pub use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, Sub, SubAssign};
#[cfg(feature = "decimal")]
use decimal::d128;
use num::Num;
use num_complex::Complex;
pub trait Operator: Copy {
fn operator_token() -> Self;
}
pub trait TwoSidedInverse<O: Operator>: Sized + Inverse<O> {
fn two_sided_inverse(&self) -> Self;
#[inline]
fn two_sided_inverse_mut(&mut self) {
*self = self.two_sided_inverse()
}
}
#[deprecated(note = "This trait will be replaced by the `TwoSidedInverse` trait to avoid some confusions.")]
pub trait Inverse<O: Operator>: Sized {
#[inline]
#[deprecated(note = "This method is likely **not** what you are looking for. Use `.two_sided_inverse` if you really want the inverse from abstract algebra. \
If you are calling this method on a matrix from the nalgebra crate, you are probably searching for `.try_inverse` instead.")]
fn inverse(&self) -> Self;
#[inline]
#[deprecated(note = "This method is likely **not** what you are looking for. Use `.two_sided_inverse_mut` if you really want the inverse from abstract algebra. \
If you are calling this method on a matrix from the nalgebra crate, you are probably searching for `.try_inverse_mut` instead.")]
fn inverse_mut(&mut self) {
*self = self.inverse()
}
}
impl<T: Inverse<O>, O: Operator> TwoSidedInverse<O> for T {
#[inline]
fn two_sided_inverse(&self) -> Self {
self.inverse()
}
#[inline]
fn two_sided_inverse_mut(&mut self) {
self.inverse_mut()
}
}
#[derive(Clone, Copy)]
pub struct Additive;
#[derive(Clone, Copy)]
pub struct Multiplicative;
#[derive(Clone, Copy)]
pub struct AbstractOperator;
impl Operator for Additive {
#[inline]
fn operator_token() -> Self {
Additive
}
}
impl Operator for Multiplicative {
#[inline]
fn operator_token() -> Self {
Multiplicative
}
}
impl Operator for AbstractOperator {
#[inline]
fn operator_token() -> Self {
AbstractOperator
}
}
macro_rules! impl_additive_inverse(
($($T:ty),* $(,)*) => {$(
impl Inverse<Additive> for $T {
fn inverse(&self) -> Self {
-*self
}
}
)*}
);
impl_additive_inverse!(i8, i16, i32, i64, isize, f32, f64);
#[cfg(feature = "decimal")]
impl_additive_inverse!(d128);
impl<N: TwoSidedInverse<Additive>> Inverse<Additive> for Complex<N> {
#[inline]
fn inverse(&self) -> Complex<N> {
Complex {
re: self.re.two_sided_inverse(),
im: self.im.two_sided_inverse(),
}
}
}
impl Inverse<Multiplicative> for f32 {
#[inline]
fn inverse(&self) -> f32 {
1.0 / self
}
}
impl Inverse<Multiplicative> for f64 {
#[inline]
fn inverse(&self) -> f64 {
1.0 / self
}
}
#[cfg(feature = "decimal")]
impl Inverse<Multiplicative> for d128 {
#[inline]
fn inverse(&self) -> d128 {
d128!(1.0) / self
}
}
impl<N: Num + Clone + ClosedNeg> Inverse<Multiplicative> for Complex<N> {
#[inline]
fn inverse(&self) -> Self {
self.inv()
}
}
pub trait ClosedAdd<Right = Self>: Sized + Add<Right, Output = Self> + AddAssign<Right> {}
pub trait ClosedSub<Right = Self>: Sized + Sub<Right, Output = Self> + SubAssign<Right> {}
pub trait ClosedMul<Right = Self>: Sized + Mul<Right, Output = Self> + MulAssign<Right> {}
pub trait ClosedDiv<Right = Self>: Sized + Div<Right, Output = Self> + DivAssign<Right> {}
pub trait ClosedNeg: Sized + Neg<Output = Self> {}
impl<T, Right> ClosedAdd<Right> for T
where
T: Add<Right, Output = T> + AddAssign<Right>,
{
}
impl<T, Right> ClosedSub<Right> for T
where
T: Sub<Right, Output = T> + SubAssign<Right>,
{
}
impl<T, Right> ClosedMul<Right> for T
where
T: Mul<Right, Output = T> + MulAssign<Right>,
{
}
impl<T, Right> ClosedDiv<Right> for T
where
T: Div<Right, Output = T> + DivAssign<Right>,
{
}
impl<T> ClosedNeg for T
where
T: Neg<Output = T>,
{
}