1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
use std::ops::Deref;

use num::traits::ToPrimitive;

#[inline]
pub fn n_choose_2(n: usize) -> usize {
    n * (n - 1) / 2
}

pub fn kahan_sigma<'a, E, I: Iterator<Item=&'a E>, F>(element_iterator: I, op: F) -> f64
    where E: Copy + 'a, &'a E: Deref, F: Fn(E) -> f64 {
    // Kahan summation algorithm
    let mut sum = 0f64;
    let mut lower_bits = 0f64;
    for a in element_iterator {
        let y = op(*a) - lower_bits;
        let new_sum = sum + y;
        lower_bits = (new_sum - sum) - y;
        sum = new_sum;
    }
    sum
}

pub fn kahan_sigma_f32<'a, E, I: Iterator<Item=&'a E>, F>(element_iterator: I, op: F) -> f32
    where E: Copy + 'a, &'a E: Deref, F: Fn(E) -> f32 {
    // Kahan summation algorithm
    let mut sum = 0f32;
    let mut lower_bits = 0f32;
    for a in element_iterator {
        let y = op(*a) - lower_bits;
        let new_sum = sum + y;
        lower_bits = (new_sum - sum) - y;
        sum = new_sum;
    }
    sum
}

pub fn kahan_sigma_return_counter<'a, E, I: Iterator<Item=&'a E>, F>(
    element_iterator: I,
    op: F
) -> (f64, usize)
    where E: Copy + 'a, &'a E: Deref, F: Fn(E) -> f64 {
    let mut count = 0usize;
    // Kahan summation algorithm
    let mut sum = 0f64;
    let mut lower_bits = 0f64;
    for a in element_iterator {
        count += 1;
        let y = op(*a) - lower_bits;
        let new_sum = sum + y;
        lower_bits = (new_sum - sum) - y;
        sum = new_sum;
    }
    (sum, count)
}

#[inline]
pub fn sum<'a, A, T: Iterator<Item=&'a A>>(element_iterator: T) -> f64
    where A: Copy + ToPrimitive + 'a, &'a A: Deref {
    kahan_sigma(element_iterator, |a| a.to_f64().unwrap())
}

#[inline]
pub fn sum_f32<'a, A, T: Iterator<Item=&'a A>>(element_iterator: T) -> f32
    where A: Copy + ToPrimitive + 'a, &'a A: Deref {
    kahan_sigma_f32(element_iterator, |a| a.to_f32().unwrap())
}

#[inline]
pub fn sum_of_squares<'a, A, T: Iterator<Item=&'a A>>(element_iterator: T) -> f64
    where A: Copy + ToPrimitive + 'a, &'a A: Deref {
    kahan_sigma(element_iterator, |a| {
        let a_f64 = a.to_f64().unwrap();
        a_f64 * a_f64
    })
}

#[inline]
pub fn sum_of_squares_f32<'a, A, T: Iterator<Item=&'a A>>(element_iterator: T) -> f32
    where A: Copy + ToPrimitive + 'a, &'a A: Deref {
    kahan_sigma_f32(element_iterator, |a| {
        let a_f32 = a.to_f32().unwrap();
        a_f32 * a_f32
    })
}

#[inline]
pub fn sum_of_fourth_power_f32<'a, A, T: Iterator<Item=&'a A>>(element_iterator: T) -> f32
    where A: Copy + ToPrimitive + 'a, &'a A: Deref {
    kahan_sigma_f32(element_iterator, |a| {
        let a_f32 = a.to_f32().unwrap();
        a_f32 * a_f32 * a_f32 * a_f32
    })
}

#[inline]
pub fn mean<'a, A, T: Iterator<Item=&'a A>>(element_iterator: T) -> f64
    where A: Copy + ToPrimitive + 'a, &'a A: Deref {
    let (sum, count) = kahan_sigma_return_counter(element_iterator, |a| a.to_f64().unwrap());
    sum / count as f64
}

/// `ddof` stands for delta degress of freedom, and the sum of squares will be
/// divided by `count - ddof`, where `count` is the number of elements
/// for population variance, set `ddof` to 0
/// for sample variance, set `ddof` to 1
#[inline]
pub fn variance<'a, T: Clone + Iterator<Item=&'a A>, A>(element_iterator: T, ddof: usize) -> f64
    where A: Copy + ToPrimitive + 'a, &'a A: Deref {
    let mean = mean(element_iterator.clone());
    let (sum, count) = kahan_sigma_return_counter(element_iterator, move |a| {
        let a_f64 = a.to_f64().unwrap() - mean;
        a_f64 * a_f64
    });
    sum / (count - ddof) as f64
}

/// `ddof` stands for delta degress of freedom, and the sum of squares will be
/// divided by `count - ddof`, where `count` is the number of elements
/// for population standard deviation, set `ddof` to 0
/// for sample standard deviation, set `ddof` to 1
#[inline]
pub fn standard_deviation<'a, T: Clone + Iterator<Item=&'a A>, A>(
    element_iterator: T,
    ddof: usize
) -> f64
    where A: Copy + ToPrimitive + 'a, &'a A: Deref {
    variance(element_iterator, ddof).sqrt()
}

#[cfg(test)]
mod tests {
    use rand::Rng;

    use super::{mean, standard_deviation, sum, sum_of_squares, variance};

    #[test]
    fn test_sum() {
        let elements = vec![1, 5, 3, 2, 7, 100, 1234, 234, 12, 0, 1234];
        assert_eq!(elements.iter().sum::<i32>() as f64, sum(elements.iter()));
    }

    #[test]
    fn test_sum_of_squares() {
        let elements = vec![1, 5, 3, 2, 7, 100];
        assert_eq!(10088f64, sum_of_squares(elements.iter()));
    }

    #[test]
    fn test_mean() {
        let mut numbers = Vec::<i64>::with_capacity(100);
        let mut rng = rand::thread_rng();
        for _ in 0..1000000 {
            numbers.push(rng.gen_range(1, 21));
        }
        assert_eq!(numbers.iter().sum::<i64>() as f64 / numbers.len() as f64, mean(numbers.iter()));
    }

    #[test]
    fn test_variance() {
        let elements = vec![1, 5, 123, 5, -345, 467, 568, 1234, -123, -2343, 23];
        assert_eq!(768950.6, variance(elements.iter(), 1));
        assert_eq!(699046.0, variance(elements.iter(), 0));
    }

    #[test]
    fn test_std() {
        let elements = vec![1, 5, 3, 2, 7, 100, 1234, 234, 12, 0, 1234];
        assert_eq!(487.9947466185192, standard_deviation(elements.iter(), 1));
        assert_eq!(465.28473464914003, standard_deviation(elements.iter(), 0));
    }
}