amari 0.9.8

Advanced mathematical computing library with geometric algebra, tropical algebra, and automatic differentiation
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
//! Phase 4D: Unified Cross-Platform Verification Framework Integration
//!
//! This module demonstrates the integration of all Phase 4 verification components
//! into a unified framework that provides consistent mathematical correctness
//! guarantees across CPU, GPU, and WASM platforms while adapting to platform constraints.

use std::marker::PhantomData;
use std::time::{Duration, Instant};
use amari_core::Multivector;

// Import verification frameworks from previous phases
// (In a real implementation, these would be proper module imports)

/// Unified platform type that encompasses all target environments
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum UnifiedPlatform {
    /// Native CPU with full phantom type support
    NativeCpu,
    /// GPU with CUDA/OpenCL/WebGPU support
    Gpu {
        device_type: GpuDeviceType,
        compute_capability: u32,
        memory_gb: u32,
    },
    /// WebAssembly in browser environment
    WasmBrowser {
        js_interop: bool,
        webgl_support: bool,
        shared_memory: bool,
    },
    /// WebAssembly in Node.js environment
    WasmNode {
        worker_threads: bool,
        native_modules: bool,
    },
}

/// GPU device types for platform detection
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum GpuDeviceType {
    Discrete,
    Integrated,
    Virtual,
}

/// Unified verification error that encapsulates all platform-specific errors
#[derive(Debug, Clone)]
pub enum UnifiedVerificationError {
    /// CPU verification errors (from phantom types)
    CpuError { operation: String, details: String },
    /// GPU verification errors
    GpuError { kernel: String, thread_id: u32, details: String },
    /// WASM verification errors
    WasmError { boundary: String, js_interop: bool, details: String },
    /// Cross-platform consistency violation
    CrossPlatformInconsistency { cpu_result: String, accelerated_result: String },
    /// Platform adaptation failure
    AdaptationFailure { from_platform: String, to_platform: String, reason: String },
}

/// Unified verification configuration that adapts to platform capabilities
#[derive(Debug, Clone)]
pub struct UnifiedVerificationConfig {
    /// Primary execution platform
    pub primary_platform: UnifiedPlatform,
    /// Fallback platforms in order of preference
    pub fallback_platforms: Vec<UnifiedPlatform>,
    /// Cross-platform consistency checking level
    pub consistency_level: ConsistencyLevel,
    /// Performance budget for verification (as percentage of computation time)
    pub verification_budget_percent: f64,
    /// Enable automatic platform switching based on workload
    pub enable_adaptive_switching: bool,
    /// Mathematical precision requirements
    pub precision_requirements: PrecisionRequirements,
}

/// Cross-platform consistency checking levels
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum ConsistencyLevel {
    /// No cross-platform checking
    None,
    /// Spot check with statistical sampling
    Statistical { sample_rate: f64 },
    /// Check critical operations
    Critical,
    /// Full cross-platform validation (development mode)
    Full,
}

/// Precision requirements for mathematical operations
#[derive(Debug, Clone, Copy)]
pub struct PrecisionRequirements {
    /// Relative tolerance for floating-point comparisons
    pub relative_tolerance: f64,
    /// Absolute tolerance for near-zero values
    pub absolute_tolerance: f64,
    /// Enable exact arithmetic for critical operations
    pub exact_arithmetic: bool,
}

/// Main unified verification framework
pub struct UnifiedVerificationFramework<const P: usize, const Q: usize, const R: usize> {
    config: UnifiedVerificationConfig,
    active_platform: UnifiedPlatform,

    // Platform-specific contexts (would be actual implementations in real code)
    cpu_context: Option<CpuVerificationContext<P, Q, R>>,
    gpu_context: Option<GpuVerificationContext<P, Q, R>>,
    wasm_context: Option<WasmVerificationContext<P, Q, R>>,

    // Performance tracking
    operation_count: u64,
    platform_switches: u32,
    total_verification_time: Duration,

    _phantom: PhantomData<(P, Q, R)>,
}

// Placeholder context types (in real implementation, these would be imported)
struct CpuVerificationContext<const P: usize, const Q: usize, const R: usize> {
    strict_mode: bool,
    _phantom: PhantomData<(P, Q, R)>,
}

struct GpuVerificationContext<const P: usize, const Q: usize, const R: usize> {
    device_type: GpuDeviceType,
    _phantom: PhantomData<(P, Q, R)>,
}

struct WasmVerificationContext<const P: usize, const Q: usize, const R: usize> {
    js_interop: bool,
    _phantom: PhantomData<(P, Q, R)>,
}

impl<const P: usize, const Q: usize, const R: usize> UnifiedVerificationFramework<P, Q, R> {
    /// Create unified verification framework with platform detection
    pub async fn new(config: UnifiedVerificationConfig) -> Result<Self, UnifiedVerificationError> {
        let detected_platform = Self::detect_optimal_platform(&config).await?;

        let mut framework = Self {
            config: config.clone(),
            active_platform: detected_platform,
            cpu_context: None,
            gpu_context: None,
            wasm_context: None,
            operation_count: 0,
            platform_switches: 0,
            total_verification_time: Duration::ZERO,
            _phantom: PhantomData,
        };

        // Initialize platform-specific contexts
        framework.initialize_contexts().await?;

        Ok(framework)
    }

    /// Detect optimal platform based on configuration and runtime capabilities
    async fn detect_optimal_platform(
        config: &UnifiedVerificationConfig
    ) -> Result<UnifiedPlatform, UnifiedVerificationError> {
        // In a real implementation, this would probe for GPU availability,
        // WASM capabilities, etc.
        match config.primary_platform {
            UnifiedPlatform::NativeCpu => Ok(UnifiedPlatform::NativeCpu),
            UnifiedPlatform::Gpu { .. } => {
                // Check if GPU is available
                if Self::is_gpu_available().await {
                    Ok(config.primary_platform)
                } else {
                    // Fall back to CPU
                    Ok(UnifiedPlatform::NativeCpu)
                }
            }
            UnifiedPlatform::WasmBrowser { .. } | UnifiedPlatform::WasmNode { .. } => {
                // Check WASM environment capabilities
                if Self::is_wasm_environment().await {
                    Ok(config.primary_platform)
                } else {
                    Ok(UnifiedPlatform::NativeCpu)
                }
            }
        }
    }

    /// Check if GPU acceleration is available
    async fn is_gpu_available() -> bool {
        // Simplified check - real implementation would probe GPU APIs
        true
    }

    /// Check if running in WASM environment
    async fn is_wasm_environment() -> bool {
        // Simplified check - real implementation would check for WASM runtime
        cfg!(target_arch = "wasm32")
    }

    /// Initialize platform-specific verification contexts
    async fn initialize_contexts(&mut self) -> Result<(), UnifiedVerificationError> {
        // Always initialize CPU context as fallback
        self.cpu_context = Some(CpuVerificationContext {
            strict_mode: true,
            _phantom: PhantomData,
        });

        match self.active_platform {
            UnifiedPlatform::NativeCpu => {
                // CPU context already initialized
            }
            UnifiedPlatform::Gpu { device_type, .. } => {
                self.gpu_context = Some(GpuVerificationContext {
                    device_type,
                    _phantom: PhantomData,
                });
            }
            UnifiedPlatform::WasmBrowser { js_interop, .. } |
            UnifiedPlatform::WasmNode { .. } => {
                let js_interop = match self.active_platform {
                    UnifiedPlatform::WasmBrowser { js_interop, .. } => js_interop,
                    _ => false,
                };

                self.wasm_context = Some(WasmVerificationContext {
                    js_interop,
                    _phantom: PhantomData,
                });
            }
        }

        Ok(())
    }

    /// Perform verified operation with automatic platform selection
    pub async fn verified_operation<F, T>(
        &mut self,
        operation_name: &str,
        operation: F,
    ) -> Result<T, UnifiedVerificationError>
    where
        F: Fn(UnifiedPlatform) -> Result<T, String>,
        T: Clone + PartialEq,
    {
        let start_time = Instant::now();
        self.operation_count += 1;

        // Determine if we should switch platforms for this operation
        if self.config.enable_adaptive_switching {
            self.consider_platform_switch(operation_name).await?;
        }

        // Execute operation on active platform
        let primary_result = self.execute_on_platform(operation_name, &operation, self.active_platform).await?;

        // Cross-platform consistency checking
        let verified_result = match self.config.consistency_level {
            ConsistencyLevel::None => primary_result,
            ConsistencyLevel::Statistical { sample_rate } => {
                if self.should_cross_check(sample_rate) {
                    self.cross_platform_verify(operation_name, &operation, primary_result).await?
                } else {
                    primary_result
                }
            }
            ConsistencyLevel::Critical => {
                if self.is_critical_operation(operation_name) {
                    self.cross_platform_verify(operation_name, &operation, primary_result).await?
                } else {
                    primary_result
                }
            }
            ConsistencyLevel::Full => {
                self.cross_platform_verify(operation_name, &operation, primary_result).await?
            }
        };

        self.total_verification_time += start_time.elapsed();
        Ok(verified_result)
    }

    /// Execute operation on specific platform with appropriate verification
    async fn execute_on_platform<F, T>(
        &self,
        operation_name: &str,
        operation: &F,
        platform: UnifiedPlatform,
    ) -> Result<T, UnifiedVerificationError>
    where
        F: Fn(UnifiedPlatform) -> Result<T, String>,
    {
        match platform {
            UnifiedPlatform::NativeCpu => {
                self.execute_cpu_verified(operation_name, operation).await
            }
            UnifiedPlatform::Gpu { .. } => {
                self.execute_gpu_verified(operation_name, operation).await
            }
            UnifiedPlatform::WasmBrowser { .. } | UnifiedPlatform::WasmNode { .. } => {
                self.execute_wasm_verified(operation_name, operation).await
            }
        }
    }

    /// Execute with CPU verification (full phantom type support)
    async fn execute_cpu_verified<F, T>(
        &self,
        operation_name: &str,
        operation: &F,
    ) -> Result<T, UnifiedVerificationError>
    where
        F: Fn(UnifiedPlatform) -> Result<T, String>,
    {
        // Pre-condition verification with phantom types
        self.verify_cpu_preconditions(operation_name)?;

        // Execute operation
        let result = operation(UnifiedPlatform::NativeCpu)
            .map_err(|e| UnifiedVerificationError::CpuError {
                operation: operation_name.to_string(),
                details: e,
            })?;

        // Post-condition verification
        self.verify_cpu_postconditions(operation_name, &result)?;

        Ok(result)
    }

    /// Execute with GPU verification (boundary and kernel-level checking)
    async fn execute_gpu_verified<F, T>(
        &self,
        operation_name: &str,
        operation: &F,
    ) -> Result<T, UnifiedVerificationError>
    where
        F: Fn(UnifiedPlatform) -> Result<T, String>,
    {
        // GPU boundary verification
        self.verify_gpu_kernel_preconditions(operation_name)?;

        // Execute on GPU
        let result = operation(self.active_platform)
            .map_err(|e| UnifiedVerificationError::GpuError {
                kernel: operation_name.to_string(),
                thread_id: 0,
                details: e,
            })?;

        // GPU boundary post-verification
        self.verify_gpu_kernel_postconditions(operation_name, &result)?;

        Ok(result)
    }

    /// Execute with WASM verification (boundary and JS interop safety)
    async fn execute_wasm_verified<F, T>(
        &self,
        operation_name: &str,
        operation: &F,
    ) -> Result<T, UnifiedVerificationError>
    where
        F: Fn(UnifiedPlatform) -> Result<T, String>,
    {
        // WASM boundary verification
        self.verify_wasm_boundary_preconditions(operation_name)?;

        // Execute in WASM
        let result = operation(self.active_platform)
            .map_err(|e| UnifiedVerificationError::WasmError {
                boundary: operation_name.to_string(),
                js_interop: self.wasm_context.as_ref().map(|c| c.js_interop).unwrap_or(false),
                details: e,
            })?;

        // WASM boundary post-verification
        self.verify_wasm_boundary_postconditions(operation_name, &result)?;

        Ok(result)
    }

    /// Cross-platform consistency verification
    async fn cross_platform_verify<F, T>(
        &self,
        operation_name: &str,
        operation: &F,
        primary_result: T,
    ) -> Result<T, UnifiedVerificationError>
    where
        F: Fn(UnifiedPlatform) -> Result<T, String>,
        T: Clone + PartialEq,
    {
        // Execute same operation on CPU for reference
        if !matches!(self.active_platform, UnifiedPlatform::NativeCpu) {
            let cpu_result = self.execute_cpu_verified(operation_name, operation).await?;

            // Compare results within precision tolerance
            if !self.results_match(&primary_result, &cpu_result) {
                return Err(UnifiedVerificationError::CrossPlatformInconsistency {
                    cpu_result: format!("{:?}", cpu_result),
                    accelerated_result: format!("{:?}", primary_result),
                });
            }
        }

        Ok(primary_result)
    }

    /// Consider switching platforms based on workload characteristics
    async fn consider_platform_switch(&mut self, operation_name: &str) -> Result<(), UnifiedVerificationError> {
        // Simple heuristic - in real implementation would be more sophisticated
        if operation_name.contains("batch") && self.operation_count > 100 {
            // Switch to GPU for large batch operations
            if !matches!(self.active_platform, UnifiedPlatform::Gpu { .. }) {
                for fallback in &self.config.fallback_platforms {
                    if matches!(fallback, UnifiedPlatform::Gpu { .. }) {
                        self.active_platform = *fallback;
                        self.platform_switches += 1;
                        break;
                    }
                }
            }
        }
        Ok(())
    }

    /// Check if operation should undergo cross-platform verification
    fn should_cross_check(&self, sample_rate: f64) -> bool {
        use std::collections::hash_map::DefaultHasher;
        use std::hash::{Hash, Hasher};

        let mut hasher = DefaultHasher::new();
        self.operation_count.hash(&mut hasher);
        let hash = hasher.finish();

        (hash as f64 / u64::MAX as f64) < sample_rate
    }

    /// Check if operation is critical and requires full verification
    fn is_critical_operation(&self, operation_name: &str) -> bool {
        operation_name.contains("inverse") ||
        operation_name.contains("division") ||
        operation_name.contains("normalize") ||
        operation_name.contains("exp")
    }

    /// Compare results considering precision requirements
    fn results_match<T: PartialEq>(&self, a: &T, b: &T) -> bool {
        // Simplified comparison - real implementation would handle numerical precision
        a == b
    }

    // Placeholder verification methods (would be implemented with actual verification logic)

    fn verify_cpu_preconditions(&self, _operation_name: &str) -> Result<(), UnifiedVerificationError> {
        Ok(())
    }

    fn verify_cpu_postconditions<T>(&self, _operation_name: &str, _result: &T) -> Result<(), UnifiedVerificationError> {
        Ok(())
    }

    fn verify_gpu_kernel_preconditions(&self, _operation_name: &str) -> Result<(), UnifiedVerificationError> {
        Ok(())
    }

    fn verify_gpu_kernel_postconditions<T>(&self, _operation_name: &str, _result: &T) -> Result<(), UnifiedVerificationError> {
        Ok(())
    }

    fn verify_wasm_boundary_preconditions(&self, _operation_name: &str) -> Result<(), UnifiedVerificationError> {
        Ok(())
    }

    fn verify_wasm_boundary_postconditions<T>(&self, _operation_name: &str, _result: &T) -> Result<(), UnifiedVerificationError> {
        Ok(())
    }

    /// Get comprehensive verification statistics
    pub fn get_unified_stats(&self) -> UnifiedVerificationStats {
        UnifiedVerificationStats {
            active_platform: self.active_platform,
            total_operations: self.operation_count,
            platform_switches: self.platform_switches,
            total_verification_time: self.total_verification_time,
            average_verification_overhead: if self.operation_count > 0 {
                self.total_verification_time.as_micros() as f64 / self.operation_count as f64
            } else {
                0.0
            },
            verification_budget_utilization: self.calculate_budget_utilization(),
        }
    }

    /// Calculate verification budget utilization percentage
    fn calculate_budget_utilization(&self) -> f64 {
        // Simplified calculation - real implementation would track compute time
        50.0 // Placeholder
    }
}

/// Comprehensive verification statistics across all platforms
#[derive(Debug)]
pub struct UnifiedVerificationStats {
    pub active_platform: UnifiedPlatform,
    pub total_operations: u64,
    pub platform_switches: u32,
    pub total_verification_time: Duration,
    pub average_verification_overhead: f64,
    pub verification_budget_utilization: f64,
}

/// Unified verified multivector that works across all platforms
pub struct UnifiedVerifiedMultivector<const P: usize, const Q: usize, const R: usize> {
    inner: Multivector<P, Q, R>,
    verification_platform: UnifiedPlatform,
    verification_level: String,
    cross_platform_verified: bool,
    _phantom: PhantomData<(P, Q, R)>,
}

impl<const P: usize, const Q: usize, const R: usize> UnifiedVerifiedMultivector<P, Q, R> {
    /// Create unified verified multivector with cross-platform validation
    pub async fn new_unified_verified(
        multivector: Multivector<P, Q, R>,
        framework: &UnifiedVerificationFramework<P, Q, R>,
    ) -> Result<Self, UnifiedVerificationError> {
        // Verify mathematical properties using unified framework
        let verification_result = framework.verified_operation(
            "multivector_creation",
            |_platform| Ok(multivector)
        ).await?;

        Ok(Self {
            inner: verification_result,
            verification_platform: framework.active_platform,
            verification_level: "unified".to_string(),
            cross_platform_verified: matches!(
                framework.config.consistency_level,
                ConsistencyLevel::Critical | ConsistencyLevel::Full
            ),
            _phantom: PhantomData,
        })
    }

    /// Perform verified geometric product across platforms
    pub async fn geometric_product_unified(
        &self,
        other: &Self,
        framework: &mut UnifiedVerificationFramework<P, Q, R>,
    ) -> Result<Self, UnifiedVerificationError> {
        let operation = |_platform| {
            Ok(self.inner.geometric_product(&other.inner))
        };

        let result = framework.verified_operation("geometric_product", operation).await?;

        Ok(Self {
            inner: result,
            verification_platform: framework.active_platform,
            verification_level: "unified".to_string(),
            cross_platform_verified: self.cross_platform_verified && other.cross_platform_verified,
            _phantom: PhantomData,
        })
    }

    /// Get underlying multivector (verified across platforms)
    pub fn inner(&self) -> &Multivector<P, Q, R> {
        &self.inner
    }

    /// Check if cross-platform verification was performed
    pub fn is_cross_platform_verified(&self) -> bool {
        self.cross_platform_verified
    }

    /// Get verification platform used
    pub fn verification_platform(&self) -> UnifiedPlatform {
        self.verification_platform
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[tokio::test]
    async fn test_unified_framework_creation() {
        let config = UnifiedVerificationConfig {
            primary_platform: UnifiedPlatform::NativeCpu,
            fallback_platforms: vec![],
            consistency_level: ConsistencyLevel::Statistical { sample_rate: 0.1 },
            verification_budget_percent: 10.0,
            enable_adaptive_switching: false,
            precision_requirements: PrecisionRequirements {
                relative_tolerance: 1e-12,
                absolute_tolerance: 1e-15,
                exact_arithmetic: false,
            },
        };

        let framework = UnifiedVerificationFramework::<3, 0, 0>::new(config).await;
        assert!(framework.is_ok());
    }

    #[tokio::test]
    async fn test_cross_platform_operation() {
        let config = UnifiedVerificationConfig {
            primary_platform: UnifiedPlatform::NativeCpu,
            fallback_platforms: vec![],
            consistency_level: ConsistencyLevel::Full,
            verification_budget_percent: 20.0,
            enable_adaptive_switching: true,
            precision_requirements: PrecisionRequirements {
                relative_tolerance: 1e-6,
                absolute_tolerance: 1e-9,
                exact_arithmetic: false,
            },
        };

        let mut framework = UnifiedVerificationFramework::<3, 0, 0>::new(config).await.unwrap();

        let result = framework.verified_operation("test_operation", |_platform| {
            Ok(42)
        }).await;

        assert!(result.is_ok());
        assert_eq!(result.unwrap(), 42);
    }

    #[tokio::test]
    async fn test_unified_verified_multivector() {
        let config = UnifiedVerificationConfig {
            primary_platform: UnifiedPlatform::NativeCpu,
            fallback_platforms: vec![],
            consistency_level: ConsistencyLevel::Critical,
            verification_budget_percent: 15.0,
            enable_adaptive_switching: false,
            precision_requirements: PrecisionRequirements {
                relative_tolerance: 1e-10,
                absolute_tolerance: 1e-12,
                exact_arithmetic: true,
            },
        };

        let framework = UnifiedVerificationFramework::<3, 0, 0>::new(config).await.unwrap();
        let mv = Multivector::<3, 0, 0>::basis_vector(0);

        let verified_mv = UnifiedVerifiedMultivector::new_unified_verified(mv, &framework).await;
        assert!(verified_mv.is_ok());

        let verified = verified_mv.unwrap();
        assert!(verified.is_cross_platform_verified());
        assert_eq!(verified.verification_platform(), UnifiedPlatform::NativeCpu);
    }

    #[test]
    fn test_platform_detection() {
        // Test would verify platform detection logic
        assert!(true); // Placeholder
    }
}