amari-enumerative 0.18.0

Enumerative geometry capabilities for the Amari library
Documentation

amari-enumerative

Enumerative geometry for counting geometric configurations.

Overview

amari-enumerative provides tools for enumerative geometry, the mathematical discipline concerned with counting geometric objects satisfying given conditions. The crate implements intersection theory, Schubert calculus, Littlewood-Richardson coefficients, Gromov-Witten invariants, and tropical curve counting.

Features

  • Intersection Theory: Chow rings, intersection multiplicities, Bézout's theorem
  • Schubert Calculus: Computations on Grassmannians and flag varieties
  • Littlewood-Richardson Coefficients: Complete LR coefficient computation via Young tableaux
  • Gromov-Witten Theory: Curve counting and quantum cohomology
  • Tropical Geometry: Tropical curve counting via correspondence theorems
  • Tropical Schubert Calculus: Fast intersection counting using tropical methods
  • Moduli Spaces: Computations on moduli spaces of curves
  • Namespace/Capabilities: ShaperOS integration via geometric access control
  • Phantom Types: Compile-time verification of mathematical properties
  • GPU Acceleration: Optional GPU support for large computations
  • Parallel Computation: Rayon-based parallelization for batch operations

Installation

Add to your Cargo.toml:

[dependencies]
amari-enumerative = "0.18"

Feature Flags

[dependencies]
# Default features
amari-enumerative = "0.18"

# With serialization
amari-enumerative = { version = "0.18", features = ["serde"] }

# With GPU acceleration
amari-enumerative = { version = "0.18", features = ["gpu"] }

# With parallel computation (Rayon)
amari-enumerative = { version = "0.18", features = ["parallel"] }

# With tropical Schubert calculus
amari-enumerative = { version = "0.18", features = ["tropical-schubert"] }

# For WASM targets
amari-enumerative = { version = "0.18", features = ["wasm"] }

# All performance features
amari-enumerative = { version = "0.18", features = ["parallel", "tropical-schubert"] }

Quick Start

use amari_enumerative::{ProjectiveSpace, ChowClass, IntersectionRing};

// Create projective 2-space (P²)
let p2 = ProjectiveSpace::new(2);

// Define two curves by degree
let cubic = ChowClass::hypersurface(3);   // Degree 3 curve
let quartic = ChowClass::hypersurface(4); // Degree 4 curve

// Compute intersection number using Bézout's theorem
let intersection = p2.intersect(&cubic, &quartic);
assert_eq!(intersection.multiplicity(), 12); // 3 × 4 = 12 points

Key Concepts

Schubert Calculus

Count linear subspaces satisfying incidence conditions:

use amari_enumerative::{SchubertCalculus, SchubertClass, IntersectionResult};

// How many lines meet 4 general lines in projective 3-space?
// This is computed in Gr(2, 4) with 4 copies of σ_1
let mut calc = SchubertCalculus::new((2, 4)); // Gr(2,4)
let sigma_1 = SchubertClass::new(vec![1], (2, 4)).unwrap();

let classes = vec![sigma_1.clone(), sigma_1.clone(), sigma_1.clone(), sigma_1.clone()];
let result = calc.multi_intersect(&classes);

assert_eq!(result, IntersectionResult::Finite(2)); // Answer: 2 lines!

Littlewood-Richardson Coefficients

Compute structure constants for Schubert calculus:

use amari_enumerative::{lr_coefficient, schubert_product, Partition};

// Compute c^ν_{λμ} - the LR coefficient
let lambda = Partition::new(vec![2, 1]);
let mu = Partition::new(vec![1, 1]);
let nu = Partition::new(vec![3, 2]);

let coeff = lr_coefficient(&lambda, &mu, &nu);

// Expand a Schubert product: σ_λ · σ_μ = Σ c^ν_{λμ} σ_ν
let products = schubert_product(&lambda, &mu, (3, 6));
for (partition, coefficient) in products {
    println!("σ_{:?} with coefficient {}", partition.parts, coefficient);
}

Namespace and Capabilities (ShaperOS Integration)

Use enumerative geometry for access control:

use amari_enumerative::{
    Namespace, Capability, CapabilityId, IntersectionResult,
    namespace_intersection, capability_accessible,
};

// Create a namespace in Gr(2, 4)
let mut ns = Namespace::full("agent", 2, 4).unwrap();

// Grant capabilities (each is a Schubert condition)
let read = Capability::new("read", "Read Access", vec![1], (2, 4)).unwrap();
let write = Capability::new("write", "Write Access", vec![1], (2, 4))
    .unwrap()
    .requires(CapabilityId::new("read")); // Dependency

ns.grant(read).unwrap();
ns.grant(write).unwrap();

// Count valid configurations
let count = ns.count_configurations();
// With 2 capabilities of codimension 1 each, we have dimension 2

Phantom Types for Compile-Time Verification

Zero-cost type markers for mathematical properties:

use amari_enumerative::{
    ValidPartition, UnvalidatedPartition,
    Semistandard, LatticeWord,
    Transverse, Excess,
    FitsInBox,
};

// These types encode mathematical properties at the type level:
// - ValidPartition: Partition has been validated (weakly decreasing, positive parts)
// - Semistandard: Tableau satisfies semistandard conditions
// - LatticeWord: Tableau satisfies lattice word (Yamanouchi) condition
// - Transverse: Intersection is transverse (codimensions sum to dimension)
// - FitsInBox: Partition fits in k × (n-k) Grassmannian box

Parallel Batch Operations

When the parallel feature is enabled:

use amari_enumerative::{
    lr_coefficients_batch, multi_intersect_batch,
    count_configurations_batch, Partition, SchubertClass,
};

// Compute many LR coefficients in parallel
let triples = vec![
    (Partition::new(vec![2, 1]), Partition::new(vec![1]), Partition::new(vec![3, 1])),
    (Partition::new(vec![1]), Partition::new(vec![1]), Partition::new(vec![2])),
    // ... many more
];
let coefficients = lr_coefficients_batch(&triples);

// Compute multiple Schubert intersections in parallel
let sigma_1 = SchubertClass::new(vec![1], (2, 4)).unwrap();
let batches = vec![
    (vec![sigma_1.clone(); 4], (2, 4)), // σ_1^4 in Gr(2,4)
    (vec![sigma_1.clone(); 6], (2, 5)), // σ_1^6 in Gr(2,5)
];
let results = multi_intersect_batch(&batches);

Tropical Schubert Calculus

Fast intersection counting using tropical methods (requires tropical-schubert feature):

use amari_enumerative::{
    tropical_intersection_count, tropical_convexity_check,
    TropicalSchubertClass, TropicalResult, SchubertClass,
};

let sigma_1 = SchubertClass::new(vec![1], (2, 4)).unwrap();
let classes = vec![sigma_1.clone(); 4];

// Tropical methods give exact answers for many practical cases
let result = tropical_intersection_count(&classes, (2, 4));
assert_eq!(result, TropicalResult::Finite(2));

// Check if conditions are satisfiable
let tropical_classes: Vec<_> = classes.iter()
    .map(TropicalSchubertClass::from_classical)
    .collect();
assert!(tropical_convexity_check(&tropical_classes, 2, 4));

Gromov-Witten Invariants

Count curves in algebraic varieties:

use amari_enumerative::{GromovWittenInvariant, QuantumCohomology};

// Count rational curves of degree d in P²
let gw = GromovWittenInvariant::new(variety, degree);
let count = gw.compute_with_insertions(&insertions)?;

Tropical Curves

Use tropical geometry for curve counting:

use amari_enumerative::tropical_curves::TropicalCurve;

let curve = TropicalCurve::new(degree, genus);
let count = curve.tropical_count()?;

Modules

Module Description
intersection Chow rings, intersection products, Bézout
schubert Schubert calculus on Grassmannians
littlewood_richardson LR coefficients, partitions, Young tableaux
namespace Namespace/Capability types for ShaperOS
phantom Compile-time verification phantom types
gromov_witten Curve counting, quantum cohomology
tropical_curves Tropical geometry methods
tropical_schubert Tropical Schubert calculus (feature-gated)
moduli_space Moduli spaces of curves
higher_genus Higher genus curve counting, DT/PT invariants
geometric_algebra Integration with geometric algebra
performance Optimized computation utilities

Mathematical Background

Littlewood-Richardson Rule

The LR coefficient c^ν_{λμ} counts semistandard Young tableaux of skew shape ν/λ with content μ satisfying the lattice word condition:

σ_λ · σ_μ = Σ_ν c^ν_{λμ} σ_ν

Chow Rings

The Chow ring A*(X) captures the intersection theory of a variety X:

A*(P^n) = Z[H] / (H^(n+1))

where H is the hyperplane class.

Schubert Cells

The Grassmannian Gr(k,n) has a cell decomposition by Schubert cells:

Gr(k,n) = ⊔ Ω_λ

indexed by partitions λ ⊂ (n-k)^k.

Gromov-Witten Theory

GW invariants count curves via:

⟨τ_a1(γ1),...,τ_an(γn)⟩_{g,β} = ∫_{[M̄_{g,n}(X,β)]^{vir}} ψ_1^{a1} ev_1*(γ1) ∧ ...

Classic Enumerative Problems

Problem Answer
Lines through 2 points 1
Conics through 5 points 1
Lines meeting 4 general lines in P³ 2
Rational cubics through 8 points in P² 12
Lines on a smooth cubic surface 27

Performance

  • Parallel Computation: Rayon-based parallelization for batch operations
  • Tropical Acceleration: Fast counting via tropical correspondence
  • GPU Acceleration: WebGPU for large intersection computations
  • Sparse Matrices: Efficient representation of Schubert classes
  • Batch Processing: Process multiple computations simultaneously
  • Caching: LR coefficients and intersection numbers are cached

Contracts and Verification

The crate uses Creusot-style contracts documented in function signatures:

/// Compute LR coefficient c^ν_{λμ}
///
/// # Contract
/// ```text
/// requires: lambda, mu, nu are valid partitions
/// ensures: result >= 0
/// ensures: |nu| != |lambda| + |mu| => result == 0
/// ensures: !nu.contains(lambda) => result == 0
/// ```
pub fn lr_coefficient(lambda: &Partition, mu: &Partition, nu: &Partition) -> u64

License

Licensed under either of Apache License, Version 2.0 or MIT License at your option.

Part of Amari

This crate is part of the Amari mathematical computing library.