ai-lib 0.3.0

A unified AI SDK for Rust providing a single interface for multiple AI providers with hybrid architecture
Documentation

ai-lib πŸ¦€βœ¨

CI

Unified, Reliable & Performant Multi‑Provider AI SDK for Rust

A production‑grade, provider‑agnostic SDK that gives you one coherent Rust API for 17+ AI platforms (OpenAI, Groq, Anthropic, Gemini, Mistral, Cohere, Azure OpenAI, Ollama, DeepSeek, Qwen, Wenxin, Hunyuan, iFlytek Spark, Kimi, HuggingFace, TogetherAI, xAI Grok, etc.).
Eliminate fragmented auth flows, streaming formats, error semantics, model naming quirks, and inconsistent function calling. Scale from a one‑line script to a multi‑region, multi‑vendor system without rewriting integration code.


Website

πŸš€ Elevator Pitch (TL;DR)

ai-lib unifies:

  • Chat & multimodal requests across heterogeneous model providers
  • Streaming (SSE + emulated) with consistent deltas
  • Function calling semantics
  • Reasoning models support (structured, streaming, JSON formats)
  • Batch workflows
  • Reliability primitives (retry, backoff, timeout, proxy, health, load strategies)
  • Model selection (cost / performance / health / weighted)
  • Observability hooks
  • Progressive configuration (env β†’ builder β†’ explicit injection β†’ custom transport)

You focus on product logic; ai-lib handles infrastructure friction.


πŸ“š Table of Contents

  1. When to Use / When Not To
  2. Architecture Overview
  3. Progressive Complexity Ladder
  4. Quick Start
  5. Core Concepts
  6. Key Feature Clusters
  7. Code Examples (Essentials)
  8. Configuration & Diagnostics
  9. Reliability & Resilience
  10. Model Management & Load Balancing
  11. Observability & Metrics
  12. Security & Privacy
  13. Supported Providers
  14. Examples Catalog
  15. Performance Characteristics
  16. Roadmap
  17. FAQ
  18. Contributing
  19. License & Citation
  20. Why Choose ai-lib?

🎯 When to Use / When Not To

Scenario βœ… Use ai-lib ⚠️ Probably Not
Rapidly switch between AI providers βœ…
Unified streaming output βœ…
Production reliability (retry, proxy, timeout) βœ…
Load balancing / cost / performance strategies βœ…
Hybrid local (Ollama) + cloud vendors βœ…
One-off script calling only OpenAI ⚠️ Use official SDK
Deep vendor-exclusive beta APIs ⚠️ Use vendor SDK directly

πŸ—οΈ Architecture Overview

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                        Your Application                   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–²β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–²β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                β”‚                         β”‚
        High-Level API             Advanced Controls
                β”‚                         β”‚
        AiClient / Builder   ←  Model Mgmt / Metrics / Batch / Tools
                β”‚
        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€ Unified Abstraction Layer ────────────┐
        β”‚  Provider Adapters (Hybrid: Config + Independent)β”‚
        β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
               β”‚            β”‚            β”‚
        OpenAI / Groq   Gemini / Mistral  Ollama / Regional / Others
               β”‚
        Transport (HTTP + Streaming + Retry + Proxy + Timeout)
               β”‚
        Common Types (Request / Messages / Content / Tools / Errors)

Design principles:

  • Hybrid adapter model (config-driven where possible, custom where necessary)
  • Strict core types = consistent ergonomics
  • Extensible: plug custom transport & metrics without forking
  • Progressive layering: start simple, scale safely

πŸͺœ Progressive Complexity Ladder

Level Intent API Surface
L1 One-off / scripting AiClient::quick_chat_text()
L2 Basic integration AiClient::new(provider)
L3 Controlled runtime AiClientBuilder (timeout, proxy, base URL)
L4 Reliability & scale Connection pool, batch, streaming, retries
L5 Optimization Model arrays, selection strategies, metrics
L6 Extension Custom transport, custom metrics, instrumentation

βš™οΈ Quick Start

Install

[dependencies]
ai-lib = "0.3.0"
tokio = { version = "1", features = ["full"] }
futures = "0.3"

Fastest Possible

use ai_lib::Provider;

#[tokio::main]
async fn main() -> anyhow::Result<()> {
    let reply = ai_lib::AiClient::quick_chat_text(Provider::Groq, "Ping?").await?;
    println!("Reply: {reply}");
    Ok(())
}

Standard Chat

use ai_lib::{AiClient, Provider, Message, Role, Content, ChatCompletionRequest};

#[tokio::main]
async fn main() -> anyhow::Result<()> {
    let client = AiClient::new(Provider::OpenAI)?;
    let req = ChatCompletionRequest::new(
        client.default_chat_model(),
        vec![Message {
            role: Role::User,
            content: Content::new_text("Explain Rust ownership in one sentence."),
            function_call: None,
        }]
    );
    let resp = client.chat_completion(req).await?;
    println!("Answer: {}", resp.first_text()?);
    Ok(())
}

Streaming

use futures::StreamExt;
let mut stream = client.chat_completion_stream(req).await?;
while let Some(chunk) = stream.next().await {
    let c = chunk?;
    if let Some(delta) = c.choices[0].delta.content.clone() {
        print!("{delta}");
    }
}

🧠 Core Concepts

Concept Purpose
Provider Enumerates all supported vendors
AiClient / Builder Main entrypoint; configuration envelope
ChatCompletionRequest Unified request payload
Message / Content Text / Image / Audio / (future structured)
Function / Tool Unified function calling semantics
Streaming Event Provider-normalized delta stream
ModelManager / ModelArray Strategy-driven model orchestration
ConnectionOptions Explicit runtime overrides
Metrics Trait Custom observability integration
Transport Injectable HTTP + streaming implementation

πŸ’‘ Key Feature Clusters

  1. Unified provider abstraction (no per-vendor branching)
  2. Universal streaming (SSE + fallback emulation)
  3. Multimodal primitives (text/image/audio)
  4. Function calling (consistent tool schema)
  5. Reasoning models support (structured, streaming, JSON formats)
  6. Batch processing (sequential / bounded concurrency / smart strategy)
  7. Reliability: retry, error classification, timeout, proxy, pool
  8. Model management: performance / cost / health / round-robin / weighted
  9. Observability: pluggable metrics & timing
  10. Security: isolation, no default content logging
  11. Extensibility: custom transport, metrics, strategy injection

πŸ§ͺ Essential Examples (Condensed)

Provider Switching

let groq = AiClient::new(Provider::Groq)?;
let gemini = AiClient::new(Provider::Gemini)?;
let claude = AiClient::new(Provider::Anthropic)?;

Function Calling

use ai_lib::{Tool, FunctionCallPolicy};
let tool = Tool::new_json(
    "get_weather",
    Some("Get weather information"),
    serde_json::json!({"type":"object","properties":{"location":{"type":"string"}},"required":["location"]})
);
let req = ChatCompletionRequest::new(model, messages)
    .with_functions(vec![tool])
    .with_function_call(FunctionCallPolicy::Auto);

Batch

let responses = client.chat_completion_batch(requests.clone(), Some(8)).await?;
let smart = client.chat_completion_batch_smart(requests).await?;

Multimodal (Image)

let msg = Message {
    role: Role::User,
    content: ai_lib::types::common::Content::Image {
        url: Some("https://example.com/image.jpg".into()),
        mime: Some("image/jpeg".into()),
        name: None,
    },
    function_call: None,
};

Reasoning Models

// Structured reasoning with function calling
let reasoning_tool = Tool::new_json(
    "step_by_step_reasoning",
    Some("Execute step-by-step reasoning"),
    serde_json::json!({
        "type": "object",
        "properties": {
            "problem": {"type": "string"},
            "steps": {"type": "array", "items": {"type": "object"}},
            "final_answer": {"type": "string"}
        }
    })
);

let request = ChatCompletionRequest::new(model, messages)
    .with_functions(vec![reasoning_tool])
    .with_function_call(FunctionCallPolicy::Auto);

// Streaming reasoning
let mut stream = client.chat_completion_stream(request).await?;
while let Some(chunk) = stream.next().await {
    if let Some(content) = &chunk?.choices[0].delta.content {
        print!("{}", content);
    }
}

// Provider-specific reasoning config
let request = ChatCompletionRequest::new(model, messages)
    .with_provider_specific("reasoning_format", serde_json::Value::String("parsed".to_string()))
    .with_provider_specific("reasoning_effort", serde_json::Value::String("high".to_string()));

Retry Awareness

match client.chat_completion(req).await {
    Ok(r) => println!("{}", r.first_text()?),
    Err(e) if e.is_retryable() => { /* schedule retry */ }
    Err(e) => eprintln!("Permanent failure: {e}")
}

πŸ”‘ Configuration & Diagnostics

Environment Variables (Convention-Based)

# API Keys
export OPENAI_API_KEY=...
export GROQ_API_KEY=...
export DEEPSEEK_API_KEY=...

# Optional base URLs
export GROQ_BASE_URL=https://custom.groq.com

# Proxy
export AI_PROXY_URL=http://proxy.internal:8080

# Global timeout (seconds)
export AI_TIMEOUT_SECS=30

# Optional: cost metrics (feature `cost_metrics`)
export COST_INPUT_PER_1K=0.5
export COST_OUTPUT_PER_1K=1.5

Explicit Overrides

use ai_lib::{AiClient, Provider, ConnectionOptions};
let client = AiClient::with_options(
    Provider::Groq,
    ConnectionOptions {
        base_url: Some("https://custom.groq.com".into()),
        proxy: Some("http://proxy.internal:8080".into()),
        api_key: Some("override-key".into()),
        timeout: Some(Duration::from_secs(45)),
        disable_proxy: false,
    }
)?;

Config Validation

cargo run --example check_config
cargo run --example network_diagnosis
cargo run --example proxy_example

πŸ›‘οΈ Reliability & Resilience

Aspect Capability
Retry Exponential backoff + classification
Errors Distinguishes transient vs permanent
Timeout Per-request configurable
Proxy Global / per-connection / disable
Connection Pool Tunable size + lifetime
Health Endpoint state + strategy-based avoidance
Load Strategies Round-robin / weighted / health / performance / cost
Fallback Multi-provider arrays / manual layering

🧭 Model Management & Load Balancing

use ai_lib::{AiClientBuilder, ChatCompletionRequest, Message, Provider, Role};
use ai_lib::types::common::Content;
use ai_lib::provider::models::{ModelArray, ModelEndpoint, LoadBalancingStrategy};

// Build a ModelArray and attach via builder (feature: routing_mvp)
let mut array = ModelArray::new("prod").with_strategy(LoadBalancingStrategy::RoundRobin);
array.add_endpoint(ModelEndpoint {
    name: "groq-70b".to_string(),
    model_name: "llama-3.3-70b-versatile".to_string(),
    url: "https://api.groq.com".to_string(),
    weight: 1.0,
    healthy: true,
    connection_count: 0,
});
array.add_endpoint(ModelEndpoint {
    name: "groq-8b".to_string(),
    model_name: "llama-3.1-8b-instant".to_string(),
    url: "https://api.groq.com".to_string(),
    weight: 1.0,
    healthy: true,
    connection_count: 0,
});

let client = AiClientBuilder::new(Provider::Groq)
    .with_routing_array(array)
    .build()?;

// Use sentinel model "__route__" to trigger routing
let req = ChatCompletionRequest::new(
    "__route__".to_string(),
    vec![Message { role: Role::User, content: Content::new_text("Say hi"), function_call: None }]
);
let resp = client.chat_completion(req).await?;
println!("selected model: {}", resp.model);
# Ok::<(), ai_lib::AiLibError>(())
  • Minimal health check: when picking an endpoint, the client pings {base_url} (or {base_url}/models for OpenAI‑compatible) before using it.
  • Metrics (names under feature routing_mvp):
    • routing_mvp.request
    • routing_mvp.selected
    • routing_mvp.health_fail
    • routing_mvp.fallback_default
    • routing_mvp.no_endpoint
    • routing_mvp.missing_array

πŸ“Š Observability & Metrics

Implement the Metrics trait to bridge Prometheus, OpenTelemetry, StatsD, etc.

struct CustomMetrics;
#[async_trait::async_trait]
impl ai_lib::metrics::Metrics for CustomMetrics {
    async fn incr_counter(&self, name: &str, value: u64) { /* ... */ }
    async fn start_timer(&self, name: &str) -> Option<Box<dyn ai_lib::metrics::Timer + Send>> { /* ... */ }
}
let client = AiClient::new_with_metrics(Provider::Groq, Arc::new(CustomMetrics))?;

Collect routing_mvp metrics

When routing_mvp is enabled, the client emits counters during routing:

// Keys that may be emitted:
// routing_mvp.request, routing_mvp.selected, routing_mvp.health_fail,
// routing_mvp.fallback_default, routing_mvp.no_endpoint, routing_mvp.missing_array

use std::sync::Arc;
use ai_lib::{AiClientBuilder, Provider};

struct PrintMetrics;
#[async_trait::async_trait]
impl ai_lib::metrics::Metrics for PrintMetrics {
    async fn incr_counter(&self, name: &str, value: u64) { println!("cnt {} += {}", name, value); }
    async fn record_gauge(&self, name: &str, value: f64) { println!("gauge {} = {}", name, value); }
    async fn start_timer(&self, _name: &str) -> Option<Box<dyn ai_lib::metrics::Timer + Send>> { None }
    async fn record_histogram(&self, name: &str, value: f64) { println!("hist {} = {}", name, value); }
    async fn record_histogram_with_tags(&self, name: &str, value: f64, tags: &[(&str, &str)]) { println!("hist {} = {} tags={:?}", name, value, tags); }
    async fn incr_counter_with_tags(&self, name: &str, value: u64, tags: &[(&str, &str)]) { println!("cnt {} += {} tags={:?}", name, value, tags); }
    async fn record_gauge_with_tags(&self, name: &str, value: f64, tags: &[(&str, &str)]) { println!("gauge {} = {} tags={:?}", name, value, tags); }
    async fn record_error(&self, name: &str, error_type: &str) { println!("error {} type={} ", name, error_type); }
    async fn record_success(&self, name: &str, success: bool) { println!("success {} = {}", name, success); }
}

let metrics = Arc::new(PrintMetrics);
let client = AiClientBuilder::new(Provider::Groq)
    .with_metrics(metrics)
    .build()?;

Feature Flags (Progressive & Optional)

  • interceptors: Interceptor trait + pipeline, example: interceptors_pipeline
  • unified_sse: Common SSE parser wired in GenericAdapter
  • unified_transport: Shared reqwest client factory
  • cost_metrics: Minimal cost accounting via env vars above
  • routing_mvp: Enable ModelArray routing; set request.model to "route" to route
  • observability: Tracer/AuditSink traits (Noop by default), decoupled from OTel
  • config_hot_reload: ConfigProvider/ConfigWatcher traits (Noop by default)

Quick Test Matrix (pre‑release)

# Unified SSE parser tests
cargo test --features unified_sse -- tests::sse_parser_tests sse_regression

# Cost & routing (non-network sanity)
cargo test --features "cost_metrics routing_mvp" -- tests::cost_and_routing

Local Validation Matrix

# Lints (deny warnings)
cargo clippy --all-features -- -D warnings

# Default test suite
cargo test

# Feature-gated suites
cargo test --features unified_sse
cargo test --features "cost_metrics routing_mvp"

# Build all examples
cargo build --examples

# Smoke-run selected examples
cargo run --example quickstart
cargo run --example proxy_example
cargo run --features interceptors --example interceptors_pipeline
cargo run --features "interceptors unified_sse" --example mistral_features

Enterprise note: In ai-lib PRO, cost and routing configuration can be centrally managed and hot-reloaded via external config providers.


ℹ️ Indicative Pricing Lookup (optional)

Use env-driven pricing first (feature cost_metrics): COST_INPUT_PER_1K, COST_OUTPUT_PER_1K. If not set, you can optionally consult an indicative table for defaults:

// Prefer env; fall back to indicative table when missing
let usd = ai_lib::metrics::cost::estimate_usd(1000, 2000); // uses env if set

// Optional: indicative pricing lookup (OSS only, not contractual)
if let Some(p) = ai_lib::provider::pricing::get_pricing(ai_lib::Provider::DeepSeek, "deepseek-chat") {
    let approx = p.calculate_cost(1000, 2000);
    println!("indicative cost β‰ˆ ${:.4}", approx);
}

Notes:

  • Values are representative only; verify with your provider/pricing plan.
  • In PRO deployments, use centralized price catalogs and hot‑reload rather than static lookups.

πŸ”’ Security & Privacy

Feature Description
No implicit logging Requests/responses not logged by default
Key isolation API keys sourced from env or explicit struct
Proxy control Allow / disable / override
TLS Standard HTTPS with validation
Auditing hooks Use metrics layer for compliance audit counters
Local-first Ollama integration for sensitive contexts

🌍 Supported Providers (Snapshot)

Provider Adapter Type Streaming Notes
Groq config-driven βœ… Ultra-low latency
OpenAI independent βœ… Function calling
Anthropic (Claude) config-driven βœ… High quality
Google Gemini independent πŸ”„ (unified) Multimodal focus
Mistral independent βœ… European models
Cohere independent βœ… RAG optimized
HuggingFace config-driven βœ… Open models
TogetherAI config-driven βœ… Cost-efficient
DeepSeek config-driven βœ… Reasoning models
Qwen config-driven βœ… Chinese ecosystem
Baidu Wenxin config-driven βœ… Enterprise CN
Tencent Hunyuan config-driven βœ… Cloud integration
iFlytek Spark config-driven βœ… Voice + multimodal
Moonshot Kimi config-driven βœ… Long context
Azure OpenAI config-driven βœ… Enterprise compliance
Ollama config-driven βœ… Local / airgapped
xAI Grok config-driven βœ… Real-time oriented

(Streaming column: πŸ”„ = unified adaptation / fallback)


πŸ—‚οΈ Examples Catalog (in /examples)

Category Examples
Getting Started quickstart / basic_usage / builder_pattern
Configuration explicit_config / proxy_example / custom_transport_config
Streaming test_streaming / cohere_stream
Reliability custom_transport
Multi-provider config_driven_example / model_override_demo
Model Mgmt model_management
Batch batch_processing
Function Calling function_call_openai / function_call_exec
Multimodal multimodal_example
Architecture Demo architecture_progress
Specialized ascii_horse / hello_groq

πŸ“Š Performance (Indicative & Methodology-Based)

The figures below describe the SDK layer overhead of ai-lib itself, not model inference time.
They are representative (not guarantees) and come from controlled benchmarks using a mock transport unless otherwise noted.

Metric Observed Range (Typical) Precise Definition Measurement Context
SDK overhead per request ~0.6–0.9 ms Time from building a ChatCompletionRequest to handing off the HTTP request Release build, mock transport, 256B prompt, single thread warm
Streaming added latency <2 ms Additional latency introduced by ai-lib's streaming parsing vs direct reqwest SSE 500 runs, Groq llama3-8b, averaged
Baseline memory footprint ~1.7 MB Resident set after initializing one AiClient + connection pool Linux (x86_64), pool=16, no batching
Sustainable mock throughput 11K–13K req/s Completed request futures per second (short prompt) Mock transport, concurrency=512, pool=32
Real provider short‑prompt throughput Provider-bound End-to-end including network + provider throttling Heavily dependent on vendor limits
Streaming chunk parse cost ~8–15 Β΅s / chunk Parsing + dispatch of one SSE delta Synthetic 30–50 token streams
Batch concurrency scaling Near-linear to ~512 tasks Degradation point before scheduling contention Tokio multi-threaded runtime

πŸ”¬ Methodology

  1. Hardware: AMD 7950X (32 threads), 64GB RAM, NVMe SSD, Linux 6.x
  2. Toolchain: Rust 1.79 (stable), --release, LTO=thin, default allocator
  3. Isolation: Mock transport used to exclude network + provider inference variance
  4. Warm-up: Discard first 200 iterations (JIT, cache, allocator stabilization)
  5. Timing: std::time::Instant for macro throughput; Criterion for micro overhead
  6. Streaming: Synthetic SSE frames with realistic token cadence (8–25 ms)
  7. Provider tests: Treated as illustrative only (subject to rate limiting & regional latency)

πŸ§ͺ Reproducing (Once Bench Suite Is Added)

# Micro overhead (request build + serialize)
cargo bench --bench micro_overhead

# Mock high-concurrency throughput
cargo run --example bench_mock_throughput -- --concurrency 512 --duration 15s

# Streaming parsing cost
cargo bench --bench stream_parse

Planned benchmark layout (forthcoming):

/bench
  micro/
    bench_overhead.rs
    bench_stream_parse.rs
  macro/
    mock_throughput.rs
    streaming_latency.rs
  provider/ (optional gated)
    groq_latency.rs

πŸ“Œ Interpretation Guidelines

  • "SDK overhead" = ai-lib internal processing (type construction, serialization, dispatch prep) β€” excludes remote model latency.
  • "Throughput" figures assume fast-returning mock responses; real-world cloud throughput is usually constrained by provider rate limits.
  • Memory numbers are resident set snapshots; production systems with logging/metrics may add overhead.
  • Results will vary on different hardware, OS schedulers, allocator strategies, and runtime tuning.

⚠️ Disclaimers

These metrics are indicative, not contractual guarantees. Always benchmark with your workload, prompt sizes, model mix, and deployment environment.
A reproducible benchmark harness and JSON snapshot baselines will be versioned in the repository to track regressions.

πŸ’‘ Optimization Tips

  • Use .with_pool_config(size, idle_timeout) for high-throughput scenarios
  • Prefer streaming for low-latency UX
  • Batch related short prompts with concurrency limits
  • Avoid redundant client instantiation (reuse clients)
  • Consider provider-specific rate limits and regional latency

πŸ—ΊοΈ Roadmap (Planned Sequence)

Stage Planned Feature
1 Advanced backpressure & adaptive rate coordination
2 Built-in caching layer (request/result stratified)
3 Live configuration hot-reload
4 Plugin / interceptor system
5 GraphQL surface
6 WebSocket native streaming
7 Enhanced security (key rotation, KMS integration)
8 Public benchmark harness + nightly regression checks

πŸ§ͺ Performance Monitoring Roadmap

Public benchmark harness + nightly (mock-only) regression checks are planned to:

  • Detect performance regressions early
  • Provide historical trend data
  • Allow contributors to validate impact of PRs

❓ FAQ

Question Answer
How do I A/B test providers? Use ModelArray with a load strategy
Is retry built-in? Automatic classification + backoff; you can layer custom loops
Can I disable the proxy? .without_proxy() or disable_proxy = true in options
Can I mock for tests? Inject a custom transport
Do you log PII? No logging of content by default
Function calling differences? Normalized via Tool + FunctionCallPolicy
Local inference supported? Yes, via Ollama (self-hosted)
How to know if an error is retryable? error.is_retryable() helper

🀝 Contributing

  1. Fork & clone repo
  2. Create a feature branch: git checkout -b feature/your-feature
  3. Run tests: cargo test
  4. Add example if introducing new capability
  5. Follow adapter layering (prefer config-driven before custom)
  6. Open PR with rationale + benchmarks (if performance-affecting)

We value: clarity, test coverage, minimal surface area creep, incremental composability.


πŸ“„ License

Dual licensed under either:

  • MIT
  • Apache License (Version 2.0)

You may choose the license that best fits your project.


πŸ“š Citation

@software{ai-lib,
    title = {ai-lib: A Unified AI SDK for Rust},
    author = {ai-lib Contributors},
    url = {https://github.com/hiddenpath/ai-lib},
    year = {2024}
}

πŸ† Why Choose ai-lib?

Dimension Value
Engineering Velocity One abstraction = fewer bespoke adapters
Risk Mitigation Multi-provider fallback & health routing
Operational Robustness Retry, pooling, diagnostics, metrics
Cost Control Cost/performance strategy knobs
Extensibility Pluggable transport & metrics
Future-Proofing Clear roadmap + hybrid adapter pattern
Ergonomics Progressive APIβ€”no premature complexity
Performance Minimal latency & memory overhead