af_ptbuilder/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
#![cfg_attr(all(doc, not(doctest)), feature(doc_auto_cfg))]

//! Builder for programmable transactions.
//!
//! Check out the [`ptb`](crate::ptb) and [`ptbuilder`](crate::ptbuilder) macros for an ergonomic
//! way of building transactions, or
//! [`ProgrammableTransactionBuilder`](crate::ProgrammableTransactionBuilder) for a macro-less
//! approach.

#[doc(no_inline)]
pub use af_sui_types::Argument;
#[doc(hidden)]
pub use af_sui_types::IdentStr;
#[doc(no_inline)]
pub use af_sui_types::MoveCall;
#[doc(inline)]
pub use af_sui_types::ObjectArg;
#[doc(no_inline)]
pub use af_sui_types::ObjectId;
#[doc(no_inline)]
pub use af_sui_types::TypeTag;
use af_sui_types::{Identifier, ProgrammableTransaction};
use indexmap::IndexMap;
use serde::{Deserialize, Serialize};
use sui_sdk_types::Input;

#[cfg(test)]
mod tests;

pub type Result<T> = ::std::result::Result<T, Error>;

#[derive(thiserror::Error, Debug)]
pub enum Error {
    #[error("Serializing to BCS: {0}")]
    Bcs(#[from] bcs::Error),

    #[error("invariant violation! object has pure argument")]
    ObjInvariantViolation,

    #[error("invariant violation! object has id does not match call arg")]
    InvalidObjArgUpdate,

    #[error(transparent)]
    MismatchedObjArgKinds(Box<MismatchedObjArgKindsError>),
}

#[derive(thiserror::Error, Debug)]
#[error(
    "Mismatched Object argument kind for object {id}. \
        {old_value:?} is not compatible with {new_value:?}"
)]
pub struct MismatchedObjArgKindsError {
    pub id: ObjectId,
    pub old_value: Input,
    pub new_value: Input,
}

/// Builder for a [`ProgrammableTransaction`].
#[derive(Clone, Debug, Default)]
pub struct ProgrammableTransactionBuilder {
    inputs: IndexMap<BuilderArg, Input>,
    commands: Vec<af_sui_types::Command>,
}

/// Base API.
impl ProgrammableTransactionBuilder {
    pub fn new() -> Self {
        Self::default()
    }

    pub fn finish(self) -> ProgrammableTransaction {
        let Self { inputs, commands } = self;
        let inputs = inputs.into_values().collect();
        ProgrammableTransaction { inputs, commands }
    }

    /// Potentially adds a pure argument to the PTB.
    ///
    /// May not create a new PTB input if a previous one already has the same contents.
    pub fn pure<T: Serialize + ?Sized>(&mut self, value: &T) -> Result<Argument> {
        Ok(self.pure_bytes(bcs::to_bytes(value)?, false))
    }

    /// Like [`Self::pure`] but forces a separate input entry
    pub fn force_separate_pure<T: Serialize>(&mut self, value: T) -> Result<Argument> {
        Ok(self.pure_bytes(bcs::to_bytes(&value)?, true))
    }

    /// Adds a pure argument to the PTB.
    ///
    /// # Arguments
    /// - `bytes`: the BCS-serialized contents of the argument
    /// - `force_separate`: whether to force a separate input argument to the PTB, else the builder
    ///   re-uses a previously declared input argument if it has the same contents.
    pub fn pure_bytes(&mut self, bytes: Vec<u8>, force_separate: bool) -> Argument {
        let key = if force_separate {
            BuilderArg::ForcedNonUniquePure(self.inputs.len())
        } else {
            BuilderArg::Pure(bytes.clone())
        };
        let (i, _) = self.inputs.insert_full(key, Input::Pure { value: bytes });
        Argument::Input(i as u16)
    }

    /// Adds an object input to the PTB, returning the corresponding argument which can be used in
    /// the body.
    ///
    /// May fail if overriding a previously declared input.
    pub fn obj(&mut self, obj_arg: ObjectArg) -> Result<Argument> {
        let id = obj_arg.id();
        let key = BuilderArg::Object(id);
        let mut input_arg = obj_arg.into();

        if let Some(old_value) = self.inputs.get(&key) {
            // Check if the key hash didn't collide with a previous pure input
            if matches!(old_value, Input::Pure { .. }) {
                return Err(Error::ObjInvariantViolation);
            }

            input_arg = match (old_value, input_arg) {
                // The only update allowed: changing the `mutable` flag for a shared object input
                (
                    Input::Shared {
                        object_id: id1,
                        initial_shared_version: v1,
                        mutable: mut1,
                    },
                    Input::Shared {
                        object_id: id2,
                        initial_shared_version: v2,
                        mutable: mut2,
                    },
                ) if v1 == &v2 => {
                    if id1 != &id2 {
                        return Err(Error::InvalidObjArgUpdate);
                    }
                    Input::Shared {
                        object_id: id2,
                        initial_shared_version: v2,
                        mutable: *mut1 || mut2,
                    }
                }

                // Changing anything else about an existing object input is disallowed
                (old_value, new_value) if old_value != &new_value => {
                    return Err(Error::MismatchedObjArgKinds(Box::new(
                        MismatchedObjArgKindsError {
                            id,
                            old_value: old_value.clone(),
                            new_value,
                        },
                    )));
                }

                // If we already declared this exact same object input in the transaction, it will
                // be automatically reused
                (_, new_value) => new_value,
            };
        }

        let (i, _) = self.inputs.insert_full(key, input_arg);
        Ok(Argument::Input(i as u16))
    }

    /// Add a command to the PTB.
    ///
    /// This will come after any commands that were previously declared.
    pub fn command(&mut self, command: impl Into<af_sui_types::Command>) -> Argument {
        let i = self.commands.len();
        self.commands.push(command.into());
        Argument::Result(i as u16)
    }
}

/// Extensions to the base API.
impl ProgrammableTransactionBuilder {
    /// Like `.command(Command::SplitCoins(coin_arg, balances))`, but also takes care of unpacking
    /// each entry in the returned vector as its own [`Argument`].
    ///
    /// # Panics
    ///
    /// Panics if the `balances` input vector has a length that exceeds [`u16::MAX`].
    pub fn split_coins_into_vec(
        &mut self,
        coin: Argument,
        amounts: Vec<Argument>,
    ) -> Vec<Argument> {
        let idxs = 0..amounts.len() as u16;
        let Argument::Result(coin_vec) = self.command(Command::SplitCoins(coin, amounts)) else {
            panic!("ProgrammableTransactionBuilder::command always gives an Argument::Result")
        };
        idxs.map(|i| Argument::NestedResult(coin_vec, i)).collect()
    }
}

#[derive(Clone, Debug, PartialEq, Eq, Hash)]
enum BuilderArg {
    Object(ObjectId),
    Pure(Vec<u8>),
    ForcedNonUniquePure(usize),
}

impl From<ProgrammableTransactionBuilder> for ProgrammableTransaction {
    fn from(value: ProgrammableTransactionBuilder) -> Self {
        value.finish()
    }
}

impl TryFrom<ProgrammableTransaction> for ProgrammableTransactionBuilder {
    type Error = Error;

    fn try_from(
        ProgrammableTransaction { inputs, commands }: ProgrammableTransaction,
    ) -> Result<Self> {
        use Input::*;
        let mut self_ = Self::new();
        for input in inputs {
            match input {
                Pure { value } => {
                    self_.pure_bytes(value, true);
                }
                ImmutableOrOwned(oref) => {
                    self_.obj(ObjectArg::ImmOrOwnedObject(oref.into_parts()))?;
                }
                Shared {
                    object_id,
                    initial_shared_version,
                    mutable,
                } => {
                    self_.obj(ObjectArg::SharedObject {
                        id: object_id,
                        initial_shared_version,
                        mutable,
                    })?;
                }
                Receiving(oref) => {
                    self_.obj(ObjectArg::Receiving(oref.into_parts()))?;
                }
            }
        }
        for command in commands {
            self_.command(command);
        }
        Ok(self_)
    }
}

// =============================================================================
//  Command compat for migration
// =============================================================================

/// A single command in a programmable transaction.
///
/// This type is here for backwards compatibility purposes, as [`sui_sdk_types::Command`]
/// has a different shape that would be incompatible with the [`ptb!`] syntax.
///
/// The actual resulting [`ProgrammableTransaction`] does not contain this type.
#[derive(Debug, PartialEq, Eq, Clone, Serialize, Deserialize)]
pub enum Command {
    /// A call to either an entry or a public Move function.
    ///
    /// Either an entry function or a public function (which cannot return references).
    MoveCall(Box<MoveCall>),
    /// `(Vec<forall T:key+store. T>, address)`
    /// It sends n-objects to the specified address. These objects must have store
    /// (public transfer) and either the previous owner must be an address or the object must
    /// be newly created.
    TransferObjects(Vec<Argument>, Argument),
    /// `(&mut Coin<T>, Vec<u64>)` -> `Vec<Coin<T>>`
    /// It splits off some amounts into a new coins with those amounts
    SplitCoins(Argument, Vec<Argument>),
    /// `(&mut Coin<T>, Vec<Coin<T>>)`
    /// It merges n-coins into the first coin
    MergeCoins(Argument, Vec<Argument>),
    /// Publishes a Move package. It takes the package bytes and a list of the package's transitive
    /// dependencies to link against on-chain.
    Publish(Vec<Vec<u8>>, Vec<ObjectId>),
    /// `forall T: Vec<T> -> vector<T>`
    /// Given n-values of the same type, it constructs a vector. For non objects or an empty vector,
    /// the type tag must be specified.
    MakeMoveVec(Option<TypeTag>, Vec<Argument>),
    /// Upgrades a Move package
    /// Takes (in order):
    /// 1. A vector of serialized modules for the package.
    /// 2. A vector of object ids for the transitive dependencies of the new package.
    /// 3. The object ID of the package being upgraded.
    /// 4. An argument holding the `UpgradeTicket` that must have been produced from an earlier command in the same
    ///    programmable transaction.
    Upgrade(Vec<Vec<u8>>, Vec<ObjectId>, ObjectId, Argument),
}

impl From<af_sui_types::Command> for Command {
    fn from(value: af_sui_types::Command) -> Self {
        use af_sui_types::Command::*;
        match value {
            MoveCall(args) => Self::MoveCall(Box::new(args)),
            TransferObjects(args) => Self::TransferObjects(args.objects, args.address),
            SplitCoins(args) => Self::SplitCoins(args.coin, args.amounts),
            MergeCoins(args) => Self::MergeCoins(args.coin, args.coins_to_merge),
            Publish(args) => Self::Publish(args.modules, args.dependencies),
            MakeMoveVector(args) => Self::MakeMoveVec(args.type_.map(From::from), args.elements),
            Upgrade(args) => {
                Self::Upgrade(args.modules, args.dependencies, args.package, args.ticket)
            }
        }
    }
}

impl From<Command> for af_sui_types::Command {
    fn from(value: Command) -> Self {
        use sui_sdk_types::{
            MakeMoveVector,
            MergeCoins,
            Publish,
            SplitCoins,
            TransferObjects,
            Upgrade,
        };
        use Command::*;
        match value {
            MoveCall(move_call) => Self::MoveCall(*move_call),
            TransferObjects(objects, address) => {
                Self::TransferObjects(TransferObjects { objects, address })
            }
            SplitCoins(coin, amounts) => Self::SplitCoins(SplitCoins { coin, amounts }),
            MergeCoins(coin, coins_to_merge) => Self::MergeCoins(MergeCoins {
                coin,
                coins_to_merge,
            }),
            Publish(modules, dependencies) => Self::Publish(Publish {
                modules,
                dependencies,
            }),
            MakeMoveVec(type_, elements) => {
                Self::MakeMoveVector(MakeMoveVector { type_, elements })
            }
            Upgrade(modules, dependencies, package, ticket) => Self::Upgrade(Upgrade {
                modules,
                dependencies,
                package,
                ticket,
            }),
        }
    }
}

impl Command {
    pub fn move_call(
        package: ObjectId,
        module: Identifier,
        function: Identifier,
        type_arguments: Vec<TypeTag>,
        arguments: Vec<Argument>,
    ) -> Self {
        Self::MoveCall(Box::new(MoveCall {
            package,
            module,
            function,
            type_arguments,
            arguments,
        }))
    }

    pub const fn make_move_vec(ty: Option<TypeTag>, args: Vec<Argument>) -> Self {
        Self::MakeMoveVec(ty, args)
    }
}

// =============================================================================
//  Macro helper
// =============================================================================

/// Build a programmable transaction using Move-like syntax.
///
/// # Overview
///
/// This automatically creates and finishes a [`ProgrammableTransactionBuilder`] and allows users
/// to declare:
/// - packages the transaction uses
/// - type arguments for functions
/// - object/pure inputs for the transaction
/// - Move calls
/// - Built-in PTB commands
///
/// Every Move call and built-in PTB command declared withing the macro's scope can be thought of
/// as happening in 'programmable transaction time'. In this way, the macro also helps users more
/// clearly separate what's being executed at Rust's runtime and chain's runtime (once the
/// transaction is execute by validators).
///
/// ## Packages
///
/// Move functions expect the [`ObjectId`] of their package in the transaction payload (see
/// [`MoveCall`]). One can declare the packages using the syntax
/// ```no_run
/// # use af_sui_types::ObjectId;
/// let package_name = ObjectId::new(rand::random());
/// let object_id = ObjectId::new(rand::random());
/// af_ptbuilder::ptb!(
///     package package_name;
///     package package_name: object_id;
/// // ...
/// );
/// ```
/// Similar to struct initialization syntax;
///
/// ## Type arguments
///
/// Move functions that have type arguments expect [`TypeTag`] arguments in the transaction payload
/// (see [`MoveCall`]). One can declare these variables using the syntax
/// ```no_run
/// # use af_sui_types::TypeTag;
/// let T = TypeTag::U8;
/// let type_tag = TypeTag::U32;
/// af_ptbuilder::ptb!(
///     type T;
///     type T = type_tag;
/// // ...
/// );
/// ```
///
/// ## Object/Pure inputs
///
/// [`ProgrammableTransaction`]s need all their inputs declared upfront. One can
/// declare the two types of inputs using the syntax
/// ```no_run
/// # use af_sui_types::ObjectArg;
/// # use af_sui_types::ObjectId;
/// let clock = ObjectArg::CLOCK_IMM;
/// let object = ObjectArg::SharedObject {
///     id: ObjectId::new(rand::random()),
///     initial_shared_version: 1,
///     mutable: true
/// };
/// let count = &0_u64;
/// af_ptbuilder::ptb!(
///     input obj clock;
///     input obj another: object;
///     input pure count;
///     input pure more: &1_u32;
///     // ...
/// );
/// # eyre::Ok(())
/// ```
/// Similar to struct initialization syntax. `input obj`s expect [`ObjectArg`] values and
/// become object [`Input`]s in the transaction payload. `input pure`s expect any type `T` that
/// is [`Serialize`] `+ ?Sized` (see [`ProgrammableTransactionBuilder::pure`] for the internals) and
/// become [`Input::Pure`]s in the transaction payload. Within the macro scope, both variables
/// are [`Argument::Input`]s and can be used in Move/built-in calls.
///
/// ## Move calls
///
/// Use the syntax
/// ```no_run
/// # af_ptbuilder::ptb!(
/// # package package: af_sui_types::ObjectId::new(rand::random());
/// # type T = af_sui_types::TypeTag::U8;
/// # input pure arg: &0_u32;
///     package::module::function<T>(arg);
/// # );
/// # eyre::Ok(())
/// ````
/// To include a [`MoveCall`] in the transaction payload. `package`,`T`, and `arg`
/// must have been declared earlier. `module` and `function` are simply pure identifiers[^1]. One
/// can of course declare more than one type argument if the function requires, or none if the
/// function does not have type parameters.
///
/// Functions that return can have their results assigned to a value or unpacked into several ones:
/// ```no_run
/// # use af_sui_types::ObjectArg;
/// # use af_sui_types::ObjectId;
/// # let clock = ObjectArg::CLOCK_IMM;
/// # af_ptbuilder::ptb!(
/// # package package: ObjectId::new(rand::random());
/// # input obj a: clock;
/// # input obj b: clock;
/// # input obj arg: clock;
/// let result = package::module::function(a, b);
/// let (a, b) = package::module::function(arg);
/// # );
/// # eyre::Ok(())
/// ```
/// These, of course, happen at 'programmable transaction time' and the result are
/// [`Argument::Result`]s that can be passed to other functions.
///
/// ## Built-in commands
///
/// Sui PTBs have access to some calls that do not declare a package, module and function. These
/// use the syntax:
/// ```text
/// command! Variant(x, y, ...);
/// ```
/// The result of the command can be optionally assigned or unpacked (`let a =` or
/// `let (a, b) =`). `Variant` refers to the variant of [`Command`] to use. See its
/// documentation for more information.
///
/// # Example
///
/// ```no_run
/// use af_ptbuilder::ptb;
/// use af_sui_types::{
///     IdentStr,
///     ObjectId,
///     StructTag,
///     Address,
///     TypeTag
/// };
/// use af_sui_types::ObjectArg;
///
/// let foo = ObjectId::new(rand::random());
/// let otw = TypeTag::Struct(Box::new(StructTag {
///     address: "0x2".parse()?,
///     module: IdentStr::cast("sui").to_owned(),
///     name: IdentStr::cast("SUI").to_owned(),
///     type_params: vec![],
/// }));
/// let registry = ObjectArg::SharedObject {
///     id: ObjectId::new(rand::random()),
///     initial_shared_version: 1,
///     mutable: true,
/// };
/// let sender = Address::new(rand::random());
///
/// ptb!(
///     package foo;
///
///     type T = otw;
///
///     input obj registry;
///     input pure sender: &sender;
///
///     let account = foo::registry::create_account<T>(registry);
///     command! TransferObjects(vec![account], sender);
/// );
/// # eyre::Ok(())
/// ```
///
/// [^1]: [`Identifier`]
#[macro_export]
macro_rules! ptb {
    ($($tt:tt)*) => {
        {
            let mut builder = $crate::ProgrammableTransactionBuilder::new();
            $crate::ptbuilder!(builder { $($tt)* });
            builder.finish()
        }
    };
}

/// Build a programmable transaction using Move-like syntax and an existing builder.
///
/// This will make the package, type, input and argument variables declared inside the macro
/// available in the outer scope.
///
/// # Overview
///
/// This allows users to incrementally build a programmable transaction using an existing
/// [`ProgrammableTransactionBuilder`] with the syntax
/// ```no_run
/// # use af_ptbuilder::ProgrammableTransactionBuilder;
/// let mut builder = ProgrammableTransactionBuilder::new();
/// af_ptbuilder::ptbuilder!(builder {
///     // ...
/// });
/// ```
/// where everything inside the braces uses the same syntax as [`ptb!`]. The user is responsible
/// for initializing the builder and calling [`ProgrammableTransactionBuilder::finish`] at the end.
///
/// This can be useful if the number of calls is only known at runtime or if it's desirable to only
/// include some calls based on some runtime logic. It still allows users to use a convenient
/// syntax and separate what happens at 'programmable transaction time'.
#[macro_export]
macro_rules! ptbuilder {
    ($builder:ident {}) => { };

    ($builder:ident {
        package $name:ident $value:literal;
        $($tt:tt)*
    }) => {
        let $name: $crate::ObjectId = $value.parse()?;

        $crate::ptbuilder!($builder { $($tt)* });
    };

    ($builder:ident {
        package $name:ident;
        $($tt:tt)*
    }) => {
        let $name: $crate::ObjectId = $name;

        $crate::ptbuilder!($builder { $($tt)* });
    };

    ($builder:ident {
        package $name:ident: $value:expr;
        $($tt:tt)*
    }) => {
        let $name: $crate::ObjectId = $value;

        $crate::ptbuilder!($builder { $($tt)* });
    };

    ($builder:ident {
        input pure $name:ident;
        $($tt:tt)*
    }) => {
        let $name = $builder.pure($name)?;

        $crate::ptbuilder!($builder { $($tt)* });
    };

    ($builder:ident {
        input pure $name:ident: $value:expr;
        $($tt:tt)*
    }) => {
        let $name = $builder.pure($value)?;

        $crate::ptbuilder!($builder { $($tt)* });
    };

    ($builder:ident {
        input obj $name:ident;
        $($tt:tt)*
    }) => {
        let $name = $builder.obj($name)?;

        $crate::ptbuilder!($builder { $($tt)* });
    };

    ($builder:ident {
        input obj $name:ident: $value:expr;
        $($tt:tt)*
    }) => {
        let $name = $builder.obj($value)?;

        $crate::ptbuilder!($builder { $($tt)* });
    };

    ($builder:ident {
        type $T:ident;
        $($tt:tt)*
    }) => {
        #[allow(non_snake_case)]
        let $T: $crate::TypeTag = $T;

        $crate::ptbuilder!($builder { $($tt)* });
    };

    ($builder:ident {
        type $T:ident = $value:expr;
        $($tt:tt)*
    }) => {
        #[allow(non_snake_case)]
        let $T: $crate::TypeTag = $value;

        $crate::ptbuilder!($builder { $($tt)* });
    };

    ($builder:ident {
        $package:ident::$module:ident::$fun:ident$(<$($T:ident),+>)?($($arg:ident),* $(,)?);
        $($tt:tt)*
    }) => {
        let _module = stringify!($module);
        let _fun = stringify!($fun);
        $builder.command($crate::Command::move_call(
            $package,
            $crate::IdentStr::cast(_module).to_owned(),
            $crate::IdentStr::cast(_fun).to_owned(),
            vec![$($($T.clone()),+)?],
            vec![$($arg),*]
        ));

        $crate::ptbuilder!($builder { $($tt)* });
    };

    ($builder:ident {
        let $ret:ident = $package:ident::$module:ident::$fun:ident$(<$($T:ident),+>)?($($arg:ident),* $(,)?);
        $($tt:tt)*
    }) => {
        let _module = stringify!($module);
        let _fun = stringify!($fun);
        let $ret = $builder.command($crate::Command::move_call(
            $package,
            $crate::IdentStr::cast(_module).to_owned(),
            $crate::IdentStr::cast(_fun).to_owned(),
            vec![$($($T.clone()),+)?],
            vec![$($arg),*]
        ));

        $crate::ptbuilder!($builder { $($tt)* });
    };

    ($builder:ident {
        let ($($ret:ident),+) = $package:ident::$module:ident::$fun:ident$(<$($T:ident),+>)?($($arg:ident),* $(,)?);
        $($tt:tt)*
    }) => {
        let _module = stringify!($module);
        let _fun = stringify!($fun);
        let rets = $builder.command($crate::Command::move_call(
            $package,
            $crate::IdentStr::cast(_module).to_owned(),
            $crate::IdentStr::cast(_fun).to_owned(),
            vec![$($($T.clone()),+)?],
            vec![$($arg),*]
        ));
        $crate::unpack_arg!(rets => { $($ret),+ });

        $crate::ptbuilder!($builder { $($tt)* });
    };

    ($builder:ident {
        $(let $ret:ident =)? command! $variant:ident($($args:tt)*);
        $($tt:tt)*
    }) => {
        $(let $ret =)? $builder.command($crate::Command::$variant($($args)*));

        $crate::ptbuilder!($builder { $($tt)* });
    };

    ($builder:ident {
        let ($($ret:ident),+) = command! $variant:ident($($args:tt)*);
        $($tt:tt)*
    }) => {
        let rets = $builder.command($crate::Command::$variant($($args)*));
        $crate::unpack_arg!(rets => { $($ret),+ });

        $crate::ptbuilder!($builder { $($tt)* });
    };
}

/// Unpack the result of a programmable transaction call.
///
/// Useful for unpacking results from functions that return tuple or vector types.
///
/// # Example
/// ```
/// use af_ptbuilder::ProgrammableTransactionBuilder;
/// use af_sui_types::Argument;
///
/// let mut builder = ProgrammableTransactionBuilder::new();
/// let arg = Argument::Result(0);
/// af_ptbuilder::unpack_arg!(arg => { sub1, sub2 });
/// ```
#[macro_export]
macro_rules! unpack_arg {
    ($arg:expr => {
        $($name:ident),+ $(,)?
    }) => {
        let ($($name),+) = if let $crate::Argument::Result(tuple) = $arg {
            let mut index = 0;
            $(
                let $name = $crate::Argument::NestedResult(
                    tuple, index
                );
                index += 1;
            )+
            ($($name),+)
        } else {
            panic!(
                "ProgrammableTransactionBuilder::command should always give a Argument::Result"
            )
        };
    };
}