aethershell 0.2.0

The world's first multi-agent shell with typed functional pipelines and multi-modal AI
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
<p align="center">
  <img src="assets/logo.svg" alt="ร†ther Shell" width="180">
</p>

<h1 align="center">ร†ther Shell (ae)</h1>

<p align="center">
  <a href="https://crates.io/crates/aethershell"><img src="https://img.shields.io/crates/v/aethershell.svg?style=flat-square&logo=rust&color=orange" alt="Crates.io"></a>
  <a href="https://github.com/nervosys/AetherShell/actions/workflows/ci.yml"><img src="https://img.shields.io/github/actions/workflow/status/nervosys/AetherShell/ci.yml?style=flat-square&logo=github&label=CI" alt="CI Status"></a>
  <a href="https://github.com/nervosys/AetherShell/actions"><img src="https://img.shields.io/github/actions/workflow/status/nervosys/AetherShell/security-audit.yml?style=flat-square&logo=github&label=security" alt="Security"></a>
  <a href="https://github.com/nervosys/AetherShell/blob/master/LICENSE"><img src="https://img.shields.io/badge/license-Apache%202.0-blue.svg?style=flat-square" alt="License"></a>
  <a href="https://github.com/nervosys/AetherShell/stargazers"><img src="https://img.shields.io/github/stars/nervosys/AetherShell?style=flat-square&color=yellow" alt="Stars"></a>
</p>

<p align="center">
  <strong>The world's first agentic shell with typed functional pipelines and multi-modal AI.</strong><br>
  <em>Built in Rust for safety and performance, featuring revolutionary AI protocols found nowhere else.</em>
</p>

<p align="center">
  <a href="#-quick-start">Quick Start</a> โ€ข
  <a href="#-features">Features</a> โ€ข
  <a href="#-examples">Examples</a> โ€ข
  <a href="docs/TUI_GUIDE.md">TUI Guide</a> โ€ข
  <a href="#-documentation">Docs</a> โ€ข
  <a href="#-contributing">Contributing</a>
</p>

---

<p align="center">
  <img src="assets/screenshot.svg" alt="AetherShell Terminal Demo" width="800">
</p>

---

## ๐Ÿš€ Quick Start


### VS Code Extension (Syntax Highlighting + LSP)


For full IDE support including syntax highlighting, IntelliSense, and error diagnostics:

```bash
# Install the extension from marketplace

code --install-extension admercs.aethershell

# Build the Language Server (for IntelliSense)

cd AetherShell
cargo build -p aethershell-lsp --release

# The extension will auto-detect the LSP server

```

**Features:** Syntax highlighting, autocompletion, hover docs, go-to-definition, error diagnostics.

### Installation


**From Source (recommended for latest features):**
```bash
git clone https://github.com/nervosys/AetherShell && cd AetherShell
cargo install --path . --bin ae
```

**From Cargo:**
```bash
cargo install aethershell
```

**From Homebrew (macOS/Linux):**
```bash
brew tap nervosys/tap
brew install aethershell
```

**Usage:**
```bash
# Launch interactive TUI (recommended)

ae tui

# Or classic REPL

ae

# Run a script file

ae script.ae

# Evaluate inline expression

ae -c '1 + 2 * 3'

# JSON output mode

ae --json -c '[1, 2, 3] | map(fn(x) => x * 2)'
```

```ae
# Type INFERENCE โ€” types are automatically inferred

name = "AetherShell"                  # inferred as String
count = 42                             # inferred as Int
scores = [95, 87, 92, 88]              # inferred as Array<Int>

# Type ANNOTATIONS โ€” explicit when needed for clarity

config: Record = {host: "localhost", port: 8080}
handler: fn(Int) -> Int = fn(x) => x * 2

# Typed pipelines โ€” structured data, not text streams

[1, 2, 3, 4, 5] | map(fn(x) => x * 2) | sum()   # => 30

# Pattern matching

match type_of(count) {
    "Int" => "Integer: ${count}",
    "String" => "Text",
    _ => "Unknown"
}

# AI query with vision

ai("What's in this image?", {images: ["photo.jpg"]})

# Autonomous agent with tool access

agent("Find security issues in src/", ["ls", "cat", "grep"])

# Agent-to-Agent (A2A) protocol for multi-agent collaboration

a2a_send("analyzer", {task: "review code", files: ls("./src")})

# NANDA consensus for distributed agent decisions

nanda_propose("deployment", {version: "2.0", approve_threshold: 0.7})
```

> **๐Ÿ“ Note:** Set `OPENAI_API_KEY` for AI features: `export OPENAI_API_KEY="sk-..."`

---

## โœจ Features


<table>
<tr>
<td width="50%">

### ๐Ÿค– AI-Native Shell

- **Multi-modal AI**: Images, audio, video analysis
- **Autonomous agents** with tool access
- **MCP Protocol**: 130+ tools across 27 categories
- **A2A Protocol**: Agent-to-agent communication
- **A2UI Protocol**: Agent-to-user interface
- **NANDA**: Distributed consensus for agent networks
- **Multi-provider**: OpenAI, Ollama, local models
- **RAG & Knowledge Graphs** built-in

</td>
<td width="50%">

### ๐Ÿ’Ž Typed Pipelines

- **Hindley-Milner** type inference
- **Structured data**: Records, Arrays, Tables
- **First-class functions** and lambdas
- **Pattern matching** expressions

</td>
</tr>
<tr>
<td width="50%">

### ๐Ÿง  ML & Enterprise

- **Neural networks** creation & evolution
- **Reinforcement learning** (Q-Learning, DQN)
- **Enterprise RBAC** with role-based access
- **Audit logging** & compliance reporting
- **SSO integration** (SAML, OAuth, OIDC)
- **Cluster management** for distributed AI

</td>
<td width="50%">

### ๐ŸŽจ Developer Experience

- **Interactive TUI** with tabs & themes
- **Language Server Protocol** (LSP)
- **VS Code extension** with IntelliSense
- **Plugin system** with TOML manifests
- **WASM support** for browser REPL
- **Package management** & imports

</td>
</tr>
</table>

---

## ๐ŸŽฏ What Makes AetherShell Unique?


AetherShell is the **only shell** combining these capabilities:

| Feature                             | AetherShell | Traditional Shells | Nushell |
| ----------------------------------- | :---------: | :----------------: | :-----: |
| AI Agents with Tools                |      โœ…      |         โŒ          |    โŒ    |
| Multi-modal AI (Vision/Audio/Video) |      โœ…      |         โŒ          |    โŒ    |
| MCP Protocol (130+ tools)           |      โœ…      |         โŒ          |    โŒ    |
| A2A (Agent-to-Agent)                |      โœ…      |         โŒ          |    โŒ    |
| A2UI (Agent-to-User Interface)      |      โœ…      |         โŒ          |    โŒ    |
| NANDA Consensus Protocol            |      โœ…      |         โŒ          |    โŒ    |
| Neural Networks Built-in            |      โœ…      |         โŒ          |    โŒ    |
| Hindley-Milner Types                |      โœ…      |         โŒ          |    โœ…    |
| Typed Pipelines                     |      โœ…      |         โŒ          |    โœ…    |
| Enterprise (RBAC, Audit, SSO)       |      โœ…      |         โŒ          |    โŒ    |
| Language Server Protocol (LSP)      |      โœ…      |         โŒ          |    โœ…    |

### Bash vs AetherShell: A Quick Comparison


**Find large Rust files and show their sizes:**

```bash
# Bash: Text parsing, fragile, hard to read

find ./src -name "*.rs" -size +1k -exec ls -lh {} \; | awk '{print $9, $5}' | sort -k2 -h | tail -5
```

```ae
# AetherShell: Typed, composable, readable

ls("./src")
  | where(fn(f) => f.ext == ".rs" && f.size > 1024)
  | map(fn(f) => {name: f.name, size: f.size})
  | sort_by(fn(f) => f.size, "desc")
  | take(5)
```

**Analyze JSON API response:**

```bash
# Bash: Requires jq, string manipulation

curl -s https://api.github.com/repos/nervosys/AetherShell | jq '.stargazers_count, .forks_count'
```

```ae
# AetherShell: Native JSON, type-safe field access  

repo = http_get("https://api.github.com/repos/nervosys/AetherShell")
print("Stars: ${repo.stargazers_count}, Forks: ${repo.forks_count}")
```

**Ask AI to explain an error:**

```bash
# Bash: Not possible without external scripts

```

```ae
# AetherShell: Built-in AI with context

error_log = cat("error.log") | where(fn(l) => contains(l, "FATAL")) | first()
ai("Explain this error and suggest a fix:", {context: error_log})
```

---

## ๐Ÿ“ Language Features at a Glance


AetherShell is a **typed functional language** with 215+ built-in functions across these categories:

<table>
<tr>
<td width="33%">

### Types & Literals

- `Int` โ€” `42`, `-7`
- `Float` โ€” `3.14`, `2.0`
- `String` โ€” `"hello"`, `"${var}"`
- `Bool` โ€” `true`, `false`
- `Null` โ€” `null`
- `Array` โ€” `[1, 2, 3]`
- `Record` โ€” `{a: 1, b: 2}`
- `Lambda` โ€” `fn(x) => x * 2`

</td>
<td width="33%">

### Operators

- Arithmetic: `+` `-` `*` `/` `%` `**`
- Comparison: `==` `!=` `<` `<=` `>` `>=`
- Logical: `&&` `||` `!`
- Pipeline: `|`
- Member: `.`

</td>
<td width="33%">

### Control Flow

- `match` expressions
- Pattern guards
- Wildcard `_` patterns
- Lambda functions
- Pipeline chaining

</td>
</tr>
</table>

### Builtin Categories (215+ functions)


| Category         | Examples                                                    | Count |
| ---------------- | ----------------------------------------------------------- | ----- |
| **Core**         | `help`, `print`, `echo`, `type_of`, `len`                   | 15    |
| **Functional**   | `map`, `where`, `reduce`, `take`, `any`, `all`, `first`     | 12    |
| **String**       | `split`, `join`, `trim`, `upper`, `lower`, `replace`        | 10    |
| **Array**        | `flatten`, `reverse`, `slice`, `range`, `zip`, `push`       | 8     |
| **Math**         | `abs`, `min`, `max`, `sqrt`, `pow`, `floor`, `ceil`         | 8     |
| **Aggregate**    | `sum`, `avg`, `product`, `unique`, `values`, `keys`         | 6     |
| **File System**  | `ls`, `cat`, `pwd`, `cd`, `exists`, `mkdir`, `rm`           | 11    |
| **Config**       | `config`, `config_get`, `config_set`, `themes`              | 7     |
| **Debugging**    | `debug`, `dbg`, `trace`, `assert`, `type_assert`, `inspect` | 7     |
| **Async**        | `async`, `await`, futures support                           | 3     |
| **Errors**       | `try`/`catch`, `throw`, `is_error`                          | 4     |
| **AI**           | `ai`, `agent`, `swarm`, `rag_query`, `finetune_start`       | 20+   |
| **Enterprise**   | `role_create`, `audit_log`, `sso_init`, `compliance_check`  | 22    |
| **Distributed**  | `cluster_create`, `job_submit`, `aggregate_results`         | 15    |
| **Platform**     | `platform`, `is_windows`, `is_linux`, `features`            | 12    |
| **MCP Protocol** | `mcp_tools`, `mcp_call`, 130+ tool integrations             | 130+  |

---

## ๐Ÿ“– Examples


### Core Syntax โ€” Type Inference & Annotations


AetherShell uses **Hindley-Milner type inference** with optional explicit annotations:

```ae
# TYPE INFERENCE โ€” compiler infers types automatically

age = 42                        # inferred: Int
pi = 3.14159                    # inferred: Float
name = "AetherShell"            # inferred: String
active = true                   # inferred: Bool

# TYPE ANNOTATIONS โ€” explicit when clarity is needed

config: Record = {host: "localhost", port: 8080, debug: true}
scores: Array<Int> = [95, 87, 92, 88]
matrix: Array<Array<Int>> = [[1, 2], [3, 4]]

# String interpolation (type inferred)

greeting = "Hello, ${name}! You're ${age} years old."

# Records โ€” structured data with field access

user = {name: "Alice", age: 30, admin: true}  # inferred: Record
print(user.name)               # => "Alice"

# Lambdas โ€” annotate for complex signatures

double = fn(x) => x * 2                        # inferred: fn(Int) -> Int
add: fn(Int, Int) -> Int = fn(a, b) => a + b   # explicit return type
greet = fn(s) => "Hi, ${s}!"                   # inferred: fn(String) -> String

print(double(21))              # => 42
print(add(10, 20))             # => 30
```

### Strong Types โ€” Runtime Safety


```ae
# Type inspection (no annotation needed)

type_of(42)                    # => "Int"
type_of(3.14)                  # => "Float"
type_of("hello")               # => "String"
type_of([1, 2, 3])             # => "Array"
type_of({a: 1})                # => "Record"
type_of(fn(x) => x)            # => "Lambda"

# Type assertions for validation

type_assert(42, "Int")          # Passes
type_assert("hello", "String")  # Passes
type_assert([1,2,3], "Array")   # Passes

# Pattern matching on types (inference works here too)

process = fn(val) => match type_of(val) {
    "Int" => val * 2,
    "String" => upper(val),
    "Array" => len(val),
    _ => null
}

process(21)                    # => 42
process("hello")               # => "HELLO"
process([1,2,3,4,5])           # => 5
```

### Functional Pipelines โ€” Structured Data, Not Text


Unlike traditional shells that pipe text, AetherShell pipes **typed values**:

```ae
# Transform: map applies a function to each element

numbers = [1, 2, 3, 4, 5]                          # inferred: Array<Int>
squared = numbers | map(fn(x) => x * x)            # => [1, 4, 9, 16, 25]

# Filter: where keeps elements matching a predicate

evens = numbers | where(fn(x) => x % 2 == 0)       # => [2, 4]

# Aggregate: reduce combines elements into one value

total = numbers | reduce(fn(acc, x) => acc + x, 0) # => 15

# Chain operations โ€” type flows through the pipeline

result = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
  | where(fn(x) => x % 2 == 0)     # [2, 4, 6, 8, 10]
  | map(fn(x) => x ** 2)           # [4, 16, 36, 64, 100]
  | reduce(fn(a, b) => a + b, 0)   # 220

# Array manipulation (types inferred)

reversed = [1, 2, 3, 4, 5] | reverse       # => [5, 4, 3, 2, 1]
flat = [[1, 2], [3, 4]] | flatten          # => [1, 2, 3, 4]
sliced = [1, 2, 3, 4, 5] | slice(1, 4)     # => [2, 3, 4]

# Predicate checks

has_large = [1, 2, 3, 4, 5] | any(fn(x) => x > 4)   # => true
all_even = [2, 4, 6, 8] | all(fn(x) => x % 2 == 0)  # => true
```

### Pattern Matching โ€” Exhaustive Type-Safe Control Flow


```ae
# Match on values with range patterns (inference works)

grade = fn(score) => match score {
    100 => "Perfect!",
    90..99 => "A",
    80..89 => "B", 
    70..79 => "C",
    _ => "Keep trying"
}
grade(95)                      # => "A"
grade(100)                     # => "Perfect!"

# Match with guards for complex conditions

classify = fn(n) => match n {
    x if x < 0 => "negative",
    0 => "zero",
    x if x > 0 => "positive"
}
classify(-5)                   # => "negative"
classify(42)                   # => "positive"

# Type-based dispatch โ€” annotate for polymorphic functions

describe: fn(Any) -> String = fn(val) => match type_of(val) {
    "Int" => "Integer: ${val}",
    "Float" => "Decimal: ${val}",
    "String" => "Text (${len(val)} chars): ${val}",
    "Array" => "Collection of ${len(val)} items",
    "Record" => "Object with keys: ${keys(val)}",
    _ => "Unknown type"
}

describe(42)                   # => "Integer: 42"
describe("hello")              # => "Text (5 chars): hello"
describe([1, 2, 3])            # => "Collection of 3 items"
describe({x: 1, y: 2})         # => "Object with keys: [x, y]"
```

### String Operations โ€” Built-in Text Processing


```ae
# Manipulation

split("a,b,c", ",")            # => ["a", "b", "c"]
join(["a", "b", "c"], "-")     # => "a-b-c"
trim("  hello  ")              # => "hello"
upper("hello")                 # => "HELLO"
lower("WORLD")                 # => "world"
replace("foo bar foo", "foo", "baz")  # => "baz bar baz"

# Queries

contains("hello world", "world")      # => true
starts_with("hello", "hel")           # => true
ends_with("hello", "lo")              # => true
len("hello")                          # => 5
```

### Math Operations โ€” Scientific Computing


```ae
# Basic math

abs(-42)                       # => 42
min(5, 3)                      # => 3
max(5, 3)                      # => 5
pow(2, 10)                     # => 1024
sqrt(16)                       # => 4.0

# Rounding

floor(3.7)                     # => 3
ceil(3.2)                      # => 4
round(3.5)                     # => 4

# Statistical (on arrays)

sum([1, 2, 3, 4, 5])           # => 15
avg([10, 20, 30])              # => 20
product([2, 3, 4])             # => 24
unique([1, 2, 2, 3, 3, 3])     # => [1, 2, 3]
```

### Error Handling โ€” Try/Catch/Throw


```ae
# Safe operations with try/catch

result = try {
    risky_operation()
} catch {
    "default_value"
}

# Catch with error binding

result = try {
    parse_config("invalid.toml")
} catch e {
    print("Error: ${e}")
    default_config()
}

# Throw custom errors

validate = fn(x) => {
    if x < 0 {
        throw "Value must be non-negative"
    }
    x
}

# Check for errors

is_error(try { throw "oops" } catch e { e })  # => true
```

### Async/Await โ€” Concurrent Operations


```ae
# Define async functions (type inferred from return)

fetch_data = async fn(url) => http_get(url)

# Await results

data = await fetch_data("https://api.example.com/data")

# Parallel operations with futures (types flow through)

urls = ["https://api1.com", "https://api2.com", "https://api3.com"]
futures = urls | map(fn(u) => async fn() => http_get(u))
results = futures | map(fn(f) => await f())

# When explicit types help readability:

timeout: Duration = 30s
response: Result<Record, Error> = await http_get_with_timeout(url, timeout)
```

### Debugging โ€” Development Tools


```ae
# Debug prints value with type and returns it (for chaining)

[1, 2, 3] | debug() | map(fn(x) => x * 2)
# Prints: [Debug] Array<Int>: [1, 2, 3]
# Returns: [2, 4, 6]


# Trace with labels for pipeline debugging

[1, 2, 3, 4, 5]
  | trace("input")
  | where(fn(x) => x > 2) | trace("filtered")
  | map(fn(x) => x * 2) | trace("doubled")
# Prints each stage with labels


# Assertions for testing

assert(1 + 1 == 2)
assert(len("hello") == 5, "Length should be 5")

# Type assertions (explicit check)

type_assert(42, "Int")
type_assert([1, 2, 3], "Array")

# Deep inspection (inference works)

info = inspect([1, 2, 3])
# => {type: "Array", len: 3, values: [1, 2, 3]}

```

### File System โ€” Structured Output


```ae
# List files with structured data (inference handles types)

files = ls("./src")
  | where(fn(f) => f.size > 1000)
  | map(fn(f) => {name: f.name, kb: f.size / 1024})
  | take(5)

# Read and process files

line_count = cat("config.toml") | split("\n") | len()

# Check existence (type inferred)

file_exists = exists("./src/main.rs")  # => true

# Get current directory

cwd = pwd()                    # => "/home/user/project"
```

### Configuration System โ€” XDG-Compliant


```ae
# Get full configuration as Record

config()

# Get specific values with dot notation (types inferred)

theme = config_get("colors.theme")           # => "tokyo-night"
max_history = config_get("history.max_size") # => 10000

# Set values persistently

config_set("colors.theme", "dracula")
config_set("editor.tab_size", 4)

# Get all paths (XDG Base Directory compliant)

paths = config_path()
print(paths.config_file)       # ~/.config/aether/config.toml
print(paths.data_dir)          # ~/.local/share/aether

# List all 38 built-in themes

available_themes = themes() | take(8)
# => ["catppuccin", "dracula", "github-dark", "gruvbox",

#     "monokai", "nord", "one-dark", "tokyo-night"]

```

### AI Agents with Tool Access


```ae
# Simple agent with goal and tools

agent("Find all files larger than 1MB in src/", ["ls", "du"])

# Agent with full configuration

agent({
  goal: "Identify and fix code style violations",
  tools: ["ls", "cat", "grep", "git"],
  max_steps: 20,
  dry_run: true,       # Preview actions before executing
  model: "openai:gpt-4o"
})

# Multi-agent swarm for complex tasks

swarm({
  coordinator: "Orchestrate a full security audit",
  agents: [
    {role: "scanner", goal: "Find vulnerable dependencies"},
    {role: "reviewer", goal: "Check for SQL injection"},
    {role: "reporter", goal: "Generate findings report"}
  ],
  tools: ["ls", "cat", "grep", "cargo"]
})
```

### Hierarchical Agent Swarms โ€” Complex Task Decomposition


```ae
# Coordinator agent spawns specialized subagents for a large codebase refactor

refactor_swarm = swarm_create({
  name: "codebase_modernizer",
  coordinator: {
    goal: "Modernize legacy codebase to async/await patterns",
    strategy: "divide_and_conquer",
    model: "openai:gpt-4o"
  }
})

# Coordinator analyzes scope and spawns specialized subagents dynamically

swarm_spawn(refactor_swarm, {
  role: "analyzer",
  goal: "Map all sync functions that could be async",
  tools: ["grep", "cat", "ast_parse"],
  on_complete: fn(results) => {
    # Spawn worker agents for each module discovered
    results.modules | map(fn(mod) => {
      swarm_spawn(refactor_swarm, {
        role: "refactorer",
        goal: "Convert ${mod.name} to async/await",
        tools: ["cat", "edit", "git"],
        context: mod,
        parent: "analyzer"
      })
    })
  }
})

# Monitor swarm progress in real-time

swarm_status(refactor_swarm)
# => {active: 5, completed: 12, pending: 3, failed: 0}


# Stream progress updates

swarm_watch(refactor_swarm, fn(event) => {
  match event.type {
    "spawn" => print("๐Ÿš€ ${event.agent.role}: ${event.agent.goal}"),
    "progress" => print("โณ ${event.agent.role}: ${event.progress}%"),
    "complete" => print("โœ… ${event.agent.role} finished: ${event.summary}"),
    "error" => print("โŒ ${event.agent.role} failed: ${event.error}")
  }
})

# Wait for full completion with timeout

final_result = swarm_await(refactor_swarm, {timeout: 30m})
print("Refactored ${final_result.files_changed} files across ${final_result.modules} modules")
```

### Long-Running Task Orchestration


```ae
# Complex ML pipeline with checkpoint/resume

ml_pipeline = swarm_create({
  name: "training_pipeline",
  persistence: "checkpoint",     # Auto-save progress
  resume_on_failure: true
})

# Phase 1: Data preparation (spawns subagents per data source)

swarm_spawn(ml_pipeline, {
  role: "data_coordinator",
  goal: "Prepare training data from multiple sources",
  on_start: fn() => {
    data_sources = ["s3://bucket/raw", "postgres://db/features", "local://cache"]
    data_sources | map(fn(src) => {
      swarm_spawn(ml_pipeline, {
        role: "data_worker",
        goal: "Extract and clean data from ${src}",
        tools: ["s3", "sql", "pandas"],
        context: {source: src},
        checkpoint_interval: 5m    # Save progress every 5 minutes
      })
    })
  }
})

# Phase 2: Model training (auto-spawns after Phase 1)

swarm_spawn(ml_pipeline, {
  role: "trainer",
  goal: "Train model on prepared data",
  depends_on: ["data_coordinator"],  # Wait for all data workers
  tools: ["pytorch", "tensorboard", "gpu"],
  resources: {gpu: 4, memory: "64GB"},
  max_runtime: 4h
})

# Phase 3: Evaluation & deployment

swarm_spawn(ml_pipeline, {
  role: "evaluator",
  goal: "Validate model and deploy if metrics pass",
  depends_on: ["trainer"],
  tools: ["pytest", "mlflow", "k8s"],
  on_complete: fn(metrics) => {
    if metrics.accuracy > 0.95 {
      swarm_spawn(ml_pipeline, {
        role: "deployer",
        goal: "Deploy model to production",
        tools: ["docker", "k8s", "istio"]
      })
    }
  }
})

# Start the pipeline

swarm_start(ml_pipeline)

# Check detailed status

status = swarm_status(ml_pipeline, {detailed: true})
status.agents | map(fn(a) => "${a.role}: ${a.status} (${a.progress}%)")
```

### Multi-Modal AI


```ae
# Analyze images

ai("What's in this screenshot?", {images: ["screenshot.png"]})

# Process audio

ai("Transcribe and summarize this meeting", {audio: ["meeting.mp3"]})

# Video analysis

ai("Extract the key steps from this tutorial", {video: ["tutorial.mp4"]})
```

### Typed Functional Pipelines


```ae
# File system operations return typed Records, not text

large_rust_files = ls("./src")
  | where(fn(f) => f.ext == ".rs" && f.size > 1000)
  | map(fn(f) => {name: f.name, kb: f.size / 1024})
  | sort_by(fn(f) => f.kb, "desc")
  | take(5)

# Statistical operations (types flow through)

scores = [85, 92, 78, 95, 88]
total = scores | sum()                  # => 438
average = scores | avg()                # => 87.6
unique_ids = [1, 2, 1, 3, 2] | unique() # => [1, 2, 3]
record_values = {a: 1, b: 2} | values() # => [1, 2]
```

### Agentic Protocols โ€” MCP, A2A, A2UI, NANDA


AetherShell provides first-class support for modern agent communication protocols:

#### MCP (Model Context Protocol)


```ae
# 130+ tools across 27 categories

all_tools = mcp_tools()
print(len(all_tools))                    # => 130

# Filter by category

mcp_tools({category: "development"})     # git, cargo, npm, etc.
mcp_tools({category: "machinelearning"}) # ollama, tensorboard, etc.
mcp_tools({category: "kubernetes"})      # kubectl, helm, k9s, etc.

# Execute tools via MCP protocol

mcp_call("git", {command: "status"})
mcp_call("cargo", {command: "build --release"})

# Register custom MCP server

mcp_register("my-tools", {
    endpoint: "http://localhost:8080",
    capabilities: ["code-review", "test-gen"]
})
```

#### A2A (Agent-to-Agent Protocol)


```ae
# Direct agent communication

a2a_send("analyzer", {
    task: "Review this code for security issues",
    payload: code_snippet,
    priority: "high"
})

# Receive responses from other agents

response = a2a_receive("analyzer", {timeout: 30s})

# Broadcast to all agents in swarm

a2a_broadcast({
    type: "status_update",
    status: "phase_1_complete",
    results: analysis_results
})

# Subscribe to agent channels

a2a_subscribe("security-alerts", fn(msg) => {
    if msg.severity == "critical" {
        alert_user(msg.details)
    }
})
```

#### A2UI (Agent-to-User Interface)


```ae
# Rich notifications

a2ui_notify("Analysis Complete", {
    body: "Found 3 security issues",
    type: "warning",
    actions: ["View", "Dismiss"]
})

# Interactive prompts

choice = a2ui_prompt("Select deployment target:", {
    options: ["staging", "production", "canary"],
    default: "staging"
})

# Render structured data in TUI

a2ui_render({
    type: "table",
    title: "Scan Results",
    columns: ["File", "Issue", "Severity"],
    rows: scan_results
})

# Progress indicators

task_id = a2ui_progress("Processing files...", {total: 100})
a2ui_progress_update(task_id, 50)  # 50% complete
```

#### NANDA (Networked Agent Negotiation & Decision Architecture)


```ae
# Multi-agent consensus for critical decisions

proposal = nanda_propose({
    action: "deploy_to_production",
    rationale: "All tests pass, security scan clean",
    required_votes: 3
})

# Agents vote on proposals

nanda_vote(proposal.id, {
    decision: "approve",
    confidence: 0.95,
    conditions: ["monitoring_enabled"]
})

# Wait for consensus

result = nanda_consensus(proposal.id, {timeout: 60s})
if result.approved {
    deploy()
}

# Dispute resolution

nanda_escalate(proposal.id, {
    reason: "Conflicting requirements detected",
    evidence: conflict_log
})
```

### Neural Networks & Evolution


```ae
# Create a neural network with layer sizes

brain = nn_create("agent", [4, 8, 2])  # 4 inputs, 8 hidden, 2 outputs

# Evolutionary optimization

pop = population(100, {genome_size: 10})
evolved = evolve(pop, fitness_fn, {generations: 50})

# Reinforcement learning

learner = rl_agent("learner", 16, 4)
```

---

## ๐ŸŒ Real-World Use Cases


### DevOps: Log Analysis Pipeline


```ae
# Parse and analyze application logs

error_logs = cat("/var/log/app.log")
  | split("\n")
  | where(fn(line) => contains(line, "ERROR"))
  | map(fn(line) => {
      timestamp: line | slice(0, 19),
      level: "ERROR",
      message: line | slice(27, len(line))
    })
  | take(10)

# Count errors by hour

error_counts = error_logs
  | map(fn(e) => e.timestamp | slice(0, 13))  # Extract hour
  | unique()
  | map(fn(hour) => {
      hour: hour,
      count: error_logs | where(fn(e) => starts_with(e.timestamp, hour)) | len()
    })
```

### Data Science: CSV Processing


```ae
# Process CSV data with type-safe pipelines

raw_data = cat("sales.csv") | split("\n")
headers = raw_data | first()
rows = raw_data | slice(1, len(raw_data)) | map(fn(row) => split(row, ","))

# Parse into Records (type annotation for complex transformations)

sales: Array<Record> = rows | map(fn(r) => {
    date: r[0],
    product: r[1],
    quantity: r[2] + 0,    # Convert to Int
    price: r[3] + 0.0      # Convert to Float
})

# Statistical analysis

total_revenue = sales | map(fn(s) => s.quantity * s.price) | sum()
avg_order = sales | map(fn(s) => s.quantity) | avg()
top_products = sales
  | map(fn(s) => s.product)
  | unique()
  | take(5)

print("Total Revenue: $${total_revenue}")
print("Average Order Size: ${avg_order} units")
```

### Security: Automated Code Audit


```ae
# AI-powered security scan

agent({
  goal: "Find potential security vulnerabilities in the codebase",
  tools: ["grep", "cat", "ls"],
  max_steps: 20
})

# Search for hardcoded secrets

ls("./src") 
  | where(fn(f) => ends_with(f.name, ".rs"))
  | map(fn(f) => {file: f.name, content: cat(f.path)})
  | where(fn(f) => contains(f.content, "password") || contains(f.content, "secret"))
```

### System Administration: Disk Usage Report


```ae
# Generate disk usage report (types flow through pipeline)

ls("/home")
  | map(fn(d) => {
      name: d.name,
      size_mb: d.size / (1024 * 1024),
      files: len(ls(d.path))
    })
  | where(fn(d) => d.size_mb > 100)
  | map(fn(d) => "${d.name}: ${round(d.size_mb)}MB (${d.files} files)")
```

### AI-Assisted Development


```ae
# Generate documentation from code

code = cat("src/main.rs")
docs = ai("Generate comprehensive API documentation for this Rust code:", {
    context: code,
    model: "openai:gpt-4o"
})

# Intelligent code review

agent({
  goal: "Review the recent git changes and suggest improvements for:
         - Performance optimizations
         - Security issues  
         - Code style consistency",
  tools: ["git", "cat", "grep"],
  max_steps: 15
})

# Generate tests with context awareness

module_code = cat("src/utils.rs")
test_code = ai("Write comprehensive unit tests covering edge cases:", {
  context: module_code,
  model: "openai:gpt-4o"
})

# Explain complex code

complex_fn = cat("src/parser.rs") | slice(100, 200)
ai("Explain what this function does in simple terms:", {context: complex_fn})
```

### Infrastructure: Kubernetes Monitoring


```ae
# List pods with structured output (types flow through)

pods = mcp_call("kubectl", {command: "get pods -o json"})
  | map(fn(pod) => {
      name: pod.metadata.name,
      status: pod.status.phase,
      restarts: pod.status.containerStatuses[0].restartCount
    })
  | where(fn(p) => p.restarts > 0)
```

### Enterprise: RBAC & Compliance


```ae
# Create roles with typed permissions

permissions = [
    {resource: "reports", actions: ["read", "export"]},
    {resource: "dashboards", actions: ["read", "create"]}
]
role_create("data_analyst", permissions, "Data analytics team role")

# Grant roles to users

role_grant("user_123", "data_analyst")

# Check permissions before operations

can_export = check_permission("user_123", "reports", "export")
if can_export {
    audit_log("report_export", {user: "user_123", report: "Q4_sales"})
    # ... export the report
}

# Compliance reporting

compliance_result = compliance_check("GDPR")
report = compliance_report("SOC2", "json")
```

### AI: Fine-tuning & RAG


```ae
# Start model fine-tuning

finetune_start("gpt-4o-mini", "training_data.jsonl", {
    epochs: 3,
    learning_rate: 0.0001
})

# Check fine-tuning status

finetune_status("ft-abc123")

# Build knowledge base with RAG

rag_index("project_docs", ["README.md", "docs/*.md"])
rag_query("project_docs", "How do I configure themes?")

# Knowledge graphs

kg_add("AetherShell", "language", "Rust")
kg_relate("AetherShell", "has_feature", "typed_pipelines")
kg_query({entity: "AetherShell"})
```

### Distributed Computing


```ae
# Create a compute cluster

cluster_create("ml_cluster", {max_nodes: 10})

# Add worker nodes

cluster_add_node("ml_cluster", "worker_1", {capabilities: ["gpu", "ml"]})
cluster_add_node("ml_cluster", "worker_2", {capabilities: ["gpu", "ml"]})

# Submit distributed jobs

job_submit("ml_cluster", "train_model", {
    model: "neural_net",
    data: "training_set.csv"
})

# Monitor cluster status

cluster_status("ml_cluster")
```

### Interactive Data Exploration


```ae
# Explore JSON APIs (types inferred from response)

response = http_get("https://api.github.com/repos/nervosys/AetherShell")
print("Stars: ${response.stargazers_count}")
print("Forks: ${response.forks_count}")  
print("Language: ${response.language}")

# Transform API data

topics_upper = response.topics | map(fn(t) => upper(t)) | join(", ")

# Build a dashboard from multiple endpoints

repos = http_get("https://api.github.com/users/nervosys/repos")
stats = repos | map(fn(r) => {
    name: r.name,
    stars: r.stargazers_count,
    lang: r.language
}) | where(fn(r) => r.stars > 0) | sort_by(fn(r) => r.stars, "desc")
```

### Git Workflow Automation


```ae
# Get recent commits with structured data

commits = mcp_call("git", {command: "log --oneline -10"})
  | split("\n")
  | map(fn(line) => {
      hash: line | slice(0, 7),
      message: line | slice(8, len(line))
    })

# Find commits by pattern

bug_fixes = commits | where(fn(c) => contains(lower(c.message), "fix"))

# Analyze git blame for a file

blame = mcp_call("git", {command: "blame src/main.rs"})
authors = blame | split("\n") 
  | map(fn(l) => l | split(" ") | first())
  | unique()
```

### Build & Deploy Automation


```ae
# Platform-aware build script

build_cmd = match platform() {
    "windows" => "cargo build --release --target x86_64-pc-windows-msvc",
    "linux" => "cargo build --release --target x86_64-unknown-linux-gnu",
    "macos" => "cargo build --release --target aarch64-apple-darwin",
    _ => "cargo build --release"
}

# Conditional feature flags

enabled_features = features()
build_with_ai = if has_feature("ai") { "--features ai" } else { "" }

# Multi-platform detection

if is_windows() {
    print("Building for Windows...")
} else if is_linux() {
    print("Building for Linux...")
} else if is_macos() {
    print("Building for macOS...")
}
```

### Monitoring & Alerting


```ae
# Check system health and alert (annotate function for clarity)

health_check: fn() -> Record = fn() => {
    cpu = mcp_call("system", {metric: "cpu_usage"})
    memory = mcp_call("system", {metric: "memory_usage"})
    disk = mcp_call("system", {metric: "disk_usage"})
    
    {cpu: cpu, memory: memory, disk: disk}
}

status = health_check()

# Alert on high resource usage

if status.cpu > 90 || status.memory > 85 {
    alert = ai("Generate an alert message for high resource usage:", {
        context: "CPU: ${status.cpu}%, Memory: ${status.memory}%"
    })
    print(alert)
}
```

---

## ๐ŸŽฎ TUI Interface


Launch the beautiful terminal UI with `ae tui`:

| Tab        | Description                                |
| ---------- | ------------------------------------------ |
| **Chat**   | Conversational AI with multi-modal support |
| **Agents** | Deploy and monitor AI agent swarms         |
| **Media**  | View images, play audio, preview videos    |
| **Help**   | Quick reference and documentation          |

**Keyboard shortcuts:**
- `Tab` โ€” Switch tabs
- `Enter` โ€” Send message / activate
- `Space` โ€” Select media files
- `q` โ€” Quit
- `Ctrl+C` โ€” Force quit

๐Ÿ“– **Full guide:** [docs/TUI_GUIDE.md](docs/TUI_GUIDE.md)

---

## ๐Ÿ“ฆ Installation


### From Source (Recommended)


```bash
git clone https://github.com/nervosys/AetherShell
cd AetherShell
cargo install --path . --bin ae
```

### From Crates.io


```bash
cargo install aethershell
```

### VS Code Extension


Get syntax highlighting, snippets, and integrated REPL:

```bash
cd editors/vscode
npm install && npm run compile
# Press F5 to test

```

---

## โš™๏ธ Configuration


### Environment Variables


```bash
# AI Provider (required for AI features)

export OPENAI_API_KEY="sk-..."

# Agent permissions

export AGENT_ALLOW_CMDS="ls,git,curl,python"

# Alternative AI backend

export AETHER_AI="ollama"  # or "openai"
```

### Secure Key Storage


```bash
# Store keys in OS credential manager (recommended)

ae keys store openai sk-your-key-here

# View stored keys (masked)

ae keys list
```

---

## ๐Ÿ“š Documentation


| Document                                             | Description               |
| ---------------------------------------------------- | ------------------------- |
| [Quick Reference]docs/QUICK_REFERENCE.md           | One-page syntax guide     |
| [TUI Guide]docs/TUI_GUIDE.md                       | Terminal UI documentation |
| [Type System]docs/TYPE_SYSTEM_GUIDE.md             | Type inference details    |
| [MCP Servers]docs/MCP_SERVERS_GUIDE.md             | Tool integration guide    |
| [AI Backends]docs/AI_BACKENDS.md                   | Provider configuration    |
| [Security]docs/security/SECURITY_AUDIT_RED_TEAM.md | Security assessment       |

### Example Scripts


| File                                                  | Topic            |
| ----------------------------------------------------- | ---------------- |
| [00_hello.ae]examples/00_hello.ae                   | Basic syntax     |
| [01_pipelines.ae]examples/01_pipelines.ae           | Typed pipelines  |
| [02_tables.ae]examples/02_tables.ae                 | Table operations |
| [04_match.ae]examples/04_match.ae                   | Pattern matching |
| [05_ai.ae]examples/05_ai.ae                         | AI integration   |
| [06_agent.ae]examples/06_agent.ae                   | Agent deployment |
| [09_tui_multimodal.ae]examples/09_tui_multimodal.ae | Multi-modal TUI  |

### Coverage Test Scripts


| File                                                              | Topic               |
| ----------------------------------------------------------------- | ------------------- |
| [syntax_comprehensive.ae]tests/coverage/syntax_comprehensive.ae | All AST constructs  |
| [builtins_core.ae]tests/coverage/builtins_core.ae               | Core functions      |
| [builtins_functional.ae]tests/coverage/builtins_functional.ae   | Functional ops      |
| [builtins_string.ae]tests/coverage/builtins_string.ae           | String operations   |
| [builtins_array.ae]tests/coverage/builtins_array.ae             | Array operations    |
| [builtins_math.ae]tests/coverage/builtins_math.ae               | Math functions      |
| [builtins_aggregate.ae]tests/coverage/builtins_aggregate.ae     | Aggregate functions |
| [builtins_config.ae]tests/coverage/builtins_config.ae           | Config & themes     |

---

## ๐Ÿงช Testing


AetherShell has comprehensive test coverage with **100% pass rate**.

```bash
# Run the full test coverage suite

./scripts/test_coverage.ps1     # Windows PowerShell
./scripts/run_tests.sh          # Linux/macOS

# Run specific test categories

cargo test --test builtins_coverage  # 23 builtin tests
cargo test --test theme_coverage     # 6 theme tests
cargo test --test eval               # 6 evaluator tests
cargo test --test typecheck          # 10 type inference tests
cargo test --test pipeline           # Pipeline tests
cargo test --test smoke              # Smoke tests

# Run all library tests

cargo test --lib
```

### Test Coverage Summary


| Category             | Tests   | Status |
| -------------------- | ------- | ------ |
| Builtins Coverage    | 23      | โœ…      |
| Theme System         | 6       | โœ…      |
| Core Builtins        | 2       | โœ…      |
| Evaluator            | 6       | โœ…      |
| Pipelines            | 1       | โœ…      |
| Type Inference       | 10      | โœ…      |
| Smoke Tests          | 4       | โœ…      |
| **.ae Syntax Tests** | 8 files | โœ…      |

**Test files:** See [TESTING.md](TESTING.md) for the complete testing strategy and [tests/coverage/](tests/coverage/) for syntax coverage tests.

---

## ๐Ÿ›ฃ๏ธ Roadmap


See [ROADMAP.md](ROADMAP.md) for the complete development roadmap with detailed progress tracking.

### โœ… Completed (January 2026)

- 215+ builtins with comprehensive test coverage
- 38 built-in color themes with XDG-compliant config
- Neural network primitives & evolutionary algorithms
- 130+ MCP tools with protocol compliance
- Multi-modal AI (images, audio, video)
- Reinforcement learning (Q-Learning, DQN, Actor-Critic)
- Distributed agent swarms & cluster management
- Language Server Protocol (LSP) for IDE integration
- VS Code extension v0.2.0 with IntelliSense
- Enterprise features (RBAC, Audit, SSO, Compliance)
- Fine-tuning API for custom model training
- RAG & knowledge graphs
- Plugin system with TOML manifests
- WASM support (browser-based shell)
- Package management & module imports
- 100% test pass rate

### ๐Ÿ”œ Coming Soon

- Advanced video streaming
- Mobile platform support

---

## ๐Ÿค Contributing


We welcome contributions! See our development setup:

```bash
git clone https://github.com/nervosys/AetherShell
cd AetherShell
cargo build
cargo test --lib
```

1. Fork the repository
2. Create a feature branch
3. Add tests for new functionality
4. Submit a pull request

---

## ๐Ÿ“œ License


Licensed under the [Apache License 2.0](LICENSE).

---

<p align="center">
  <strong>Ready to experience the future of shell interaction?</strong><br><br>
  <code>ae tui</code>
</p>

<p align="center">
  <a href="https://github.com/nervosys/AetherShell">โญ Star us on GitHub</a> โ€ข
  <a href="https://github.com/nervosys/AetherShell/issues">๐Ÿ› Report Issues</a> โ€ข
  <a href="https://github.com/nervosys/AetherShell/discussions">๐Ÿ’ฌ Discussions</a>
</p>