1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
//! Memory allocation APIs

pub use core::alloc::{GlobalAlloc, Layout, LayoutErr};
pub use liballoc::alloc::{alloc, alloc_zeroed, dealloc, handle_alloc_error, realloc};
#[cfg(feature = "std")]
pub use std::alloc::System;

use crate::{capacity_overflow, collections::TryReserveError, ptr::Unique};
use core::{
    fmt,
    intrinsics,
    mem,
    ptr::{self, NonNull},
};

/// The `AllocErr` error indicates an allocation failure
/// that may be due to resource exhaustion or to
/// something wrong when combining the given input arguments with this
/// allocator.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct AllocErr;

// (we need this for downstream impl of trait Error)
impl fmt::Display for AllocErr {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("memory allocation failed")
    }
}

/// A desired initial state for allocated memory.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum AllocInit {
    /// The contents of the new memory are undefined.
    ///
    /// Reading uninitialized memory is Undefined Behavior; it must be initialized before use.
    Uninitialized,
    /// The new memory is guaranteed to be zeroed.
    Zeroed,
}

/// Represents a block of allocated memory returned by an allocator.
#[derive(Debug)]
#[must_use = "`MemoryBlock` should be passed to `AllocRef::dealloc`"]
pub struct MemoryBlock {
    ptr: Unique<u8>,
    layout: Layout,
}

impl MemoryBlock {
    /// Creates a new `MemoryBlock`.
    ///
    /// # Safety
    ///
    /// * The block must be allocated with the same alignment as [`layout.align()`], and
    /// * The provided [`layout.size()`] must fall in the range `min ..= max`, where:
    ///   - `min` is the size requested size when allocating the block, and
    ///   - `max` is the size of the memory block.
    #[inline]
    pub const unsafe fn new(ptr: NonNull<u8>, layout: Layout) -> Self {
        Self {
            ptr: Unique::new_unchecked(ptr.as_ptr()),
            layout,
        }
    }

    /// Acquires the underlying `NonNull<u8>` pointer.
    #[inline]
    pub const fn ptr(&self) -> NonNull<u8> {
        // SAFETY: Unique<T> is always non-null
        unsafe { NonNull::new_unchecked(self.ptr.as_ptr()) }
    }

    /// Returns the layout describing the memory block.
    #[inline]
    pub const fn layout(&self) -> Layout {
        self.layout
    }

    /// Returns the size of the memory block.
    #[inline]
    pub const fn size(&self) -> usize {
        self.layout().size()
    }

    /// Returns the minimum alignment of the memory block.
    #[inline]
    pub const fn align(&self) -> usize {
        self.layout().align()
    }

    /// Initialize the memory block like specified by `init`.
    ///
    /// This behaves like calling [`MemoryBlock::initialize_offset(ptr, layout, 0)`][off].
    ///
    /// [off]: MemoryBlock::init_offset
    ///
    /// [*fit*]: trait.AllocRef.html#memory-fitting
    #[inline]
    pub fn init(&mut self, init: AllocInit) {
        // SAFETY: 0 is always smaller or equal to the size
        unsafe { self.init_offset(init, 0) }
    }

    /// Initialize the memory block like specified by `init` at the specified `offset`.
    ///
    /// This is a no-op for [`AllocInit::Uninitialized`] and writes zeroes for [`AllocInit::Zeroed`]
    /// at `ptr + offset` until `ptr + layout.size()`.
    ///
    /// # Safety
    ///
    /// * `offset` must be smaller than or equal to `size()`
    ///
    /// [*fit*]: trait.AllocRef.html#memory-fitting
    #[inline]
    pub unsafe fn init_offset(&mut self, init: AllocInit, offset: usize) {
        debug_assert!(
            offset <= self.size(),
            "`offset` must be smaller than or equal to `size()`"
        );
        match init {
            AllocInit::Uninitialized => (),
            AllocInit::Zeroed => self
                .ptr()
                .as_ptr()
                .add(offset)
                .write_bytes(0, self.size() - offset),
        }
    }
}

/// A placement constraint when growing or shrinking an existing allocation.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum ReallocPlacement {
    /// The allocator is allowed to move the allocation to a different memory address.
    // FIXME(wg-allocators#46): Add a section to the module documentation "What is a legal
    //                          allocator" and link it at "valid location".
    ///
    /// If the allocation _does_ move, it's the responsibility of the allocator
    /// to also move the data from the previous location to the new location.
    MayMove,
    /// The address of the new memory must not change.
    ///
    /// If the allocation would have to be moved to a new location to fit, the
    /// reallocation request will fail.
    InPlace,
}

/// An implementation of `AllocRef` can allocate, grow, shrink, and deallocate arbitrary blocks of
/// data described via [`Layout`][].
///
/// `AllocRef` is designed to be implemented on ZSTs, references, or smart pointers because having
/// an allocator like `MyAlloc([u8; N])` cannot be moved, without updating the pointers to the
/// allocated memory.
///
/// Unlike [`GlobalAlloc`][], zero-sized allocations are allowed in `AllocRef`. If an underlying
/// allocator does not support this (like jemalloc) or return a null pointer (such as
/// `libc::malloc`), this case must be caught.
///
/// # Safety
///
/// * Memory blocks returned from an allocator must point to valid memory and retain their validity
///   until the instance and all of its clones are dropped, and
///
/// * cloning or moving the allocator must not invalidate memory blocks returned from this
///   allocator. A cloned allocator must behave like the same allocator.
///
/// [*currently allocated*]: #currently-allocated-memory
pub unsafe trait AllocRef: Copy {
    /// On success, returns a memory block meeting the size and alignment guarantees of `layout`.
    ///
    /// The returned block may have a larger size than specified by `layout.size()` and is
    /// initialized as specified by [`init`], all the way up to the returned size of the block.
    ///
    /// [`init`]: AllocInit
    ///
    /// # Errors
    ///
    /// Returning `Err` indicates that either memory is exhausted or `layout` does not meet
    /// allocator's size or alignment constraints.
    ///
    /// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or
    /// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement
    /// this trait atop an underlying native allocation library that aborts on memory exhaustion.)
    ///
    /// Clients wishing to abort computation in response to an allocation error are encouraged to
    /// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar.
    ///
    /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html
    fn alloc(self, layout: Layout, init: AllocInit) -> Result<MemoryBlock, AllocErr>;

    /// Deallocates the memory denoted by `memory`.
    ///
    /// # Safety
    ///
    /// `memory` must be a memory block returned by this allocator.
    unsafe fn dealloc(self, memory: MemoryBlock);

    /// Attempts to extend the memory block.
    ///
    /// The behavior of how the allocator tries to grow the memory is specified by [`placement`].
    /// The first `memory.size()` bytes are preserved or copied as appropriate from `ptr`, and the
    /// remaining bytes up to the new `memory.size()` are initialized according to [`init`].
    ///
    /// [`placement`]: ReallocPlacement
    /// [`init`]: AllocInit
    ///
    /// # Safety
    ///
    /// * `memory` must be a memory block returned by this allocator.
    // We can't require that `new_size` is strictly greater than `memory.size()` because of ZSTs.
    // An alternative would be
    // * `new_size must be strictly greater than `memory.size()` or both are zero
    /// * `new_size` must be greater than or equal to `memory.size()`
    /// * `new_size`, when rounded up to the nearest multiple of `memory.align()`, must not overflow
    ///   (i.e., the rounded value must be less than `usize::MAX`).
    ///
    /// [*currently allocated*]: #currently-allocated-memory
    /// [*fit*]: #memory-fitting
    ///
    /// # Errors
    ///
    /// Returns `Err` if the new layout does not meet the allocator's size and alignment
    /// constraints of the allocator, or if growing otherwise fails.
    ///
    /// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or
    /// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement
    /// this trait atop an underlying native allocation library that aborts on memory exhaustion.)
    ///
    /// Clients wishing to abort computation in response to an allocation error are encouraged to
    /// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar.
    ///
    /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html
    unsafe fn grow(
        self,
        memory: &mut MemoryBlock,
        new_size: usize,
        placement: ReallocPlacement,
        init: AllocInit,
    ) -> Result<(), AllocErr> {
        match placement {
            ReallocPlacement::InPlace => Err(AllocErr),
            ReallocPlacement::MayMove => {
                let old_size = memory.size();
                debug_assert!(
                    new_size > old_size,
                    "`new_size` must be greater than or equal to `memory.size()`"
                );

                if new_size == old_size {
                    return Ok(());
                }

                let new_layout = Layout::from_size_align_unchecked(new_size, memory.align());
                let new_memory = self.alloc(new_layout, init)?;
                ptr::copy_nonoverlapping(
                    memory.ptr().as_ptr(),
                    new_memory.ptr().as_ptr(),
                    old_size,
                );
                self.dealloc(mem::replace(memory, new_memory));
                Ok(())
            }
        }
    }

    /// Attempts to shrink the memory block.
    ///
    /// The behavior of how the allocator tries to shrink the memory is specified by [`placement`].
    ///
    /// [`placement`]: ReallocPlacement
    ///
    /// # Safety
    ///
    /// * `memory` must be a memory block returned by this allocator.
    // We can't require that `new_size` is strictly smaller than `memory.size()` because of ZSTs.
    // An alternative would be
    // * `new_size must be strictly smaller than `memory.size()` or both are zero
    /// * `new_size` must be smaller than or equal to `memory.size()`
    ///
    /// [*currently allocated*]: #currently-allocated-memory
    /// [*fit*]: #memory-fitting
    ///
    /// # Errors
    ///
    /// Returns `Err` if the new layout does not meet the allocator's size and alignment
    /// constraints of the allocator, or if growing otherwise fails.
    ///
    /// Implementations are encouraged to return `Err` on memory exhaustion rather than panicking or
    /// aborting, but this is not a strict requirement. (Specifically: it is *legal* to implement
    /// this trait atop an underlying native allocation library that aborts on memory exhaustion.)
    ///
    /// Clients wishing to abort computation in response to an allocation error are encouraged to
    /// call the [`handle_alloc_error`] function, rather than directly invoking `panic!` or similar.
    ///
    /// [`handle_alloc_error`]: ../../alloc/alloc/fn.handle_alloc_error.html
    unsafe fn shrink(
        self,
        memory: &mut MemoryBlock,
        new_size: usize,
        placement: ReallocPlacement,
    ) -> Result<(), AllocErr> {
        match placement {
            ReallocPlacement::InPlace => Err(AllocErr),
            ReallocPlacement::MayMove => {
                let old_size = memory.size();
                debug_assert!(
                    new_size <= old_size,
                    "`new_size` must be smaller than or equal to `layout.size()`"
                );

                if new_size == old_size {
                    return Ok(());
                }

                let new_layout = Layout::from_size_align_unchecked(new_size, memory.align());
                let new_memory = self.alloc(new_layout, AllocInit::Uninitialized)?;
                ptr::copy_nonoverlapping(
                    memory.ptr().as_ptr(),
                    new_memory.ptr().as_ptr(),
                    new_size,
                );
                self.dealloc(mem::replace(memory, new_memory));
                Ok(())
            }
        }
    }
}

/// The global memory allocator.
///
/// This type implements the [`AllocRef`][] trait by forwarding calls
/// to the allocator registered with the `#[global_allocator]` attribute
/// if there is one, or the `std` crate’s default.
///
/// Note: while this type is unstable, the functionality it provides can be
/// accessed through the [free functions in `alloc`](index.html#functions).
#[derive(Copy, Clone, Debug, Default)]
pub struct Global;

unsafe impl AllocRef for Global {
    #[inline]
    fn alloc(self, layout: Layout, init: AllocInit) -> Result<MemoryBlock, AllocErr> {
        unsafe {
            if layout.size() == 0 {
                Ok(MemoryBlock::new(layout.dangling(), layout))
            } else {
                let raw_ptr = match init {
                    AllocInit::Uninitialized => alloc(layout),
                    AllocInit::Zeroed => alloc_zeroed(layout),
                };
                let ptr = NonNull::new(raw_ptr).ok_or(AllocErr)?;
                Ok(MemoryBlock::new(ptr, layout))
            }
        }
    }

    #[inline]
    unsafe fn dealloc(self, memory: MemoryBlock) {
        if memory.size() != 0 {
            dealloc(memory.ptr().as_ptr(), memory.layout())
        }
    }

    #[inline]
    unsafe fn grow(
        self,
        memory: &mut MemoryBlock,
        new_size: usize,
        placement: ReallocPlacement,
        init: AllocInit,
    ) -> Result<(), AllocErr> {
        let old_size = memory.size();
        debug_assert!(
            new_size >= old_size,
            "`new_size` must be greater than or equal to `memory.size()`"
        );

        if old_size == new_size {
            return Ok(());
        }

        let new_layout = Layout::from_size_align_unchecked(new_size, memory.align());
        match placement {
            ReallocPlacement::InPlace => return Err(AllocErr),
            ReallocPlacement::MayMove if memory.size() == 0 => {
                *memory = self.alloc(new_layout, init)?
            }
            ReallocPlacement::MayMove => {
                // `realloc` probably checks for `new_size > old_size` or something similar.
                intrinsics::assume(new_size > old_size);
                let ptr = realloc(memory.ptr().as_ptr(), memory.layout(), new_size);
                *memory = MemoryBlock::new(NonNull::new(ptr).ok_or(AllocErr)?, new_layout);
                memory.init_offset(init, old_size);
            }
        }
        Ok(())
    }

    #[inline]
    unsafe fn shrink(
        self,
        memory: &mut MemoryBlock,
        new_size: usize,
        placement: ReallocPlacement,
    ) -> Result<(), AllocErr> {
        let old_size = memory.size();
        debug_assert!(
            new_size <= old_size,
            "`new_size` must be smaller than or equal to `memory.size()`"
        );

        if old_size == new_size {
            return Ok(());
        }

        let new_layout = Layout::from_size_align_unchecked(new_size, memory.align());
        match placement {
            ReallocPlacement::InPlace => return Err(AllocErr),
            ReallocPlacement::MayMove if new_size == 0 => {
                let new_memory = MemoryBlock::new(new_layout.dangling(), new_layout);
                let old_memory = mem::replace(memory, new_memory);
                self.dealloc(old_memory)
            }
            ReallocPlacement::MayMove => {
                // `realloc` probably checks for `new_size < old_size` or something similar.
                intrinsics::assume(new_size < old_size);
                let ptr = realloc(memory.ptr().as_ptr(), memory.layout(), new_size);
                *memory = MemoryBlock::new(NonNull::new(ptr).ok_or(AllocErr)?, new_layout);
            }
        }
        Ok(())
    }
}

#[cfg(feature = "std")]
unsafe impl AllocRef for System {
    #[inline]
    fn alloc(self, layout: Layout, init: AllocInit) -> Result<MemoryBlock, AllocErr> {
        unsafe {
            if layout.size() == 0 {
                Ok(MemoryBlock::new(layout.dangling(), layout))
            } else {
                let raw_ptr = match init {
                    AllocInit::Uninitialized => GlobalAlloc::alloc(&self, layout),
                    AllocInit::Zeroed => GlobalAlloc::alloc_zeroed(&self, layout),
                };
                let ptr = NonNull::new(raw_ptr).ok_or(AllocErr)?;
                Ok(MemoryBlock::new(ptr, layout))
            }
        }
    }

    #[inline]
    unsafe fn dealloc(self, memory: MemoryBlock) {
        if memory.size() != 0 {
            GlobalAlloc::dealloc(&self, memory.ptr().as_ptr(), memory.layout())
        }
    }

    #[inline]
    unsafe fn grow(
        self,
        memory: &mut MemoryBlock,
        new_size: usize,
        placement: ReallocPlacement,
        init: AllocInit,
    ) -> Result<(), AllocErr> {
        let old_size = memory.size();
        debug_assert!(
            new_size >= old_size,
            "`new_size` must be greater than or equal to `memory.size()`"
        );

        if old_size == new_size {
            return Ok(());
        }

        let new_layout = Layout::from_size_align_unchecked(new_size, memory.align());
        match placement {
            ReallocPlacement::InPlace => return Err(AllocErr),
            ReallocPlacement::MayMove if memory.size() == 0 => {
                *memory = self.alloc(new_layout, init)?
            }
            ReallocPlacement::MayMove => {
                // `realloc` probably checks for `new_size > old_size` or something similar.
                intrinsics::assume(new_size > old_size);
                let ptr =
                    GlobalAlloc::realloc(&self, memory.ptr().as_ptr(), memory.layout(), new_size);
                *memory = MemoryBlock::new(NonNull::new(ptr).ok_or(AllocErr)?, new_layout);
                memory.init_offset(init, old_size);
            }
        }
        Ok(())
    }

    #[inline]
    unsafe fn shrink(
        self,
        memory: &mut MemoryBlock,
        new_size: usize,
        placement: ReallocPlacement,
    ) -> Result<(), AllocErr> {
        let old_size = memory.size();
        debug_assert!(
            new_size >= old_size,
            "`new_size` must be smaller than or equal to `memory.size()`"
        );

        if old_size == new_size {
            return Ok(());
        }

        let new_layout = Layout::from_size_align_unchecked(new_size, memory.align());
        match placement {
            ReallocPlacement::InPlace => return Err(AllocErr),
            ReallocPlacement::MayMove if new_size == 0 => {
                let new_memory = MemoryBlock::new(new_layout.dangling(), new_layout);
                let old_memory = mem::replace(memory, new_memory);
                self.dealloc(old_memory)
            }
            ReallocPlacement::MayMove => {
                // `realloc` probably checks for `new_size < old_size` or something similar.
                intrinsics::assume(new_size < old_size);
                let ptr =
                    GlobalAlloc::realloc(&self, memory.ptr().as_ptr(), memory.layout(), new_size);
                *memory = MemoryBlock::new(NonNull::new(ptr).ok_or(AllocErr)?, new_layout);
            }
        }
        Ok(())
    }
}

pub(crate) fn handle_reserve_error<T>(result: Result<T, TryReserveError>) -> T {
    match result {
        Ok(t) => t,
        Err(TryReserveError::AllocError { layout }) => handle_alloc_error(layout),
        Err(TryReserveError::CapacityOverflow) => capacity_overflow(),
    }
}