use crate::convert::*;
use crate::operations::folded_multiply;
use crate::operations::read_small;
use crate::operations::MULTIPLE;
use crate::random_state::PI;
use crate::RandomState;
use core::hash::Hasher;
const ROT: u32 = 23;
#[derive(Debug, Clone)]
pub struct AHasher {
buffer: u64,
pad: u64,
extra_keys: [u64; 2],
}
impl AHasher {
#[inline]
#[allow(dead_code)] pub(crate) fn new_with_keys(key1: u128, key2: u128) -> AHasher {
let pi: [u128; 2] = PI.convert();
let key1: [u64; 2] = (key1 ^ pi[0]).convert();
let key2: [u64; 2] = (key2 ^ pi[1]).convert();
AHasher {
buffer: key1[0],
pad: key1[1],
extra_keys: key2,
}
}
#[allow(unused)] pub(crate) fn test_with_keys(key1: u128, key2: u128) -> Self {
let key1: [u64; 2] = key1.convert();
let key2: [u64; 2] = key2.convert();
Self {
buffer: key1[0],
pad: key1[1],
extra_keys: key2,
}
}
#[inline]
#[allow(dead_code)] pub(crate) fn from_random_state(rand_state: &RandomState) -> AHasher {
AHasher {
buffer: rand_state.k1,
pad: rand_state.k0,
extra_keys: [rand_state.k2, rand_state.k3],
}
}
#[inline(always)]
fn update(&mut self, new_data: u64) {
self.buffer = folded_multiply(new_data ^ self.buffer, MULTIPLE);
}
#[inline(always)]
fn large_update(&mut self, new_data: u128) {
let block: [u64; 2] = new_data.convert();
let combined = folded_multiply(block[0] ^ self.extra_keys[0], block[1] ^ self.extra_keys[1]);
self.buffer = (self.buffer.wrapping_add(self.pad) ^ combined).rotate_left(ROT);
}
#[inline]
#[cfg(feature = "specialize")]
fn short_finish(&self) -> u64 {
folded_multiply(self.buffer, self.pad)
}
}
impl Hasher for AHasher {
#[inline]
fn write_u8(&mut self, i: u8) {
self.update(i as u64);
}
#[inline]
fn write_u16(&mut self, i: u16) {
self.update(i as u64);
}
#[inline]
fn write_u32(&mut self, i: u32) {
self.update(i as u64);
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.update(i as u64);
}
#[inline]
fn write_u128(&mut self, i: u128) {
self.large_update(i);
}
#[inline]
#[cfg(any(
target_pointer_width = "64",
target_pointer_width = "32",
target_pointer_width = "16"
))]
fn write_usize(&mut self, i: usize) {
self.write_u64(i as u64);
}
#[inline]
#[cfg(target_pointer_width = "128")]
fn write_usize(&mut self, i: usize) {
self.write_u128(i as u128);
}
#[inline]
#[allow(clippy::collapsible_if)]
fn write(&mut self, input: &[u8]) {
let mut data = input;
let length = data.len() as u64;
self.buffer = self.buffer.wrapping_add(length).wrapping_mul(MULTIPLE);
if data.len() > 8 {
if data.len() > 16 {
let tail = data.read_last_u128();
self.large_update(tail);
while data.len() > 16 {
let (block, rest) = data.read_u128();
self.large_update(block);
data = rest;
}
} else {
self.large_update([data.read_u64().0, data.read_last_u64()].convert());
}
} else {
let value = read_small(data);
self.large_update(value.convert());
}
}
#[inline]
fn finish(&self) -> u64 {
let rot = (self.buffer & 63) as u32;
folded_multiply(self.buffer, self.pad).rotate_left(rot)
}
}
#[cfg(feature = "specialize")]
pub(crate) struct AHasherU64 {
pub(crate) buffer: u64,
pub(crate) pad: u64,
}
#[cfg(feature = "specialize")]
impl Hasher for AHasherU64 {
#[inline]
fn finish(&self) -> u64 {
folded_multiply(self.buffer, self.pad)
}
#[inline]
fn write(&mut self, _bytes: &[u8]) {
unreachable!("Specialized hasher was called with a different type of object")
}
#[inline]
fn write_u8(&mut self, i: u8) {
self.write_u64(i as u64);
}
#[inline]
fn write_u16(&mut self, i: u16) {
self.write_u64(i as u64);
}
#[inline]
fn write_u32(&mut self, i: u32) {
self.write_u64(i as u64);
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.buffer = folded_multiply(i ^ self.buffer, MULTIPLE);
}
#[inline]
fn write_u128(&mut self, _i: u128) {
unreachable!("Specialized hasher was called with a different type of object")
}
#[inline]
fn write_usize(&mut self, _i: usize) {
unreachable!("Specialized hasher was called with a different type of object")
}
}
#[cfg(feature = "specialize")]
pub(crate) struct AHasherFixed(pub AHasher);
#[cfg(feature = "specialize")]
impl Hasher for AHasherFixed {
#[inline]
fn finish(&self) -> u64 {
self.0.short_finish()
}
#[inline]
fn write(&mut self, bytes: &[u8]) {
self.0.write(bytes)
}
#[inline]
fn write_u8(&mut self, i: u8) {
self.write_u64(i as u64);
}
#[inline]
fn write_u16(&mut self, i: u16) {
self.write_u64(i as u64);
}
#[inline]
fn write_u32(&mut self, i: u32) {
self.write_u64(i as u64);
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.0.write_u64(i);
}
#[inline]
fn write_u128(&mut self, i: u128) {
self.0.write_u128(i);
}
#[inline]
fn write_usize(&mut self, i: usize) {
self.0.write_usize(i);
}
}
#[cfg(feature = "specialize")]
pub(crate) struct AHasherStr(pub AHasher);
#[cfg(feature = "specialize")]
impl Hasher for AHasherStr {
#[inline]
fn finish(&self) -> u64 {
self.0.finish()
}
#[inline]
fn write(&mut self, bytes: &[u8]) {
if bytes.len() > 8 {
self.0.write(bytes)
} else {
let value = read_small(bytes);
self.0.buffer = folded_multiply(value[0] ^ self.0.buffer, value[1] ^ self.0.extra_keys[1]);
self.0.pad = self.0.pad.wrapping_add(bytes.len() as u64);
}
}
#[inline]
fn write_u8(&mut self, _i: u8) {}
#[inline]
fn write_u16(&mut self, _i: u16) {}
#[inline]
fn write_u32(&mut self, _i: u32) {}
#[inline]
fn write_u64(&mut self, _i: u64) {}
#[inline]
fn write_u128(&mut self, _i: u128) {}
#[inline]
fn write_usize(&mut self, _i: usize) {}
}
#[cfg(test)]
mod tests {
use crate::fallback_hash::*;
#[test]
fn test_hash() {
let mut hasher = AHasher::new_with_keys(0, 0);
let value: u64 = 1 << 32;
hasher.update(value);
let result = hasher.buffer;
let mut hasher = AHasher::new_with_keys(0, 0);
let value2: u64 = 1;
hasher.update(value2);
let result2 = hasher.buffer;
let result: [u8; 8] = result.convert();
let result2: [u8; 8] = result2.convert();
assert_ne!(hex::encode(result), hex::encode(result2));
}
#[test]
fn test_conversion() {
let input: &[u8] = "dddddddd".as_bytes();
let bytes: u64 = as_array!(input, 8).convert();
assert_eq!(bytes, 0x6464646464646464);
}
}