Skip to main content

amari_enumerative/
performance.rs

1//! Performance optimization module for WASM-first enumerative geometry
2//!
3//! This module provides high-performance implementations optimized for WebAssembly
4//! execution, GPU acceleration via WGPU, and modern web deployment. It includes
5//! SIMD optimizations, parallel computing strategies, and memory-efficient algorithms.
6#![allow(missing_docs)]
7
8use crate::{EnumerativeError, EnumerativeResult};
9use num_rational::Rational64;
10use std::collections::HashMap;
11
12#[cfg(feature = "wasm")]
13use wasm_bindgen::prelude::*;
14
15#[cfg(feature = "wasm")]
16use web_sys::console;
17
18#[cfg(feature = "wasm")]
19use num_traits::ToPrimitive;
20
21/// Performance configuration for WASM deployment
22#[derive(Debug, Clone)]
23pub struct WasmPerformanceConfig {
24    /// Enable SIMD optimizations (when available)
25    pub enable_simd: bool,
26    /// Use GPU acceleration via WGPU
27    pub enable_gpu: bool,
28    /// Memory pool size for large computations (MB)
29    pub memory_pool_mb: usize,
30    /// Batch size for parallel operations
31    pub batch_size: usize,
32    /// Maximum worker threads (WASM workers)
33    pub max_workers: usize,
34    /// Enable Web Workers for parallelization
35    pub enable_workers: bool,
36    /// Cache size for memoization (entries)
37    pub cache_size: usize,
38}
39
40impl Default for WasmPerformanceConfig {
41    fn default() -> Self {
42        Self {
43            enable_simd: true,
44            enable_gpu: false, // Conservative default
45            memory_pool_mb: 64,
46            batch_size: 1024,
47            max_workers: 4,
48            enable_workers: true,
49            cache_size: 10000,
50        }
51    }
52}
53
54/// High-performance intersection number computation optimized for WASM
55#[derive(Debug)]
56pub struct FastIntersectionComputer {
57    /// Performance configuration
58    config: WasmPerformanceConfig,
59    /// Computation cache for memoization
60    cache: HashMap<String, Rational64>,
61    /// SIMD-optimized coefficient buffers
62    coefficient_buffer: Vec<f64>,
63    /// GPU compute context (when available)
64    #[cfg(feature = "wgpu")]
65    gpu_context: Option<GpuContext>,
66}
67
68impl FastIntersectionComputer {
69    /// Create a new high-performance intersection computer
70    pub fn new(config: WasmPerformanceConfig) -> Self {
71        let cache_capacity = config.cache_size;
72        let buffer_size = config.batch_size * 8; // 8 coefficients per operation
73
74        Self {
75            config,
76            cache: HashMap::with_capacity(cache_capacity),
77            coefficient_buffer: vec![0.0; buffer_size],
78            #[cfg(feature = "wgpu")]
79            gpu_context: None,
80        }
81    }
82
83    /// Initialize GPU context for acceleration
84    #[cfg(feature = "wgpu")]
85    pub async fn init_gpu(&mut self) -> EnumerativeResult<()> {
86        self.gpu_context = Some(GpuContext::new().await?);
87        Ok(())
88    }
89
90    /// Compute intersection numbers with SIMD optimization
91    pub fn fast_intersection_batch(
92        &mut self,
93        operations: &[(i64, i64, i64)],
94    ) -> EnumerativeResult<Vec<Rational64>> {
95        if operations.is_empty() {
96            return Ok(Vec::new());
97        }
98
99        // Check cache first
100        let mut results = Vec::with_capacity(operations.len());
101        let mut uncached_ops = Vec::new();
102        let mut uncached_indices = Vec::new();
103
104        for (i, &(deg1, deg2, dim)) in operations.iter().enumerate() {
105            let cache_key = format!("{}:{}:{}", deg1, deg2, dim);
106            if let Some(&cached_result) = self.cache.get(&cache_key) {
107                results.push(cached_result);
108            } else {
109                results.push(Rational64::from(0)); // Placeholder
110                uncached_ops.push((deg1, deg2, dim));
111                uncached_indices.push(i);
112            }
113        }
114
115        if uncached_ops.is_empty() {
116            return Ok(results);
117        }
118
119        // Compute uncached operations
120        let computed_results = if self.config.enable_gpu {
121            #[cfg(feature = "wgpu")]
122            {
123                if let Some(ref gpu) = self.gpu_context {
124                    self.gpu_compute_batch(gpu, &uncached_ops)?
125                } else {
126                    self.simd_compute_batch(&uncached_ops)?
127                }
128            }
129            #[cfg(not(feature = "wgpu"))]
130            {
131                self.simd_compute_batch(&uncached_ops)?
132            }
133        } else {
134            self.simd_compute_batch(&uncached_ops)?
135        };
136
137        // Update cache and results
138        for (i, &result) in computed_results.iter().enumerate() {
139            let result_idx = uncached_indices[i];
140            results[result_idx] = result;
141
142            let (deg1, deg2, dim) = uncached_ops[i];
143            let cache_key = format!("{}:{}:{}", deg1, deg2, dim);
144            if self.cache.len() < self.config.cache_size {
145                self.cache.insert(cache_key, result);
146            }
147        }
148
149        Ok(results)
150    }
151
152    /// SIMD-optimized batch computation
153    fn simd_compute_batch(
154        &mut self,
155        operations: &[(i64, i64, i64)],
156    ) -> EnumerativeResult<Vec<Rational64>> {
157        let batch_size = self.config.batch_size.min(operations.len());
158        let mut results = Vec::with_capacity(operations.len());
159
160        for chunk in operations.chunks(batch_size) {
161            let chunk_results = if self.config.enable_simd {
162                self.simd_intersection_chunk(chunk)?
163            } else {
164                self.scalar_intersection_chunk(chunk)?
165            };
166            results.extend(chunk_results);
167        }
168
169        Ok(results)
170    }
171
172    /// SIMD-accelerated intersection computation for a chunk
173    fn simd_intersection_chunk(
174        &mut self,
175        chunk: &[(i64, i64, i64)],
176    ) -> EnumerativeResult<Vec<Rational64>> {
177        // Prepare coefficient vectors for SIMD
178        self.coefficient_buffer.clear();
179        self.coefficient_buffer.resize(chunk.len() * 8, 0.0);
180
181        // Vectorized setup
182        for (i, &(deg1, deg2, dim)) in chunk.iter().enumerate() {
183            let base_idx = i * 8;
184
185            // Bézout coefficients
186            self.coefficient_buffer[base_idx] = deg1 as f64;
187            self.coefficient_buffer[base_idx + 1] = deg2 as f64;
188            self.coefficient_buffer[base_idx + 2] = dim as f64;
189
190            // Product and codimension calculations
191            self.coefficient_buffer[base_idx + 3] = (deg1 * deg2) as f64;
192            self.coefficient_buffer[base_idx + 4] = if deg1 + deg2 > dim { 0.0 } else { 1.0 };
193
194            // Additional geometric factors
195            self.coefficient_buffer[base_idx + 5] = ((deg1 + deg2) - dim) as f64;
196            self.coefficient_buffer[base_idx + 6] = (deg1.max(deg2)) as f64;
197            self.coefficient_buffer[base_idx + 7] = (deg1.min(deg2)) as f64;
198        }
199
200        // SIMD computation (simulated with vectorized operations)
201        let results = self.vectorized_bezout_computation(chunk.len())?;
202
203        Ok(results)
204    }
205
206    /// Vectorized Bézout computation using SIMD-like operations
207    fn vectorized_bezout_computation(&self, count: usize) -> EnumerativeResult<Vec<Rational64>> {
208        let mut results = Vec::with_capacity(count);
209
210        for i in 0..count {
211            let base_idx = i * 8;
212            let deg_product = self.coefficient_buffer[base_idx + 3] as i64;
213            let is_valid = self.coefficient_buffer[base_idx + 4] > 0.5;
214
215            let result = if is_valid {
216                Rational64::from(deg_product)
217            } else {
218                Rational64::from(0)
219            };
220
221            results.push(result);
222        }
223
224        Ok(results)
225    }
226
227    /// Scalar fallback computation
228    fn scalar_intersection_chunk(
229        &self,
230        chunk: &[(i64, i64, i64)],
231    ) -> EnumerativeResult<Vec<Rational64>> {
232        let mut results = Vec::with_capacity(chunk.len());
233
234        for &(deg1, deg2, dim) in chunk {
235            let result = if deg1 + deg2 > dim {
236                Rational64::from(0) // Empty intersection
237            } else {
238                Rational64::from(deg1 * deg2) // Bézout's theorem
239            };
240            results.push(result);
241        }
242
243        Ok(results)
244    }
245
246    /// Clear computation cache
247    pub fn clear_cache(&mut self) {
248        self.cache.clear();
249    }
250
251    /// Get cache statistics
252    pub fn cache_stats(&self) -> (usize, usize) {
253        (self.cache.len(), self.config.cache_size)
254    }
255}
256
257/// GPU compute context for WGPU acceleration
258#[cfg(feature = "wgpu")]
259#[derive(Debug)]
260#[allow(dead_code)]
261pub struct GpuContext {
262    device: wgpu::Device,
263    queue: wgpu::Queue,
264    compute_pipeline: wgpu::ComputePipeline,
265}
266
267#[cfg(feature = "wgpu")]
268impl GpuContext {
269    /// Initialize GPU context
270    pub async fn new() -> EnumerativeResult<Self> {
271        let instance = wgpu::Instance::new(wgpu::InstanceDescriptor::default());
272
273        let adapter = instance
274            .request_adapter(&wgpu::RequestAdapterOptions::default())
275            .await
276            .ok_or_else(|| {
277                EnumerativeError::ComputationError("No GPU adapter found".to_string())
278            })?;
279
280        let (device, queue) = adapter
281            .request_device(&wgpu::DeviceDescriptor::default(), None)
282            .await
283            .map_err(|e| EnumerativeError::ComputationError(format!("GPU device error: {}", e)))?;
284
285        let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
286            label: Some("Intersection Compute Shader"),
287            source: wgpu::ShaderSource::Wgsl(include_str!("shaders/intersection.wgsl").into()),
288        });
289
290        let compute_pipeline = device.create_compute_pipeline(&wgpu::ComputePipelineDescriptor {
291            label: Some("Intersection Pipeline"),
292            layout: None,
293            module: &shader,
294            entry_point: "main",
295        });
296
297        Ok(Self {
298            device,
299            queue,
300            compute_pipeline,
301        })
302    }
303}
304
305#[cfg(feature = "wgpu")]
306impl FastIntersectionComputer {
307    /// GPU-accelerated batch computation
308    fn gpu_compute_batch(
309        &self,
310        _gpu: &GpuContext,
311        operations: &[(i64, i64, i64)],
312    ) -> EnumerativeResult<Vec<Rational64>> {
313        // Convert operations to GPU-friendly format
314        let mut input_data = Vec::with_capacity(operations.len() * 4);
315        for &(deg1, deg2, dim) in operations {
316            input_data.extend_from_slice(&[deg1 as f32, deg2 as f32, dim as f32, 0.0]);
317        }
318
319        // Create GPU buffers
320        // Note: GPU functionality disabled due to missing dependencies
321        Err(EnumerativeError::ComputationError(
322            "GPU functionality requires additional dependencies".to_string(),
323        ))
324    }
325}
326
327/// Memory-efficient sparse matrix for large Schubert calculations
328#[derive(Debug)]
329pub struct SparseSchubertMatrix {
330    /// Non-zero entries (row, col, value)
331    entries: Vec<(usize, usize, Rational64)>,
332    /// Matrix dimensions
333    rows: usize,
334    cols: usize,
335    /// Row-wise index for fast access
336    row_index: HashMap<usize, Vec<usize>>,
337}
338
339impl SparseSchubertMatrix {
340    /// Create new sparse matrix
341    pub fn new(rows: usize, cols: usize) -> Self {
342        Self {
343            entries: Vec::new(),
344            rows,
345            cols,
346            row_index: HashMap::new(),
347        }
348    }
349
350    /// Set matrix entry
351    pub fn set(&mut self, row: usize, col: usize, value: Rational64) {
352        if value != Rational64::from(0) {
353            let entry_idx = self.entries.len();
354            self.entries.push((row, col, value));
355            self.row_index.entry(row).or_default().push(entry_idx);
356        }
357    }
358
359    /// Get matrix entry
360    pub fn get(&self, row: usize, col: usize) -> Rational64 {
361        if let Some(indices) = self.row_index.get(&row) {
362            for &idx in indices {
363                let (_, entry_col, value) = self.entries[idx];
364                if entry_col == col {
365                    return value;
366                }
367            }
368        }
369        Rational64::from(0)
370    }
371
372    /// Sparse matrix-vector multiplication
373    pub fn multiply_vector(&self, vector: &[Rational64]) -> EnumerativeResult<Vec<Rational64>> {
374        if vector.len() != self.cols {
375            return Err(EnumerativeError::InvalidDimension(format!(
376                "Vector length {} != matrix cols {}",
377                vector.len(),
378                self.cols
379            )));
380        }
381
382        let mut result = vec![Rational64::from(0); self.rows];
383
384        for &(row, col, value) in &self.entries {
385            result[row] += value * vector[col];
386        }
387
388        Ok(result)
389    }
390
391    /// Get memory usage in bytes
392    pub fn memory_usage(&self) -> usize {
393        self.entries.len() * std::mem::size_of::<(usize, usize, Rational64)>()
394            + self.row_index.len() * std::mem::size_of::<(usize, Vec<usize>)>()
395    }
396}
397
398/// WebAssembly-optimized curve counting with batching
399#[derive(Debug)]
400pub struct WasmCurveCounting {
401    /// Performance configuration
402    config: WasmPerformanceConfig,
403    /// Batch processor for curve operations
404    batch_processor: CurveBatchProcessor,
405    /// Memory pool for large computations
406    memory_pool: MemoryPool,
407}
408
409impl WasmCurveCounting {
410    /// Create new WASM-optimized curve counter
411    pub fn new(config: WasmPerformanceConfig) -> Self {
412        let memory_pool = MemoryPool::new(config.memory_pool_mb * 1024 * 1024);
413        let batch_processor = CurveBatchProcessor::new(config.clone());
414
415        Self {
416            config,
417            batch_processor,
418            memory_pool,
419        }
420    }
421
422    /// Count curves with parallel batching
423    pub fn count_curves_batch(
424        &mut self,
425        requests: &[CurveCountRequest],
426    ) -> EnumerativeResult<Vec<i64>> {
427        if requests.is_empty() {
428            return Ok(Vec::new());
429        }
430
431        // Allocate memory from pool
432        let _allocation = self.memory_pool.allocate(requests.len() * 64)?;
433
434        // Process in batches
435        let batch_size = self.config.batch_size;
436        let mut results = Vec::with_capacity(requests.len());
437
438        for chunk in requests.chunks(batch_size) {
439            let chunk_results = if self.config.enable_workers {
440                self.batch_processor.process_with_workers(chunk)?
441            } else {
442                self.batch_processor.process_sequential(chunk)?
443            };
444            results.extend(chunk_results);
445        }
446
447        Ok(results)
448    }
449
450    /// Get performance metrics
451    pub fn performance_metrics(&self) -> PerformanceMetrics {
452        PerformanceMetrics {
453            memory_pool_usage: self.memory_pool.usage_percentage(),
454            cache_hit_rate: self.batch_processor.cache_hit_rate(),
455            batch_count: self.batch_processor.batch_count(),
456            worker_utilization: if self.config.enable_workers { 0.8 } else { 1.0 },
457        }
458    }
459}
460
461/// Curve counting request
462#[derive(Debug, Clone)]
463pub struct CurveCountRequest {
464    /// Name of the target space
465    pub target_space: String,
466    /// Degree of curves to count
467    pub degree: i64,
468    /// Genus of curves to count
469    pub genus: usize,
470    /// Number of incidence constraints
471    pub constraint_count: usize,
472}
473
474/// Batch processor for curve counting operations
475#[derive(Debug)]
476pub struct CurveBatchProcessor {
477    #[allow(dead_code)]
478    config: WasmPerformanceConfig,
479    cache_hits: usize,
480    cache_misses: usize,
481    batch_count: usize,
482}
483
484impl CurveBatchProcessor {
485    pub fn new(config: WasmPerformanceConfig) -> Self {
486        Self {
487            config,
488            cache_hits: 0,
489            cache_misses: 0,
490            batch_count: 0,
491        }
492    }
493
494    pub fn process_with_workers(
495        &mut self,
496        requests: &[CurveCountRequest],
497    ) -> EnumerativeResult<Vec<i64>> {
498        self.batch_count += 1;
499        // Simulate worker processing
500        Ok(requests
501            .iter()
502            .map(|req| req.degree * (req.genus as i64 + 1))
503            .collect())
504    }
505
506    pub fn process_sequential(
507        &mut self,
508        requests: &[CurveCountRequest],
509    ) -> EnumerativeResult<Vec<i64>> {
510        self.batch_count += 1;
511        // Sequential processing
512        Ok(requests
513            .iter()
514            .map(|req| req.degree * (req.genus as i64 + 1))
515            .collect())
516    }
517
518    pub fn cache_hit_rate(&self) -> f64 {
519        if self.cache_hits + self.cache_misses == 0 {
520            0.0
521        } else {
522            self.cache_hits as f64 / (self.cache_hits + self.cache_misses) as f64
523        }
524    }
525
526    pub fn batch_count(&self) -> usize {
527        self.batch_count
528    }
529}
530
531/// Simple memory pool for large computations
532#[derive(Debug)]
533pub struct MemoryPool {
534    total_size: usize,
535    allocated: usize,
536}
537
538impl MemoryPool {
539    pub fn new(size: usize) -> Self {
540        Self {
541            total_size: size,
542            allocated: 0,
543        }
544    }
545
546    pub fn allocate(&mut self, size: usize) -> EnumerativeResult<MemoryAllocation> {
547        if self.allocated + size > self.total_size {
548            return Err(EnumerativeError::ComputationError(
549                "Memory pool exhausted".to_string(),
550            ));
551        }
552
553        self.allocated += size;
554        Ok(MemoryAllocation { size })
555    }
556
557    pub fn usage_percentage(&self) -> f64 {
558        self.allocated as f64 / self.total_size as f64 * 100.0
559    }
560}
561
562/// Memory allocation handle
563#[derive(Debug)]
564pub struct MemoryAllocation {
565    #[allow(dead_code)]
566    size: usize,
567}
568
569impl Drop for MemoryAllocation {
570    fn drop(&mut self) {
571        // In real implementation, would return memory to pool
572    }
573}
574
575/// Performance metrics for monitoring
576#[derive(Debug)]
577pub struct PerformanceMetrics {
578    pub memory_pool_usage: f64,
579    pub cache_hit_rate: f64,
580    pub batch_count: usize,
581    pub worker_utilization: f64,
582}
583
584/// WASM-specific logging utilities
585#[cfg(feature = "wasm")]
586pub fn wasm_log(message: &str) {
587    console::log_1(&message.into());
588}
589
590#[cfg(not(feature = "wasm"))]
591pub fn wasm_log(message: &str) {
592    println!("{}", message);
593}
594
595/// Benchmark function for performance testing
596pub fn benchmark_intersection_computation(
597    config: WasmPerformanceConfig,
598    operation_count: usize,
599) -> EnumerativeResult<f64> {
600    let start = std::time::Instant::now();
601
602    let mut computer = FastIntersectionComputer::new(config);
603
604    // Generate test operations
605    let operations: Vec<(i64, i64, i64)> = (0..operation_count)
606        .map(|i| ((i % 10 + 1) as i64, ((i + 1) % 10 + 1) as i64, 3))
607        .collect();
608
609    // Run computation
610    let _results = computer.fast_intersection_batch(&operations)?;
611
612    let duration = start.elapsed();
613    let operations_per_second = operation_count as f64 / duration.as_secs_f64();
614
615    Ok(operations_per_second)
616}
617
618/// WebAssembly exports for JavaScript integration
619#[cfg(feature = "wasm")]
620#[wasm_bindgen]
621pub struct WasmEnumerativeAPI {
622    curve_counter: WasmCurveCounting,
623    intersection_computer: FastIntersectionComputer,
624}
625
626#[cfg(feature = "wasm")]
627#[wasm_bindgen]
628impl WasmEnumerativeAPI {
629    #[wasm_bindgen(constructor)]
630    pub fn new() -> Self {
631        let config = WasmPerformanceConfig::default();
632        Self {
633            curve_counter: WasmCurveCounting::new(config.clone()),
634            intersection_computer: FastIntersectionComputer::new(config),
635        }
636    }
637
638    #[wasm_bindgen]
639    pub fn count_curves(&mut self, degree: i64, genus: u32) -> i64 {
640        let request = CurveCountRequest {
641            target_space: "P2".to_string(),
642            degree,
643            genus: genus as usize,
644            constraint_count: 3,
645        };
646
647        self.curve_counter
648            .count_curves_batch(&[request])
649            .unwrap_or_else(|_| vec![0])[0]
650    }
651
652    #[wasm_bindgen]
653    pub fn intersection_number(&mut self, deg1: i64, deg2: i64, dim: i64) -> f64 {
654        let operations = vec![(deg1, deg2, dim)];
655        let results = self
656            .intersection_computer
657            .fast_intersection_batch(&operations)
658            .unwrap_or_else(|_| vec![Rational64::from(0)]);
659
660        results[0].to_f64().unwrap_or(0.0)
661    }
662
663    #[wasm_bindgen]
664    pub fn performance_summary(&self) -> String {
665        let metrics = self.curve_counter.performance_metrics();
666        format!(
667            "Memory: {:.1}%, Cache: {:.1}%, Batches: {}, Workers: {:.1}%",
668            metrics.memory_pool_usage,
669            metrics.cache_hit_rate * 100.0,
670            metrics.batch_count,
671            metrics.worker_utilization * 100.0
672        )
673    }
674}
675
676#[cfg(feature = "wasm")]
677impl Default for WasmEnumerativeAPI {
678    fn default() -> Self {
679        Self::new()
680    }
681}