new(),
            _ => self.parse_typed_variable_list()?,
        };

        self.match_token(TokenKind::BraceClose)?;

        let ty = match self.peek()?.kind {
            TokenKind::Colon => Some(self.parse_type()?),
            _ => None,
        };

        let body = self.parse_block()?;

        Ok(Function {
            name,
            arguments,
            body,
            ret_type: ty,
        })
    }

    fn parse_import(&mut self) -> Result<String, String> {
        self.match_keyword(Keyword::Import)?;
        let token = self.next()?;
        let path = match token.kind {
            TokenKind::Literal(Value::Str(path)) => path,
            other => {
                return Err(
                    self.make_error_msg(token.pos, format!("Expected string, got {:?}", other))
                )
            }
        };

        Ok(path)
    }

    fn parse_type(&mut self) -> Result<Type, String> {
        self.match_token(TokenKind::Colon)?;
        let next = self.peek()?;
        let typ = match next.kind {
            TokenKind::Identifier(_) => Type::try_from(self.next()?.raw),
            _ => Err("Expected type".into()),
        }?;
        if self.peek_token(TokenKind::SquareBraceOpen).is_ok() {
            self.match_token(TokenKind::SquareBraceOpen)?;
            let capacity = match self.peek_token(TokenKind::Literal(Value::Int)) {
                Ok(val) => {
                    self.next()?;
                    val.raw.parse().ok()
                }
                Err(_) => None,
            };
            self.match_token(TokenKind::SquareBraceClose)?;
            Ok(Type::Array(Box::new(typ), capacity))
        } else {
            Ok(typ)
        }
    }

    fn parse_statement(&mut self) -> Result<Statement, String> {
        let token = self.peek()?;
        match &token.kind {
            TokenKind::CurlyBracesOpen => self.parse_block(),
            TokenKind::BraceOpen | TokenKind::Keyword(Keyword::Selff) => {
                Ok(Statement::Exp(self.parse_expression()?))
            }
            TokenKind::Keyword(Keyword::Let) => self.parse_declare(),
            TokenKind::Keyword(Keyword::Return) => self.parse_return(),
            TokenKind::Keyword(Keyword::If) => self.parse_conditional_statement(),
            TokenKind::Keyword(Keyword::While) => self.parse_while_loop(),
            TokenKind::Keyword(Keyword::Break) => self.parse_break(),
            TokenKind::Keyword(Keyword::Continue) => self.parse_continue(),
            TokenKind::Keyword(Keyword::For) => self.parse_for_loop(),
            TokenKind::Keyword(Keyword::Match) => self.parse_match_statement(),
            TokenKind::Identifier(_) => {
                let ident = self.match_identifier()?;
                let expr = if self.peek_token(TokenKind::Dot).is_ok() {
                    self.parse_field_access(Expression::Variable(ident.clone()))?
                } else {
                    Expression::Variable(ident.clone())
                };

                // TODO: Use match statement
                if self.peek_token(TokenKind::BraceOpen).is_ok() {
                    let state = self.parse_function_call(Some(ident))?;
                    Ok(Statement::Exp(state))
                } else if self.peek_token(TokenKind::Assign).is_ok() {
                    let state = self.parse_assignent(Some(expr))?;
                    Ok(state)
                } else if self.peek_token(TokenKind::SquareBraceOpen).is_ok() {
                    let expr = self.parse_array_access(Some(ident))?;

                    let next = self.peek()?;
                    match next.kind {
                        TokenKind::Assign => self.parse_assignent(Some(expr)),
                        _ => Ok(Statement::Exp(expr)),
                    }
                } else if BinOp::try_from(self.peek()?.kind).is_ok() {
                    // Parse Binary operation
                    let expr = Expression::Variable(ident);
                    let state = Statement::Exp(self.parse_bin_op(Some(expr))?);
                    Ok(state)
                } else if self.peek_token(TokenKind::Dot).is_ok() {
                    Ok(Statement::Exp(
                        self.parse_field_access(Expression::Variable(ident))?,
                    ))
                } else {
                    Ok(Statement::Exp(expr))
                }
            }
            TokenKind::Literal(_) => Ok(Statement::Exp(self.parse_expression()?)),
            TokenKind::Keyword(Keyword::Struct) => {
                Err("Struct definitions inside functions are not allowed".to_string())
            }
            _ => Err(self.make_error_msg(token.pos, "Failed to parse statement".to_string())),
        }
    }

    /// Parses a function call from tokens.
    /// The name of the function needs to be passed here, because we have already passed it with our cursor.
    /// If no function name is provided, the next token will be fetched
    fn parse_function_call(&mut self, func_name: Option<String>) -> Result<Expression, String> {
        let fn_name = match func_name {
            Some(name) => name,
            None => self.next()?.raw,
        };

        self.match_token(TokenKind::BraceOpen)?;

        let mut args = Vec::new();

        loop {
            let next = self.peek()?;
            match &next.kind {
                TokenKind::BraceClose => break,
                TokenKind::Comma => {
                    let _ = self.next();
                    continue;
                }
                TokenKind::Identifier(_) | TokenKind::Literal(_) => {
                    args.push(self.parse_expression()?)
                }
                TokenKind::Keyword(Keyword::Boolean) | TokenKind::Keyword(Keyword::New) => {
                    args.push(self.parse_expression()?)
                }
                TokenKind::SquareBraceOpen => {
                    // TODO: Expression parsing currently uses `next` instead of `peek`.
                    // We have to eat that token here until that is resolved
                    self.match_token(TokenKind::SquareBraceOpen)?;
                    args.push(self.parse_array()?);
                }
                _ => {
                    return Err(self.make_error(TokenKind::BraceClose, next));
                }
            };
        }

        self.match_token(TokenKind::BraceClose)?;
        let expr = Expression::FunctionCall { fn_name, args };
        match self.peek()?.kind {
            TokenKind::Dot => self.parse_field_access(expr),
            _ => Ok(expr),
        }
    }

    fn parse_return(&mut self) -> Result<Statement, String> {
        self.match_keyword(Keyword::Return)?;
        let peeked = self.peek()?;
        match peeked.kind {
            TokenKind::SemiColon => Ok(Statement::Return(None)),
            _ => Ok(Statement::Return(Some(self.parse_expression()?))),
        }
    }

    fn parse_expression(&mut self) -> Result<Expression, String> {
        let token = self.next()?;

        let expr = match token.kind {
            // (1 + 2)
            TokenKind::BraceOpen => {
                let expr = self.parse_expression()?;
                self.match_token(TokenKind::BraceClose)?;
                expr
            }
            // true | false
            TokenKind::Keyword(Keyword::Boolean) => {
                Expression::Bool(token.raw.parse::<bool>().map_err(|e| e.to_string())?)
            }
            // 5
            TokenKind::Literal(Value::Int) => {
                // Ignore spacing character (E.g. 1_000_000)
                let clean_str = token.raw.replace('_', "");
                let val = match clean_str {
                    c if c.starts_with("0b") => {
                        usize::from_str_radix(token.raw.trim_start_matches("0b"), 2)
                            .map_err(|e| e.to_string())?
                    }
                    c if c.starts_with("0o") => {
                        usize::from_str_radix(token.raw.trim_start_matches("0o"), 8)
                            .map_err(|e| e.to_string())?
                    }
                    c if c.starts_with("0x") => {
                        usize::from_str_radix(token.raw.trim_start_matches("0x"), 16)
                            .map_err(|e| e.to_string())?
                    }
                    c => c.parse::<usize>().map_err(|e| e.to_string())?,
                };
                Expression::Int(val)
            }
            // "A string"
            TokenKind::Literal(Value::Str(string)) => Expression::Str(string),
            // self
            TokenKind::Keyword(Keyword::Selff) => Expression::Selff,
            TokenKind::Identifier(val) => {
                let next = self.peek()?;
                match &next.kind {
                    // foo()
                    TokenKind::BraceOpen => self.parse_function_call(Some(val))?,
                    // arr[0]
                    TokenKind::SquareBraceOpen => self.parse_array_access(Some(val))?,
                    // some_var
                    _ => Expression::Variable(val),
                }
            }
            // [1, 2, 3]
            TokenKind::SquareBraceOpen => self.parse_array()?,
            // new Foo {}
            TokenKind::Keyword(Keyword::New) => self.parse_struct_initialization()?,
            other => return Err(format!("Expected Expression, found {:?}", other)),
        };

        // Check if the parsed expression continues
        if self.peek_token(TokenKind::Dot).is_ok() {
            // foo.bar
            self.parse_field_access(expr)
        } else if BinOp::try_from(self.peek()?.kind).is_ok() {
            // 1 + 2
            self.parse_bin_op(Some(expr))
        } else {
            // Nope, the expression was fully parsed
            Ok(expr)
        }
    }

    fn parse_field_access(&mut self, lhs: Expression) -> Result<Expression, String> {
        self.match_token(TokenKind::Dot)?;

        // Only possible options are identifier or function call,
        // So it's safe to assume that the next token should be an identifier
        let id = self.match_identifier()?;
        let next = self.peek()?;

        let field = match next.kind {
            TokenKind::BraceOpen => self.parse_function_call(Some(id))?,
            _ => Expression::Variable(id),
        };
        let expr = Expression::FieldAccess {
            expr: Box::new(lhs),
            field: Box::new(field),
        };
        if self.peek_token(TokenKind::Dot).is_ok() {
            self.parse_field_access(expr)
        } else if BinOp::try_from(self.peek()?.kind).is_ok() {
            self.parse_bin_op(Some(expr))
        } else {
            Ok(expr)
        }
    }

    /// TODO: Cleanup
    fn parse_struct_initialization(&mut self) -> Result<Expression, String> {
        let name = self.match_identifier()?;
        self.match_token(TokenKind::CurlyBracesOpen)?;
        let fields = self.parse_struct_fields()?;
        self.match_token(TokenKind::CurlyBracesClose)?;

        Ok(Expression::StructInitialization { name, fields })
    }

    fn parse_struct_fields(&mut self) -> Result<HashMap<String, Box<Expression>>, String> {
        let mut map = HashMap::new();

        // If there is a field
        if let TokenKind::Identifier(_) = self.peek()?.kind {
            // Parse first field
            let (name, expr) = self.parse_struct_field()?;
            map.insert(name, expr);
            // Then continue to parse fields
            // as long as a comma token is found
            while matches!(self.peek()?.kind, TokenKind::Identifier(_)) {
                let (name, expr) = self.parse_struct_field()?;
                map.insert(name, expr);
            }
        }

        Ok(map)
    }

    fn parse_struct_field(&mut self) -> Result<(String, Box<Expression>), String> {
        let next = self.next()?;
        if let TokenKind::Identifier(name) = next.kind {
            self.match_token(TokenKind::Colon)?;
            return Ok((name, Box::new(self.parse_expression()?)));
        }

        Err(format!("Struct field could not be parsed: {}", next.raw))
    }

    fn parse_array(&mut self) -> Result<Expression, String> {
        let mut elements = Vec::new();
        loop {
            let next = self.peek()?;
            match next.kind {
                TokenKind::SquareBraceClose => {}
                TokenKind::Literal(Value::Int) => {
                    let value = self
                        .next()?
                        .raw
                        .parse::<usize>()
                        .map_err(|e| e.to_string())?;
                    elements.push(Expression::Int(value));
                }
                _ => {
                    let expr = self.parse_expression()?;
                    elements.push(expr);
                }
            };
            if self.peek_token(TokenKind::SquareBraceClose).is_ok() {
                break;
            }
            self.match_token(TokenKind::Comma)?;
        }

        self.match_token(TokenKind::SquareBraceClose)?;
        let capacity = elements.len();

        Ok(Expression::Array { capacity, elements })
    }

    fn parse_array_access(&mut self, arr_name: Option<String>) -> Result<Expression, String> {
        let name = match arr_name {
            Some(name) => name,
            None => self.next()?.raw,
        };

        self.match_token(TokenKind::SquareBraceOpen)?;
        let expr = self.parse_expression()?;
        self.match_token(TokenKind::SquareBraceClose)?;

        Ok(Expression::ArrayAccess {
            name,
            index: Box::new(expr),
        })
    }

    fn parse_while_loop(&mut self) -> Result<Statement, String> {
        self.match_keyword(Keyword::While)?;
        let condition = self.parse_expression()?;
        let body = self.parse_block()?;

        Ok(Statement::While {
            condition,
            body: Box::new(body),
        })
    }

    fn parse_break(&mut self) -> Result<Statement, String> {
        self.match_keyword(Keyword::Break)?;
        Ok(Statement::Break)
    }

    fn parse_continue(&mut self) -> Result<Statement, String> {
        self.match_keyword(Keyword::Continue)?;
        Ok(Statement::Continue)
    }

    fn parse_for_loop(&mut self) -> Result<Statement, String> {
        self.match_keyword(Keyword::For)?;

        let ident = self.match_identifier()?;
        let ident_ty = match self.peek()?.kind {
            TokenKind::Colon => Some(self.parse_type()?),
            _ => None,
        };
        self.match_keyword(Keyword::In)?;
        let expr = self.parse_expression()?;

        let body = self.parse_block()?;

        Ok(Statement::For {
            ident: Variable {
                name: ident,
                ty: ident_ty,
            },
            expr,
            body: Box::new(body),
        })
    }

    fn parse_match_statement(&mut self) -> Result<Statement, String> {
        self.match_keyword(Keyword::Match)?;
        let subject = self.parse_expression()?;
        self.match_token(TokenKind::CurlyBracesOpen)?;
        let mut arms: Vec<MatchArm> = Vec::new();

        // Used to mitigate multiple else cases were defined
        let mut has_else = false;
        loop {
            let next = self.peek()?;
            match next.kind {
                TokenKind::Literal(_)
                | TokenKind::Identifier(_)
                | TokenKind::Keyword(Keyword::Boolean) => arms.push(self.parse_match_arm()?),
                TokenKind::Keyword(Keyword::Else) => {
                    if has_else {
                        return Err(self.make_error_msg(
                            next.pos,
                            "Multiple else arms are not allowed".to_string(),
                        ));
                    }
                    has_else = true;
                    arms.push(self.parse_match_arm()?);
                }
                TokenKind::CurlyBracesClose => break,
                _ => return Err(self.make_error_msg(next.pos, "Illegal token".to_string())),
            }
        }
        self.match_token(TokenKind::CurlyBracesClose)?;
        Ok(Statement::Match { subject, arms })
    }

    fn parse_match_arm(&mut self) -> Result<MatchArm, String> {
        let next = self.peek()?;

        match next.kind {
            TokenKind::Keyword(Keyword::Else) => {
                self.match_keyword(Keyword::Else)?;
                self.match_token(TokenKind::ArrowRight)?;
                Ok(MatchArm::Else(self.parse_statement()?))
            }
            _ => {
                let expr = self.parse_expression()?;
                self.match_token(TokenKind::ArrowRight)?;
                let statement = self.parse_statement()?;

                Ok(MatchArm::Case(expr, statement))
            }
        }
    }

    fn parse_conditional_statement(&mut self) -> Result<Statement, String> {
        self.match_keyword(Keyword::If)?;
        let condition = self.parse_expression()?;

        let body = self.parse_block()?;

        match self.peek()? {
            tok if tok.kind == TokenKind::Keyword(Keyword::Else) => {
                let _ = self.next();

                let peeked = self.peek()?;

                let else_branch = match &peeked.kind {
                    TokenKind::CurlyBracesOpen => Some(self.parse_block()?),
                    _ => None,
                };

                let else_branch = match else_branch {
                    Some(branch) => branch,
                    None => self.parse_conditional_statement()?,
                };
                Ok(Statement::If {
                    condition,
                    body: Box::new(body),
                    else_branch: Some(Box::new(else_branch)),
                })
            }
            _ => Ok(Statement::If {
                condition,
                body: Box::new(body),
                else_branch: None,
            }),
        }
    }

    /// In some occurences a complex expression has been evaluated before a binary operation is encountered.
    /// The following expression is one such example:
    /// ```
    /// foo(1) * 2
    /// ```
    /// In this case, the function call has already been evaluated, and needs to be passed to this function.
    fn parse_bin_op(&mut self, lhs: Option<Expression>) -> Result<Expression, String> {
        let left = match lhs {
            Some(lhs) => lhs,
            None => {
                let prev = self.prev().ok_or("Expected token")?;
                match &prev.kind {
                    TokenKind::Identifier(_) | TokenKind::Literal(_) | TokenKind::Keyword(_) => {
                        Ok(Expression::try_from(prev)?)
                    }
                    _ => Err(self
                        .make_error_msg(prev.pos, "Failed to parse binary operation".to_string())),
                }?
            }
        };

        let op = self.match_operator()?;

        Ok(Expression::BinOp {
            lhs: Box::from(left),
            op,
            rhs: Box::from(self.parse_expression()?),
        })
    }

    fn parse_declare(&mut self) -> Result<Statement, String> {
        self.match_keyword(Keyword::Let)?;
        let name = self.match_identifier()?;
        let ty = match self.peek()?.kind {
            TokenKind::Colon => Some(self.parse_type()?),
            _ => None,
        };

        match self.peek()?.kind {
            TokenKind::Assign => {
                self.match_token(TokenKind::Assign)?;
                let expr = self.parse_expression()?;
                Ok(Statement::Declare {
                    variable: Variable { name, ty },
                    value: Some(expr),
                })
            }
            _ => Ok(Statement::Declare {
                variable: Variable { name, ty },
                value: None,
            }),
        }
    }

    fn parse_assignent(&mut self, name: Option<Expression>) -> Result<Statement, String> {
        let name = match name {
            Some(name) => name,
            None => Expression::Variable(self.match_identifier()?),
        };

        self.match_token(TokenKind::Assign)?;

        let expr = self.parse_expression()?;

        Ok(Statement::Assign {
            lhs: Box::new(name),
            rhs: Box::new(expr),
        })
    }
}