1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
use crate::input::Input;
const NUM_DIGITS_IN_MODEL_NUMBER: usize = 14;
pub fn solve(input: &Input) -> Result<u64, String> {
let instructions = input
.text
.lines()
.map(Instruction::parse)
.collect::<Option<Vec<_>>>()
.ok_or_else(|| "Invalid input".to_string())?;
let input_blocks = extract_input_blocks(&instructions)?;
let mut model_number = [0; NUM_DIGITS_IN_MODEL_NUMBER];
let mut stack = Vec::new();
for (block_idx, block) in input_blocks.iter().enumerate() {
// See steps in extract_input_blocks():
// x = 0 if (z % 26 + $X_NUMBER) == w else 1
// z = (z / $Z_DIVISION) * (25 * x + 1) + (w + $Y_NUMBER) * x
// Written out when x is 1:
// z = (z / $Z_DIVISION) * 26 + w + $Y_NUMBER
// Written out when x is 0:
// z = (z / $Z_DIVISION)
// This can be seen as a stack, with the following stack operations:
// push($NUMBER_TO_PUSH): z = z*26 + $NUMBER_TO_PUSH
// pop(): z = z/26
// peek(): z % 26
// Using that notation:
// do_push = stack.peek() + $X_ADDITION != w
// if z_division==26: stack.pop()
// if do_push: stack.push(w + $Y_ADDITION)
// Restriction on input: if z_division is 1, X_NUMBER is always > 10, which means that
// "stack.peek() + $X_NUMBER != w" will always be true, since w is a digit. So when z_division is 1:
// stack.push(w + $Y_ADDITION)
// There are 7 input blocks of this type, so 7 values pushed on the stack. These needs to be popped in order for z to end up zero.
// So with z_division is 26:
// do_push = stack.peek() + $X_NUMBER != w
// We need all these blocks to only pop and not push, so need "stack.peek() + $X_NUMBER == w" for these.
if block.z_division == 1 {
stack.push((block_idx, /* w_pushed + */ block.y_addition));
} else {
let (pushing_block_idx, /* w_pushed + */ y_addition) = stack
.pop()
.ok_or_else(|| "Assumption broken: pop() has no matching push()".to_string())?;
// w_pushed + y_addition + x_addition == w_current
// =>
// w_pushed = w_current - (y_addition + x_addition)
// w_current = w_pushed + (y_addition + x_addition)
// Pushing block index comes first (higher decimal position), so most important (but must be one digit):
let input_difference = y_addition + block.x_addition;
if !(-8..=8).contains(&input_difference) {
return Err(
"Assumption broken: input difference is not in the range [-8,8]".to_string(),
);
}
let w_pushed = if input.is_part_one() {
// We need highest value on this leftmost digit that results in rightmost digit <= 9.
std::cmp::min(9 - input_difference, 9)
} else {
// We need lowest value on this leftmost digit that results in rightmost digit >= 1.
std::cmp::max(1 - input_difference, 1)
};
model_number[pushing_block_idx] = w_pushed;
model_number[block_idx] = w_pushed + input_difference;
}
}
Ok(model_number
.iter()
.fold(0, |acc, digit| acc * 10 + *digit as u64))
}
fn extract_input_blocks(instructions: &[Instruction]) -> Result<InputBlocks, String> {
let mut input_blocks = [InputBlock {
z_division: 0,
x_addition: 0,
y_addition: 0,
}; NUM_DIGITS_IN_MODEL_NUMBER];
let mut input_instructions_count = 0;
for (instruction_idx, instruction) in instructions.iter().enumerate() {
if let Instruction::Input(variable) = instruction {
if *variable == Variable::W {
// After every input to w:
// Start: "x = z % 26"
if !(matches!(
instructions[instruction_idx + 1],
Instruction::Multiply(Variable::X, VariableOrNumber::Number(0))
) && matches!(
instructions[instruction_idx + 2],
Instruction::Add(Variable::X, VariableOrNumber::Variable(Variable::Z))
) && matches!(
instructions[instruction_idx + 3],
Instruction::Modulo(Variable::X, VariableOrNumber::Number(26))
)) {
return Err("Assumption broken: Not every input followed by 'mul x 0; add x z; mod x 26'".to_string());
}
// Then: "z = z / 1|26" (divide z by either 1 or 26)
// x = z % 26
// z = z / 1|26
match instructions[instruction_idx + 4] {
Instruction::Divide(Variable::Z, VariableOrNumber::Number(z_division))
if (z_division == 1 || z_division == 26) =>
{
input_blocks[input_instructions_count].z_division = z_division as u8;
}
_ => {
return Err("Assumption broken: z is divided by 1 or 26".to_string());
}
}
// Then: "x = x + $X_NUMBER"
// x = z % 26 + $X_NUMBER
// z = z / 1|26
if let Instruction::Add(Variable::X, VariableOrNumber::Number(x_addition)) =
instructions[instruction_idx + 5]
{
input_blocks[input_instructions_count].x_addition = x_addition;
} else {
return Err("Assumption broken: x is not added to".to_string());
}
// Then: "eql x w; eql x 0", which is "x = 0 if x == w else 1", expanded to "x = 0 if (z % 26 + $NUMBER) == w else 1"
// x = 0 if (z % 26 + $X_NUMBER) == w else 1
// z = z / 26 (optionally)
if !(matches!(
instructions[instruction_idx + 6],
Instruction::Equal(Variable::X, VariableOrNumber::Variable(Variable::W))
) && matches!(
instructions[instruction_idx + 7],
Instruction::Equal(Variable::X, VariableOrNumber::Number(0))
)) {
return Err(
"Assumption broken: x is not checked for equality to w as expected"
.to_string(),
);
}
// Then: "mul y 0; add y 25; mul y x; add y 1"
// x = 0 if (z % 26 + $X_NUMBER) == w else 1
// y = 25 * x + 1
// z = z / 26 (optionally)
if !(matches!(
instructions[instruction_idx + 8],
Instruction::Multiply(Variable::Y, VariableOrNumber::Number(0))
) && matches!(
instructions[instruction_idx + 9],
Instruction::Add(Variable::Y, VariableOrNumber::Number(25))
) && matches!(
instructions[instruction_idx + 10],
Instruction::Multiply(Variable::Y, VariableOrNumber::Variable(Variable::X))
) && matches!(
instructions[instruction_idx + 11],
Instruction::Add(Variable::Y, VariableOrNumber::Number(1))
)) {
return Err("Assumption broken: y is not set to 25*x+1".to_string());
}
// Then: "mul z y; mul y 0; add y w"
// x = 0 if (z % 26 + $X_NUMBER) == w else 1
// y = w
// z = (z / 1|26) * (25 * x + 1)
if !(matches!(
instructions[instruction_idx + 12],
Instruction::Multiply(Variable::Z, VariableOrNumber::Variable(Variable::Y))
) && matches!(
instructions[instruction_idx + 13],
Instruction::Multiply(Variable::Y, VariableOrNumber::Number(0))
) && matches!(
instructions[instruction_idx + 14],
Instruction::Add(Variable::Y, VariableOrNumber::Variable(Variable::W))
)) {
return Err(
"Assumption broken: z is not multiplied by y and then y reset".to_string(),
);
}
// Then: "add y $Y_NUMBER", simplified: "y = w + $Y_NUMBER"
// x = 0 if (z % 26 + $X_NUMBER) == w else 1
// y = w + $Y_NUMBER
// z = (z / 1|26) * (25 * x + 1)
if let Instruction::Add(Variable::Y, VariableOrNumber::Number(y_addition)) =
instructions[instruction_idx + 15]
{
if y_addition > 16 {
return Err("Assumption broken: y addition is > 16".to_string());
}
input_blocks[input_instructions_count].y_addition = y_addition;
} else {
return Err("Assumption broken: y is not added to".to_string());
}
// Then: "mul y x; add z y"
// x = 0 if (z % 26 + $X_NUMBER) == w else 1
// z = (w + $Y_NUMBER) * x + (z / 1|26) * (25 * x + 1)
if !(matches!(
instructions[instruction_idx + 16],
Instruction::Multiply(Variable::Y, VariableOrNumber::Variable(Variable::X))
) && matches!(
instructions[instruction_idx + 17],
Instruction::Add(Variable::Z, VariableOrNumber::Variable(Variable::Y))
)) {
return Err("Assumption broken: y is not added to".to_string());
}
if input_blocks[input_instructions_count].z_division == 1
&& input_blocks[input_instructions_count].x_addition < 10
{
return Err(
"Assumption broken: when z division is 1, x addition is not > 9"
.to_string(),
);
}
input_instructions_count += 1;
} else {
return Err("Assumption broken: Not every input stored to variable 'w'".to_string());
}
}
}
if input_instructions_count != 14 {
return Err("Assumption broken: Not 14 input instructions to variable 'w'".to_string());
}
if input_blocks.iter().filter(|b| b.z_division == 1).count()
!= input_blocks.iter().filter(|b| b.z_division == 26).count()
{
return Err("Assumption broken: Not equal amount of push and pop operations".to_string());
}
Ok(input_blocks)
}
#[derive(Copy, Clone, Eq, PartialEq)]
enum Variable {
W,
X,
Y,
Z,
}
impl Variable {
fn parse(text: &str) -> Option<Self> {
Some(match text {
"w" => Self::W,
"x" => Self::X,
"y" => Self::Y,
"z" => Self::Z,
_ => {
return None;
}
})
}
}
#[derive(Copy, Clone)]
enum VariableOrNumber {
Variable(Variable),
Number(i8),
}
impl VariableOrNumber {
fn parse(text: &str) -> Option<Self> {
Some(match Variable::parse(text) {
Some(variable) => Self::Variable(variable),
None => Self::Number(text.parse().ok()?),
})
}
}
enum Instruction {
// Read an input value and write it to variable a.
Input(Variable),
// Add the value of a to the value of b, then store the result in variable a.
Add(Variable, VariableOrNumber),
// Multiply the value of a by the value of b, then store the result in variable a.
Multiply(Variable, VariableOrNumber),
// Divide the value of a by the value of b, truncate the result to an integer, then store the result in variable a. (Here, "truncate" means to round the value toward zero.)
Divide(Variable, VariableOrNumber),
// Divide the value of a by the value of b, then store the remainder in variable a.
Modulo(Variable, VariableOrNumber),
// If the value of a and b are equal, then store the value 1 in variable a. Otherwise, store the value 0 in variable a.
Equal(Variable, VariableOrNumber),
}
impl Instruction {
fn parse(text: &str) -> Option<Self> {
let mut words = text.split(' ');
let first_word = words.next()?;
let second_word = words.next()?;
let first_parameter = Variable::parse(second_word)?;
Some(if first_word == "inp" {
Self::Input(first_parameter)
} else {
let third_word = words.next()?;
let second_parameter = VariableOrNumber::parse(third_word)?;
match first_word {
"add" => Self::Add(first_parameter, second_parameter),
"mul" => Self::Multiply(first_parameter, second_parameter),
"div" => Self::Divide(first_parameter, second_parameter),
"mod" => Self::Modulo(first_parameter, second_parameter),
"eql" => Self::Equal(first_parameter, second_parameter),
_ => {
return None;
}
}
})
}
}
#[derive(Copy, Clone)]
struct InputBlock {
z_division: u8,
x_addition: i8,
y_addition: i8,
}
type InputBlocks = [InputBlock; NUM_DIGITS_IN_MODEL_NUMBER];
#[test]
pub fn tests() {
use crate::input::{test_part_one, test_part_two};
let real_input = include_str!("day24_input.txt");
test_part_one!(real_input => 99_299_513_899_971);
test_part_two!(real_input => 93_185_111_127_911);
}