# adk-agent
Agent implementations for ADK-Rust (LLM, Custom, Workflow agents).
[](https://crates.io/crates/adk-agent)
[](https://docs.rs/adk-agent)
[](LICENSE)
## Overview
`adk-agent` provides ready-to-use agent implementations for [ADK-Rust](https://github.com/zavora-ai/adk-rust):
- **LlmAgent** - Core agent powered by LLM reasoning with tools and callbacks
- **CustomAgent** - Define custom logic without LLM
- **SequentialAgent** - Execute agents in sequence
- **ParallelAgent** - Execute agents concurrently
- **LoopAgent** - Iterate until exit condition or max iterations
- **ConditionalAgent** - Branch based on conditions
- **LlmConditionalAgent** - LLM-powered routing to sub-agents
- **LlmEventSummarizer** - LLM-based context compaction for long conversations
## Installation
```toml
[dependencies]
adk-agent = "0.3"
```
Or use the meta-crate:
```toml
[dependencies]
adk-rust = { version = "0.3", features = ["agents"] }
```
## Quick Start
### LLM Agent
```rust
use adk_agent::LlmAgentBuilder;
use adk_model::GeminiModel;
use std::sync::Arc;
let model = Arc::new(GeminiModel::new(&api_key, "gemini-2.5-flash")?);
let agent = LlmAgentBuilder::new("assistant")
.description("Helpful AI assistant")
.instruction("Be helpful and concise.")
.model(model)
.tool(Arc::new(calculator_tool))
.build()?;
```
### LlmAgentBuilder Methods
| `new(name)` | Create builder with agent name |
| `description(desc)` | Set agent description |
| `model(llm)` | Set the LLM model (required) |
| `instruction(text)` | Set static instruction |
| `instruction_provider(fn)` | Set dynamic instruction provider |
| `global_instruction(text)` | Set global instruction (shared across agents) |
| `with_skills(index)` | Attach a preloaded skills index |
| `with_auto_skills()` | Auto-load skills from `.skills/` in current directory |
| `with_skills_from_root(path)` | Auto-load skills from `.skills/` under a specific root |
| `with_skill_policy(policy)` | Configure matching policy (`top_k`, threshold, tags) |
| `with_skill_budget(chars)` | Cap injected skill content length |
| `tool(tool)` | Add a tool |
| `sub_agent(agent)` | Add a sub-agent for transfers |
| `max_iterations(n)` | Set maximum LLM round-trips (default: 100) |
| `tool_timeout(duration)` | Set per-tool execution timeout (default: 5 min) |
| `require_tool_confirmation(names)` | Require user confirmation for specific tools |
| `require_tool_confirmation_for_all()` | Require user confirmation for all tools |
| `tool_confirmation_policy(policy)` | Set custom tool confirmation policy |
| `input_schema(json)` | Set input JSON schema |
| `output_schema(json)` | Set output JSON schema |
| `output_key(key)` | Set state key for output |
| `input_guardrails(set)` | Add input validation guardrails |
| `output_guardrails(set)` | Add output validation guardrails |
| `before_callback(fn)` | Add before-agent callback |
| `after_callback(fn)` | Add after-agent callback |
| `before_model_callback(fn)` | Add before-model callback |
| `after_model_callback(fn)` | Add after-model callback |
| `before_tool_callback(fn)` | Add before-tool callback |
| `after_tool_callback(fn)` | Add after-tool callback |
| `build()` | Build the LlmAgent |
### Backward Compatibility
Existing builder paths remain valid and unchanged:
```rust
let agent = LlmAgentBuilder::new("assistant")
.description("Helpful AI assistant")
.instruction("Be helpful and concise.")
.model(model)
.build()?;
```
Skills are opt-in. No skill content is injected unless you call a skills method.
### Minimal Skills Usage
```rust
let agent = LlmAgentBuilder::new("assistant")
.model(model)
.with_auto_skills()? // loads .skills/**/*.md when present
.build()?;
```
### Workflow Agents
```rust
use adk_agent::{SequentialAgent, ParallelAgent, LoopAgent};
use std::sync::Arc;
// Sequential: A -> B -> C
let pipeline = SequentialAgent::new("pipeline", vec![
agent_a.clone(),
agent_b.clone(),
agent_c.clone(),
]);
// Parallel: A, B, C simultaneously
let team = ParallelAgent::new("team", vec![
analyst_a.clone(),
analyst_b.clone(),
]);
// Loop: repeat until exit or max iterations
let iterator = LoopAgent::new("iterator", vec![worker.clone()])
.with_max_iterations(10);
// Default max iterations is 1000 (DEFAULT_LOOP_MAX_ITERATIONS)
```
### Conditional Agents
```rust
use adk_agent::{ConditionalAgent, LlmConditionalAgent};
// Function-based condition
let conditional = ConditionalAgent::new(
"router",
|ctx| async move { ctx.user_content().text().contains("urgent") },
urgent_agent,
).with_else_agent(normal_agent);
// LLM-powered routing
let llm_router = LlmConditionalAgent::new("smart_router", model)
.instruction("Route to the appropriate specialist based on the query.")
.add_route("support", support_agent, "Technical support questions")
.add_route("sales", sales_agent, "Sales and pricing inquiries")
.build()?;
```
### Multi-Agent Systems
```rust
// Agent with sub-agents for transfer
let coordinator = LlmAgentBuilder::new("coordinator")
.instruction("Route to appropriate specialist. Transfer when needed.")
.model(model)
.sub_agent(support_agent)
.sub_agent(sales_agent)
.build()?;
```
### Guardrails
```rust
use adk_agent::LlmAgentBuilder;
use adk_guardrail::{GuardrailSet, ContentFilter, PiiRedactor};
let input_guardrails = GuardrailSet::new()
.with(ContentFilter::harmful_content())
.with(PiiRedactor::new());
let agent = LlmAgentBuilder::new("safe_assistant")
.model(model)
.input_guardrails(input_guardrails)
.build()?;
```
### Custom Agent
```rust
use adk_agent::CustomAgentBuilder;
let custom = CustomAgentBuilder::new("processor")
.description("Custom data processor")
.handler(|ctx| async move {
// Custom logic here
Ok(Content::new("model").with_text("Processed!"))
})
.build()?;
```
## Features
- Automatic tool execution loop (with configurable timeout: `DEFAULT_TOOL_TIMEOUT` = 5 min)
- Configurable max iterations (`DEFAULT_MAX_ITERATIONS` = 100 for LlmAgent, `DEFAULT_LOOP_MAX_ITERATIONS` = 1000 for LoopAgent)
- Agent transfer between sub-agents (with validation against registered sub-agents)
- Streaming event output
- Callback hooks at every stage
- Input/output guardrails
- Schema validation
- Tool confirmation policies (`ToolConfirmationPolicy::Never`, `Always`, `PerTool`)
- Context compaction via `LlmEventSummarizer`
## Context Compaction
`LlmEventSummarizer` uses an LLM to summarize older conversation events, reducing context size for long-running sessions. This is the Rust equivalent of ADK Python's `LlmEventSummarizer`.
```rust
use adk_agent::LlmEventSummarizer;
use adk_core::EventsCompactionConfig;
use std::sync::Arc;
let summarizer = LlmEventSummarizer::new(model.clone());
// Optionally customize the prompt template:
// let summarizer = summarizer.with_prompt_template("Custom: {conversation_history}");
let compaction_config = EventsCompactionConfig {
compaction_interval: 3, // Compact every 3 invocations
overlap_size: 1, // Keep 1 event overlap for continuity
summarizer: Arc::new(summarizer),
};
```
Pass `compaction_config` to `RunnerConfig` to enable automatic compaction. See [Context Compaction](https://github.com/zavora-ai/adk-rust/blob/main/docs/official_docs/sessions/context-compaction.md) for full details.
## Related Crates
- [adk-rust](https://crates.io/crates/adk-rust) - Meta-crate with all components
- [adk-core](https://crates.io/crates/adk-core) - Core `Agent` trait
- [adk-model](https://crates.io/crates/adk-model) - LLM integrations
- [adk-tool](https://crates.io/crates/adk-tool) - Tool system
- [adk-guardrail](https://crates.io/crates/adk-guardrail) - Guardrails
## License
Apache-2.0
## Part of ADK-Rust
This crate is part of the [ADK-Rust](https://adk-rust.com) framework for building AI agents in Rust.