1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
use crate::input::Input;

const NUM_DIGITS_IN_MODEL_NUMBER: usize = 14;

pub fn solve(input: &Input) -> Result<u64, String> {
    let instructions = input
        .text
        .lines()
        .map(Instruction::parse)
        .collect::<Option<Vec<_>>>()
        .ok_or_else(|| "Invalid input".to_string())?;

    let input_blocks = extract_input_blocks(&instructions)?;

    let mut model_number = [0; NUM_DIGITS_IN_MODEL_NUMBER];
    let mut stack = Vec::new();

    for (block_idx, block) in input_blocks.iter().enumerate() {
        // See steps in extract_input_blocks():
        //   x = 0 if (z % 26 + $X_NUMBER) == w else 1
        //   z = (z / $Z_DIVISION) * (25 * x + 1) + (w + $Y_NUMBER) * x
        // Written out when x is 1:
        //   z = (z / $Z_DIVISION) * 26 + w + $Y_NUMBER
        // Written out when x is 0:
        //   z = (z / $Z_DIVISION)
        // This can be seen as a stack, with the following stack operations:
        //    push($NUMBER_TO_PUSH): z = z*26 + $NUMBER_TO_PUSH
        //    pop(): z = z/26
        //    peek(): z % 26
        // Using that notation:
        //    do_push = stack.peek() + $X_ADDITION != w
        //    if z_division==26: stack.pop()
        //    if do_push: stack.push(w + $Y_ADDITION)
        // Restriction on input: if z_division is 1, X_NUMBER is always > 10, which means that
        // "stack.peek() + $X_NUMBER != w" will always be true, since w is a digit. So when z_division is 1:
        //    stack.push(w + $Y_ADDITION)
        // There are 7 input blocks of this type, so 7 values pushed on the stack. These needs to be popped in order for z to end up zero.
        // So with z_division is 26:
        //    do_push = stack.peek() + $X_NUMBER != w
        // We need all these blocks to only pop and not push, so need "stack.peek() + $X_NUMBER == w" for these.
        if block.z_division == 1 {
            stack.push((block_idx, /* w_pushed + */ block.y_addition));
        } else {
            let (pushing_block_idx, /* w_pushed + */ y_addition) = stack
                .pop()
                .ok_or_else(|| "Assumption broken: pop() has no matching push()".to_string())?;
            // w_pushed + y_addition + x_addition == w_current
            // =>
            // w_pushed = w_current - (y_addition + x_addition)
            // w_current = w_pushed + (y_addition + x_addition)
            // Pushing block index comes first (higher decimal position), so most important (but must be one digit):
            let input_difference = y_addition + block.x_addition;
            if !(-8..=8).contains(&input_difference) {
                return Err(
                    "Assumption broken: input difference is not in the range [-8,8]".to_string(),
                );
            }
            let w_pushed = if input.is_part_one() {
                // We need highest value on this leftmost digit that results in rightmost digit <= 9.
                std::cmp::min(9 - input_difference, 9)
            } else {
                // We need lowest value on this leftmost digit that results in rightmost digit >= 1.
                std::cmp::max(1 - input_difference, 1)
            };
            model_number[pushing_block_idx] = w_pushed;
            model_number[block_idx] = w_pushed + input_difference;
        }
    }

    Ok(model_number
        .iter()
        .fold(0, |acc, digit| acc * 10 + *digit as u64))
}

fn extract_input_blocks(instructions: &[Instruction]) -> Result<InputBlocks, String> {
    let mut input_blocks = [InputBlock {
        z_division: 0,
        x_addition: 0,
        y_addition: 0,
    }; NUM_DIGITS_IN_MODEL_NUMBER];
    let mut input_instructions_count = 0;
    for (instruction_idx, instruction) in instructions.iter().enumerate() {
        if let Instruction::Input(variable) = instruction {
            if *variable == Variable::W {
                // After every input to w:
                // Start: "x = z % 26"
                if !(matches!(
                    instructions[instruction_idx + 1],
                    Instruction::Multiply(Variable::X, VariableOrNumber::Number(0))
                ) && matches!(
                    instructions[instruction_idx + 2],
                    Instruction::Add(Variable::X, VariableOrNumber::Variable(Variable::Z))
                ) && matches!(
                    instructions[instruction_idx + 3],
                    Instruction::Modulo(Variable::X, VariableOrNumber::Number(26))
                )) {
                    return Err("Assumption broken: Not every input followed by 'mul x 0; add x z; mod x 26'".to_string());
                }

                // Then: "z = z / 1|26" (divide z by either 1 or 26)
                //   x = z % 26
                //   z = z / 1|26
                match instructions[instruction_idx + 4] {
                    Instruction::Divide(Variable::Z, VariableOrNumber::Number(z_division))
                        if (z_division == 1 || z_division == 26) =>
                    {
                        input_blocks[input_instructions_count].z_division = z_division as u8;
                    }
                    _ => {
                        return Err("Assumption broken: z is divided by 1 or 26".to_string());
                    }
                }

                // Then: "x = x + $X_NUMBER"
                //   x = z % 26 + $X_NUMBER
                //   z = z / 1|26
                if let Instruction::Add(Variable::X, VariableOrNumber::Number(x_addition)) =
                    instructions[instruction_idx + 5]
                {
                    input_blocks[input_instructions_count].x_addition = x_addition;
                } else {
                    return Err("Assumption broken: x is not added to".to_string());
                }
                // Then: "eql x w; eql x 0", which is "x = 0 if x == w else 1", expanded to "x = 0 if (z % 26 + $NUMBER) == w else 1"
                //   x = 0 if (z % 26 + $X_NUMBER) == w else 1
                //   z = z / 26    (optionally)
                if !(matches!(
                    instructions[instruction_idx + 6],
                    Instruction::Equal(Variable::X, VariableOrNumber::Variable(Variable::W))
                ) && matches!(
                    instructions[instruction_idx + 7],
                    Instruction::Equal(Variable::X, VariableOrNumber::Number(0))
                )) {
                    return Err(
                        "Assumption broken: x is not checked for equality to w as expected"
                            .to_string(),
                    );
                }
                // Then: "mul y 0; add y 25; mul y x; add y 1"
                //   x = 0 if (z % 26 + $X_NUMBER) == w else 1
                //   y = 25 * x + 1
                //   z = z / 26    (optionally)
                if !(matches!(
                    instructions[instruction_idx + 8],
                    Instruction::Multiply(Variable::Y, VariableOrNumber::Number(0))
                ) && matches!(
                    instructions[instruction_idx + 9],
                    Instruction::Add(Variable::Y, VariableOrNumber::Number(25))
                ) && matches!(
                    instructions[instruction_idx + 10],
                    Instruction::Multiply(Variable::Y, VariableOrNumber::Variable(Variable::X))
                ) && matches!(
                    instructions[instruction_idx + 11],
                    Instruction::Add(Variable::Y, VariableOrNumber::Number(1))
                )) {
                    return Err("Assumption broken: y is not set to 25*x+1".to_string());
                }
                // Then: "mul z y; mul y 0; add y w"
                //   x = 0 if (z % 26 + $X_NUMBER) == w else 1
                //   y = w
                //   z = (z / 1|26) * (25 * x + 1)
                if !(matches!(
                    instructions[instruction_idx + 12],
                    Instruction::Multiply(Variable::Z, VariableOrNumber::Variable(Variable::Y))
                ) && matches!(
                    instructions[instruction_idx + 13],
                    Instruction::Multiply(Variable::Y, VariableOrNumber::Number(0))
                ) && matches!(
                    instructions[instruction_idx + 14],
                    Instruction::Add(Variable::Y, VariableOrNumber::Variable(Variable::W))
                )) {
                    return Err(
                        "Assumption broken: z is not multiplied by y and then y reset".to_string(),
                    );
                }
                // Then: "add y $Y_NUMBER", simplified: "y = w + $Y_NUMBER"
                //   x = 0 if (z % 26 + $X_NUMBER) == w else 1
                //   y = w + $Y_NUMBER
                //   z = (z / 1|26) * (25 * x + 1)
                if let Instruction::Add(Variable::Y, VariableOrNumber::Number(y_addition)) =
                    instructions[instruction_idx + 15]
                {
                    if y_addition > 16 {
                        return Err("Assumption broken: y addition is > 16".to_string());
                    }
                    input_blocks[input_instructions_count].y_addition = y_addition;
                } else {
                    return Err("Assumption broken: y is not added to".to_string());
                }

                // Then: "mul y x; add z y"
                //   x = 0 if (z % 26 + $X_NUMBER) == w else 1
                //   z = (w + $Y_NUMBER) * x + (z / 1|26) * (25 * x + 1)
                if !(matches!(
                    instructions[instruction_idx + 16],
                    Instruction::Multiply(Variable::Y, VariableOrNumber::Variable(Variable::X))
                ) && matches!(
                    instructions[instruction_idx + 17],
                    Instruction::Add(Variable::Z, VariableOrNumber::Variable(Variable::Y))
                )) {
                    return Err("Assumption broken: y is not added to".to_string());
                }

                if input_blocks[input_instructions_count].z_division == 1
                    && input_blocks[input_instructions_count].x_addition < 10
                {
                    return Err(
                        "Assumption broken: when z division is 1, x addition is not > 9"
                            .to_string(),
                    );
                }

                input_instructions_count += 1;
            } else {
                return Err("Assumption broken: Not every input stored to variable 'w'".to_string());
            }
        }
    }

    if input_instructions_count != 14 {
        return Err("Assumption broken: Not 14 input instructions to variable 'w'".to_string());
    }

    if input_blocks.iter().filter(|b| b.z_division == 1).count()
        != input_blocks.iter().filter(|b| b.z_division == 26).count()
    {
        return Err("Assumption broken: Not equal amount of push and pop operations".to_string());
    }

    Ok(input_blocks)
}

#[derive(Copy, Clone, Eq, PartialEq)]
enum Variable {
    W,
    X,
    Y,
    Z,
}

impl Variable {
    fn parse(text: &str) -> Option<Self> {
        Some(match text {
            "w" => Self::W,
            "x" => Self::X,
            "y" => Self::Y,
            "z" => Self::Z,
            _ => {
                return None;
            }
        })
    }
}

#[derive(Copy, Clone)]
enum VariableOrNumber {
    Variable(Variable),
    Number(i8),
}

impl VariableOrNumber {
    fn parse(text: &str) -> Option<Self> {
        Some(match Variable::parse(text) {
            Some(variable) => Self::Variable(variable),
            None => Self::Number(text.parse().ok()?),
        })
    }
}

enum Instruction {
    // Read an input value and write it to variable a.
    Input(Variable),
    // Add the value of a to the value of b, then store the result in variable a.
    Add(Variable, VariableOrNumber),
    // Multiply the value of a by the value of b, then store the result in variable a.
    Multiply(Variable, VariableOrNumber),
    // Divide the value of a by the value of b, truncate the result to an integer, then store the result in variable a. (Here, "truncate" means to round the value toward zero.)
    Divide(Variable, VariableOrNumber),
    // Divide the value of a by the value of b, then store the remainder in variable a.
    Modulo(Variable, VariableOrNumber),
    // If the value of a and b are equal, then store the value 1 in variable a. Otherwise, store the value 0 in variable a.
    Equal(Variable, VariableOrNumber),
}

impl Instruction {
    fn parse(text: &str) -> Option<Self> {
        let mut words = text.split(' ');
        let first_word = words.next()?;
        let second_word = words.next()?;

        let first_parameter = Variable::parse(second_word)?;
        Some(if first_word == "inp" {
            Self::Input(first_parameter)
        } else {
            let third_word = words.next()?;
            let second_parameter = VariableOrNumber::parse(third_word)?;
            match first_word {
                "add" => Self::Add(first_parameter, second_parameter),
                "mul" => Self::Multiply(first_parameter, second_parameter),
                "div" => Self::Divide(first_parameter, second_parameter),
                "mod" => Self::Modulo(first_parameter, second_parameter),
                "eql" => Self::Equal(first_parameter, second_parameter),
                _ => {
                    return None;
                }
            }
        })
    }
}

#[derive(Copy, Clone)]
struct InputBlock {
    z_division: u8,
    x_addition: i8,
    y_addition: i8,
}

type InputBlocks = [InputBlock; NUM_DIGITS_IN_MODEL_NUMBER];

#[test]
pub fn tests() {
    use crate::input::{test_part_one, test_part_two};

    let real_input = include_str!("day24_input.txt");
    test_part_one!(real_input => 99_299_513_899_971);
    test_part_two!(real_input => 93_185_111_127_911);
}