use ;
/// A module combines two sets: one with an Abelian group structure and another with a
/// commutative ring structure.
///
/// `OpGroup` denotes the Abelian group operator (usually the addition). In addition, and external
/// multiplicative law noted `∘` is defined. Let `S` be the ring with multiplicative operator
/// `OpMul` noted `×`, multiplicative identity element noted `1`, and additive operator `OpAdd`.
/// Then:
///
/// ```notrust
/// ∀ a, b ∈ S
/// ∀ x, y ∈ Self
///
/// a ∘ (x + y) = (a ∘ x) + (a ∘ y)
/// (a + b) ∘ x = (a ∘ x) + (b ∘ x)
/// (a × b) ∘ x = a ∘ (b ∘ x)
/// 1 ∘ x = x
/// ```