amari 0.9.4

Advanced mathematical computing library with geometric algebra, tropical algebra, and automatic differentiation
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
# Dual Number GPU Integration Plan for v0.9.3

## Overview

This document outlines the GPU acceleration strategy for amari-dual automatic differentiation operations, building on the existing WebGPU/wgpu infrastructure in amari-gpu.

## Current Dual Number Infrastructure Analysis

### Existing Capabilities
- ✅ Single-variable dual numbers (`DualNumber<T>`)
- ✅ Multi-variable dual numbers (`MultiDualNumber<T>`)
- ✅ Complete mathematical function library (sin, cos, exp, etc.)
- ✅ Machine learning activation functions (ReLU, sigmoid, tanh)
- ✅ Chain rule automatic differentiation
- ✅ Comprehensive WASM bindings

### Performance Bottlenecks
- ❌ Sequential gradient computation for large parameter sets
- ❌ CPU-only Jacobian matrix computation
- ❌ No batch processing for automatic differentiation
- ❌ Limited scalability for large neural networks
- ❌ No GPU acceleration for tensor operations

## GPU Acceleration Opportunities

### High Priority (Maximum Impact)

#### 1. Batch Automatic Differentiation
**Current State**: Sequential AD computation on CPU
**GPU Benefits**: Massive parallelization for parameter gradients
**Use Cases**:
- Neural network training with thousands/millions of parameters
- Batch gradient computation for optimization algorithms
- Monte Carlo gradient estimation

**Implementation Strategy**:
```rust
pub async fn batch_forward_reverse_ad(
    &self,
    functions: &[Function],
    inputs: &[Vec<f64>],
    variables: &[usize],
) -> Result<Vec<(f64, Vec<f64>)>, GpuError>
```

#### 2. Jacobian Matrix Computation
**Current State**: Sequential computation of partial derivatives
**GPU Benefits**: Parallel computation of all partial derivatives
**Use Cases**:
- Sensitivity analysis for large systems
- Newton-Raphson optimization methods
- Machine learning gradient analysis

**Implementation Strategy**:
```rust
pub async fn compute_jacobian_batch(
    &self,
    vector_functions: &[VectorFunction],
    input_points: &[Vec<f64>],
) -> Result<Vec<Matrix<f64>>, GpuError>
```

#### 3. Neural Network Forward/Backward Pass
**Current State**: CPU-only layer-by-layer computation
**GPU Benefits**: Parallel layer computation with automatic gradients
**Use Cases**:
- Deep learning training acceleration
- Real-time neural network inference with gradients
- Neural architecture search

### Medium Priority (Significant Benefits)

#### 4. Hessian Matrix Computation
**Current State**: Not implemented (would require nested dual numbers)
**GPU Benefits**: Second-order optimization algorithms
**Use Cases**:
- Newton's method optimization
- Uncertainty quantification
- Curvature analysis

#### 5. Tensor Automatic Differentiation
**Current State**: Limited to scalar/vector operations
**GPU Benefits**: Full tensor AD for deep learning
**Use Cases**:
- Convolutional neural networks
- Tensor decomposition with gradients
- Advanced ML model training

#### 6. Stochastic Gradient Computation
**Current State**: Not implemented
**GPU Benefits**: Monte Carlo gradient estimation
**Use Cases**:
- Bayesian neural networks
- Stochastic optimization
- Uncertainty propagation

## Implementation Architecture

### 1. Core GPU Dual Number Infrastructure

```rust
/// GPU-accelerated automatic differentiation operations
pub struct GpuAutoDiff {
    device: wgpu::Device,
    queue: wgpu::Queue,

    // Compute pipelines for different AD operations
    forward_ad_pipeline: wgpu::ComputePipeline,
    reverse_ad_pipeline: wgpu::ComputePipeline,
    jacobian_pipeline: wgpu::ComputePipeline,
    hessian_pipeline: wgpu::ComputePipeline,
    neural_network_pipeline: wgpu::ComputePipeline,
}

impl GpuAutoDiff {
    pub async fn new() -> Result<Self, GpuError>;

    // Batch automatic differentiation
    pub async fn batch_forward_ad(...) -> Result<Vec<(f64, Vec<f64>)>, GpuError>;
    pub async fn batch_reverse_ad(...) -> Result<Vec<(f64, Vec<f64>)>, GpuError>;

    // Matrix computations
    pub async fn compute_jacobian_batch(...) -> Result<Vec<Matrix<f64>>, GpuError>;
    pub async fn compute_hessian_batch(...) -> Result<Vec<Matrix<f64>>, GpuError>;

    // Neural network operations
    pub async fn neural_network_forward_backward(...) -> Result<NetworkGradients, GpuError>;
    pub async fn batch_layer_gradients(...) -> Result<Vec<LayerGradients>, GpuError>;

    // Optimization support
    pub async fn stochastic_gradient_batch(...) -> Result<Vec<f64>, GpuError>;
    pub async fn gradient_descent_step_batch(...) -> Result<Vec<Vec<f64>>, GpuError>;
}
```

### 2. GPU-Optimized Dual Number Representation

```rust
/// GPU-compatible dual number representation
#[repr(C)]
#[derive(Copy, Clone, Pod, Zeroable)]
struct GpuDualNumber {
    value: f32,
    gradient: f32,
}

/// GPU-compatible multi-dual number (fixed-size for GPU efficiency)
#[repr(C)]
#[derive(Copy, Clone, Pod, Zeroable)]
struct GpuMultiDual<const N: usize> {
    value: f32,
    gradient: [f32; N],
}

/// Batch operations for efficient GPU computation
#[repr(C)]
#[derive(Copy, Clone, Pod, Zeroable)]
struct GpuDualBatch {
    batch_size: u32,
    parameter_count: u32,
    function_count: u32,
    _padding: u32,
}
```

### 3. WGSL Compute Shaders for Automatic Differentiation

#### Forward Mode Automatic Differentiation
```wgsl
// Forward mode AD for batch computation
struct DualNumber {
    value: f32,
    gradient: f32,
}

@group(0) @binding(0)
var<storage, read> input_duals: array<DualNumber>;

@group(0) @binding(1)
var<storage, read> function_codes: array<u32>; // Encoded function operations

@group(0) @binding(2)
var<storage, read_write> output_duals: array<DualNumber>;

// Dual number arithmetic operations
fn dual_add(a: DualNumber, b: DualNumber) -> DualNumber {
    return DualNumber(a.value + b.value, a.gradient + b.gradient);
}

fn dual_mul(a: DualNumber, b: DualNumber) -> DualNumber {
    return DualNumber(
        a.value * b.value,
        a.gradient * b.value + a.value * b.gradient
    );
}

fn dual_sin(a: DualNumber) -> DualNumber {
    return DualNumber(sin(a.value), a.gradient * cos(a.value));
}

fn dual_exp(a: DualNumber) -> DualNumber {
    let exp_val = exp(a.value);
    return DualNumber(exp_val, a.gradient * exp_val);
}

@compute @workgroup_size(64)
fn forward_ad_batch(@builtin(global_invocation_id) global_id: vec3<u32>) {
    let idx = global_id.x;
    if (idx >= arrayLength(&input_duals)) {
        return;
    }

    var current = input_duals[idx];

    // Execute function operations encoded in function_codes
    for (var i = 0u; i < arrayLength(&function_codes); i++) {
        let op_code = function_codes[i];

        switch op_code {
            case 1u: { // Addition
                current = dual_add(current, input_duals[idx + 1u]);
            }
            case 2u: { // Multiplication
                current = dual_mul(current, input_duals[idx + 1u]);
            }
            case 3u: { // Sine
                current = dual_sin(current);
            }
            case 4u: { // Exponential
                current = dual_exp(current);
            }
            default: {
                break;
            }
        }
    }

    output_duals[idx] = current;
}
```

#### Jacobian Matrix Computation
```wgsl
@group(0) @binding(0)
var<storage, read> input_batch: array<f32>; // Flattened input vectors

@group(0) @binding(1)
var<storage, read> function_batch: array<u32>; // Function definitions

@group(0) @binding(2)
var<storage, read_write> jacobian_batch: array<f32>; // Flattened Jacobian matrices

@compute @workgroup_size(16, 16)
fn compute_jacobian(@builtin(global_invocation_id) global_id: vec3<u32>) {
    let batch_idx = global_id.z;
    let output_idx = global_id.y;
    let input_idx = global_id.x;

    if (batch_idx >= batch_size || output_idx >= num_outputs || input_idx >= num_inputs) {
        return;
    }

    // Create dual number with unit gradient for current input variable
    var dual_input = DualNumber(
        input_batch[batch_idx * num_inputs + input_idx],
        select(0.0, 1.0, input_idx == global_id.x)
    );

    // Execute function to compute partial derivative
    let result = evaluate_function(dual_input, function_batch, output_idx);

    // Store partial derivative in Jacobian matrix
    let jacobian_offset = batch_idx * num_outputs * num_inputs;
    jacobian_batch[jacobian_offset + output_idx * num_inputs + input_idx] = result.gradient;
}
```

#### Neural Network Forward/Backward Pass
```wgsl
struct LayerParams {
    weights_offset: u32,
    bias_offset: u32,
    input_size: u32,
    output_size: u32,
    activation: u32, // 0=linear, 1=relu, 2=sigmoid, 3=tanh
}

@group(0) @binding(0)
var<storage, read> network_params: array<LayerParams>;

@group(0) @binding(1)
var<storage, read> weights_biases: array<f32>;

@group(0) @binding(2)
var<storage, read> input_batch: array<f32>;

@group(0) @binding(3)
var<storage, read_write> activations: array<f32>;

@group(0) @binding(4)
var<storage, read_write> gradients: array<f32>;

fn activate_dual(x: DualNumber, activation: u32) -> DualNumber {
    switch activation {
        case 1u: { // ReLU
            if (x.value > 0.0) {
                return x;
            } else {
                return DualNumber(0.0, 0.0);
            }
        }
        case 2u: { // Sigmoid
            let sig = 1.0 / (1.0 + exp(-x.value));
            return DualNumber(sig, x.gradient * sig * (1.0 - sig));
        }
        case 3u: { // Tanh
            let tanh_val = tanh(x.value);
            return DualNumber(tanh_val, x.gradient * (1.0 - tanh_val * tanh_val));
        }
        default: { // Linear
            return x;
        }
    }
}

@compute @workgroup_size(64)
fn neural_network_forward_backward(@builtin(global_invocation_id) global_id: vec3<u32>) {
    let batch_idx = global_id.x;
    let neuron_idx = global_id.y;
    let layer_idx = global_id.z;

    if (batch_idx >= batch_size || layer_idx >= num_layers) {
        return;
    }

    let layer = network_params[layer_idx];

    if (neuron_idx >= layer.output_size) {
        return;
    }

    // Compute weighted sum with automatic differentiation
    var weighted_sum = DualNumber(
        weights_biases[layer.bias_offset + neuron_idx],
        0.0
    );

    for (var i = 0u; i < layer.input_size; i++) {
        let input_val = if (layer_idx == 0u) {
            input_batch[batch_idx * layer.input_size + i]
        } else {
            activations[(layer_idx - 1u) * batch_size * max_layer_size + batch_idx * max_layer_size + i]
        };

        let weight = weights_biases[layer.weights_offset + neuron_idx * layer.input_size + i];
        let input_dual = DualNumber(input_val, select(0.0, 1.0, i == target_input_idx));
        let weight_dual = DualNumber(weight, select(0.0, 1.0, is_weight_target));

        weighted_sum = dual_add(weighted_sum, dual_mul(input_dual, weight_dual));
    }

    // Apply activation function
    let activated = activate_dual(weighted_sum, layer.activation);

    // Store forward pass result
    activations[layer_idx * batch_size * max_layer_size + batch_idx * max_layer_size + neuron_idx] = activated.value;

    // Store gradient for backward pass
    gradients[layer_idx * batch_size * max_layer_size + batch_idx * max_layer_size + neuron_idx] = activated.gradient;
}
```

### 4. Adaptive Dispatch Strategy

```rust
impl GpuAutoDiff {
    /// Determine optimal computation strategy based on problem size
    pub fn should_use_gpu_for_ad(operation: ADOperation, problem_size: ADProblemSize) -> bool {
        match operation {
            ADOperation::ForwardAD => {
                problem_size.num_variables >= 100 && problem_size.batch_size >= 32
            }
            ADOperation::ReverseAD => {
                problem_size.num_outputs <= 10 && problem_size.num_variables >= 1000
            }
            ADOperation::JacobianComputation => {
                problem_size.num_variables * problem_size.num_outputs >= 10000
            }
            ADOperation::NeuralNetworkTraining => {
                problem_size.total_parameters >= 1000 && problem_size.batch_size >= 16
            }
        }
    }
}

#[derive(Debug, Clone)]
pub struct ADProblemSize {
    pub num_variables: usize,
    pub num_outputs: usize,
    pub batch_size: usize,
    pub total_parameters: usize,
    pub function_complexity: usize,
}
```

### 5. Integration with Machine Learning Frameworks

```rust
/// High-level ML integration for GPU-accelerated automatic differentiation
pub struct GpuNeuralNetwork {
    gpu_autodiff: GpuAutoDiff,
    layers: Vec<LayerDefinition>,
    parameters: Vec<f32>,
}

impl GpuNeuralNetwork {
    pub async fn forward_with_gradients(
        &self,
        inputs: &[Vec<f32>],
        target_parameters: &[usize],
    ) -> Result<(Vec<f32>, Vec<f32>), GpuError>;

    pub async fn backward_pass(
        &self,
        loss_gradients: &[f32],
    ) -> Result<Vec<f32>, GpuError>;

    pub async fn gradient_descent_step(
        &mut self,
        learning_rate: f32,
        gradients: &[f32],
    ) -> Result<(), GpuError>;
}
```

## Performance Targets

### Benchmarking Goals
- **Batch Forward AD**: 10-100x speedup for >1000 variables
- **Jacobian Computation**: 20-200x speedup for large matrices (>100x100)
- **Neural Network Training**: 5-50x speedup for networks >1000 parameters
- **Memory Efficiency**: <3x GPU memory overhead vs minimal CPU implementation

### Scalability Targets
- Support for up to 1M parameters in batch AD
- Jacobian matrices up to 10,000 x 10,000
- Neural networks with >100 layers and >1M parameters
- Batch sizes up to 1024 for training

## Implementation Timeline

### Phase 1: Core Infrastructure (Week 1)
- [ ] Extend amari-gpu with automatic differentiation support
- [ ] Implement `GpuAutoDiff` base structure
- [ ] Create batch forward-mode AD GPU pipeline
- [ ] Add adaptive dispatch for AD operations

### Phase 2: Jacobian Acceleration (Week 2)
- [ ] Implement GPU Jacobian matrix computation
- [ ] Add batch processing for multiple Jacobian computations
- [ ] Optimize memory usage for large matrices
- [ ] Integration with existing amari-dual types

### Phase 3: Neural Network Integration (Week 3)
- [ ] GPU neural network forward/backward pass
- [ ] Batch gradient computation for multiple networks
- [ ] Layer-wise gradient accumulation and optimization
- [ ] Integration with popular ML patterns

### Phase 4: Advanced Operations (Week 4)
- [ ] Hessian matrix computation
- [ ] Second-order optimization algorithms
- [ ] Stochastic gradient computation
- [ ] Comprehensive benchmarking and optimization

## Testing Strategy

### Correctness Verification
- Gradient checking against finite differences
- Cross-validation with existing CPU AD implementations
- Mathematical property verification (chain rule, linearity)
- Precision analysis for f32 vs f64 computations

### Performance Validation
- Scaling benchmarks across different problem sizes
- Memory usage profiling and optimization
- Comparative analysis vs leading AD frameworks
- Real-world machine learning workload testing

### Robustness Testing
- Edge case handling (zero gradients, numerical instabilities)
- Large-scale stress testing (millions of parameters)
- Memory pressure testing
- Cross-platform GPU compatibility

## Risk Mitigation

### Technical Challenges
1. **Numerical Precision**: Implement mixed-precision strategies and validation
2. **GPU Memory Constraints**: Design streaming and chunked computation algorithms
3. **Complex Function Support**: Modular shader design for extensible operations
4. **Debuggability**: Comprehensive logging and gradient verification tools

### Performance Risks
1. **Small Problem Overhead**: Careful threshold tuning for GPU dispatch
2. **Memory Bandwidth**: Optimize data layout and minimize transfers
3. **Divergent Execution**: Design GPU-friendly control flow patterns

## Success Metrics

### Quantitative Goals
- [ ] 10x+ speedup for large-scale automatic differentiation
- [ ] 20x+ speedup for Jacobian matrix computation
- [ ] 5x+ speedup for neural network training
- [ ] <20% GPU memory overhead for typical workloads

### Integration Goals
- [ ] Seamless integration with existing amari-dual API
- [ ] Backward compatibility with all existing AD operations
- [ ] Clear performance characteristics and usage guidelines
- [ ] Comprehensive error handling and fallback mechanisms

## Future Extensions

### Advanced Automatic Differentiation
- Higher-order derivatives (Hessians, tensor derivatives)
- Sparse automatic differentiation for structured problems
- Checkpointing strategies for memory-efficient reverse-mode AD

### Distributed Computation
- Multi-GPU automatic differentiation
- Distributed gradient computation across nodes
- Integration with distributed training frameworks

### Specialized Applications
- GPU-accelerated Bayesian neural networks
- Automatic differentiation for scientific computing
- Real-time optimization with automatic gradients

---

This plan provides a comprehensive roadmap for integrating automatic differentiation operations with GPU acceleration, enabling high-performance machine learning and optimization applications while maintaining the mathematical rigor and correctness of the amari-dual system.