agent-runtime 0.2.2

A Rust implementation of the Model Context Protocol (MCP) for AI tool integration
Documentation

agent-runtime

A production-ready Rust framework for building AI agent workflows with native and external tool support, streaming LLM interactions, comprehensive event tracking, and intelligent loop prevention.

Features

🤖 Agent System

  • LLM-backed agents with configurable system prompts and context
  • Multi-provider LLM support - OpenAI and llama.cpp (LM Studio) included
  • Streaming responses - Real-time token-by-token LLM output
  • Tool loop prevention - Automatic detection and prevention of redundant tool calls
  • Execution history - Complete conversation and tool call tracking per agent

🔧 Tool System

  • Native tools - In-memory async functions with zero overhead
  • MCP tool integration - Connect to external MCP servers (filesystem, databases, web, etc.)
  • Tool registry - Organize and manage tools per agent
  • Automatic discovery - MCP tools auto-discovered from servers
  • Rich metadata - Full argument schemas and descriptions

🔄 Workflow Engine

  • Sequential workflows - Chain multiple agents with state passing
  • Transform steps - Data manipulation between agents
  • Conditional branching - Dynamic workflow paths
  • Nested workflows - SubWorkflows for complex orchestration
  • Mermaid export - Visualize workflows as diagrams

📡 Event System

  • Real-time events - Complete visibility into execution
  • Fine-grained tracking - Workflow, agent, LLM, and tool events
  • Streaming chunks - Live LLM token streaming via events
  • Multi-subscriber - Multiple event listeners per workflow
  • Event bubbling - Events propagate from tools → agents → workflows

⚙️ Configuration

  • YAML and TOML support - Human-readable config files
  • Builder pattern - Type-safe programmatic configuration
  • Environment variables - Runtime configuration override
  • Per-agent settings - System prompts, tools, LLM clients, loop prevention

🔒 Production Ready

  • 61 comprehensive tests - All core functionality tested
  • Tool loop prevention - Prevents LLM from calling same tool repeatedly
  • Microsecond timing - Precise performance metrics
  • Structured logging - FileLogger with timestamped output
  • Error handling - Detailed error types with context

Quick Start

Installation

[dependencies]

agent-runtime = { path = "." }

tokio = { version = "1", features = ["full"] }

Basic Agent

use agent_runtime::prelude::*;

#[tokio::main]
async fn main() {
    // Create LLM client
    let llm = OpenAiClient::new("https://api.openai.com/v1", "your-api-key");
    
    // Build agent with tools
    let agent = AgentConfig::new("assistant")
        .with_system_prompt("You are a helpful assistant.")
        .with_llm_client(Arc::new(llm))
        .with_tool(calculator_tool())
        .build();
    
    // Execute
    let input = AgentInput::from_text("What is 42 * 137?");
    let output = agent.execute(&input).await?;
    println!("Result: {}", output.data);
}

MCP External Tools

use agent_runtime::tools::{McpClient, McpTool};

// Connect to MCP server
let mcp = McpClient::new_stdio(
    "npx",
    vec!["-y", "@modelcontextprotocol/server-filesystem", "/tmp"]
).await?;

// Discover tools
let tools = mcp.list_tools().await?;
println!("Available: {:?}", tools.iter().map(|t| &t.name).collect::<Vec<_>>());

// Use in agent
let agent = AgentConfig::new("file-agent")
    .with_mcp_tools(Arc::new(mcp))
    .build();

Workflow

let workflow = Workflow::new("analysis")
    .add_step(AgentStep::new(researcher_agent))
    .add_step(TransformStep::new(|output| {
        // Transform data between agents
        AgentInput::from_text(format!("Summarize: {}", output.data))
    }))
    .add_step(AgentStep::new(summarizer_agent))
    .build();

let result = workflow.execute(initial_input, &mut event_rx).await?;

Event Streaming

let (tx, mut rx) = mpsc::channel(100);

// Subscribe to events
tokio::spawn(async move {
    while let Some(event) = rx.recv().await {
        match event.event_type {
            EventType::AgentLlmStreamChunk => {
                print!("{}", event.data.get("chunk").unwrap());
            }
            EventType::ToolCallCompleted => {
                println!("Tool {} returned: {}", 
                    event.data["tool_name"],
                    event.data["result"]
                );
            }
            _ => {}
        }
    }
});

agent.execute_with_events(&input, &tx).await?;

Configuration Files

# agent-runtime.yaml
agents:
  - name: researcher
    system_prompt: "You are a research assistant."
    max_iterations: 10
    tool_loop_detection:
      enabled: true
      custom_message: "Previous {tool_name} call returned: {previous_result}"
    
  - name: analyzer
    system_prompt: "You analyze data."
    tool_loop_detection:
      enabled: false  # Disable if needed
let config = RuntimeConfig::from_file("agent-runtime.yaml")?;

Architecture

Core Modules

  • runtime - Workflow execution engine with event emission
  • workflow - Builder pattern for composing steps
  • agent - LLM-backed agents with tool execution loop
  • step - Trait for workflow steps (Agent, Transform, Conditional, SubWorkflow)
  • llm - Provider-agnostic chat client (OpenAI, llama.cpp)
  • tool - Native tool trait and registry
  • tools/mcp_client - MCP protocol client for external tools
  • event - Event types and streaming system
  • config - YAML/TOML configuration loading
  • tool_loop_detection - Intelligent duplicate tool call prevention

Event Types

  • Workflow: Started, StepStarted, StepCompleted, StepFailed, Completed, Failed
  • Agent: Started, Completed, Failed, LlmStreamChunk
  • LLM: RequestSent, ResponseReceived, StreamChunkReceived
  • Tool: ToolCallStarted, ToolCallCompleted, ToolCallFailed, AgentToolLoopDetected

Tool Loop Prevention

Prevents LLMs from calling the same tool with identical arguments repeatedly:

  • Automatic detection - Tracks tool calls and arguments using MD5 hashing
  • Configurable messages - Custom messages with {tool_name} and {previous_result} placeholders
  • Event emission - AgentToolLoopDetected event for observability
  • Enabled by default - Can be disabled per-agent if needed

Examples

Run any demo:

# Workflows

cargo run --bin workflow_demo          # 3-agent workflow with LLM

cargo run --bin hello_workflow         # Simple sequential workflow

cargo run --bin nested_workflow        # SubWorkflow example


# Agents & Tools

cargo run --bin agent_with_tools_demo  # Agent with calculator & weather

cargo run --bin native_tools_demo      # Standalone native tools

cargo run --bin mcp_tools_demo         # MCP external tools


# LLM Clients

cargo run --bin llm_demo               # OpenAI client

cargo run --bin llama_demo             # llama.cpp/LM Studio


# Configuration

cargo run --bin config_demo            # YAML/TOML loading


# Visualization

cargo run --bin mermaid_viz            # Generate workflow diagrams

cargo run --bin complex_viz            # Complex workflow diagram

Documentation

Testing

cargo test              # All 61 tests

cargo test --lib        # Library tests only

cargo test agent        # Agent tests

cargo test tool         # Tool tests

cargo clippy            # Linting

License

Dual-licensed under MIT or Apache-2.0 at your option.