1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// Copyright (C) 2020 Miklos Maroti
// Licensed under the MIT license (see LICENSE)

use crate::*;

/// The direct power of the given algebra where the elements are fixed sized
/// vectors. The algebraic operations are always acting coordinate-wise.
#[derive(Clone, Debug)]
pub struct VectorAlgebra<A>
where
    A: Domain,
{
    base: A,
    len: usize,
}

#[allow(clippy::len_without_is_empty)]
impl<A> VectorAlgebra<A>
where
    A: Domain,
{
    /// Creates a new vector algebra for the given base and length.
    pub fn new(base: A, len: usize) -> Self {
        Self { base, len }
    }

    /// Returns the base algebra from which this vector algebra was created.
    pub fn base(&self) -> &A {
        &self.base
    }

    /// Returns the common length of vectors that are the elements of this
    /// algebra (the exponent of the power algebra).
    pub fn len(&self) -> usize {
        self.len
    }

    /// Returns the constant vector containing the given element.
    pub fn diagonal(&self, elem: A::Elem) -> Vec<A::Elem> {
        vec![elem; self.len]
    }
}

impl<A> Domain for VectorAlgebra<A>
where
    A: Domain,
{
    type Elem = Vec<A::Elem>;

    fn contains(&self, elem: &Self::Elem) -> bool {
        if elem.len() != self.len {
            false
        } else {
            elem.iter().all(|a| self.base.contains(a))
        }
    }

    fn equals(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> bool {
        assert!(elem1.len() == self.len && elem2.len() == self.len);
        elem1
            .iter()
            .zip(elem2.iter())
            .all(|(x, y)| self.base.equals(x, y))
    }
}

impl<A> Semigroup for VectorAlgebra<A>
where
    A: Semigroup,
{
    fn mul(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        assert!(elem1.len() == self.len && elem2.len() == self.len);
        elem1
            .iter()
            .zip(elem2.iter())
            .map(|(x, y)| self.base.mul(x, y))
            .collect()
    }

    fn mul_assign(&self, elem1: &mut Self::Elem, elem2: &Self::Elem) {
        assert!(elem1.len() == self.len && elem2.len() == self.len);
        elem1
            .iter_mut()
            .zip(elem2.iter())
            .for_each(|(x, y)| self.base.mul_assign(x, y));
    }

    fn square(&self, elem: &mut Self::Elem) {
        assert!(elem.len() == self.len);
        elem.iter_mut().for_each(|x| self.base.square(x));
    }
}

impl<A> Monoid for VectorAlgebra<A>
where
    A: Monoid,
{
    fn one(&self) -> Self::Elem {
        self.diagonal(self.base.one())
    }

    fn is_one(&self, elem: &Self::Elem) -> bool {
        assert!(elem.len() == self.len);
        elem.iter().all(|x| self.base.is_one(x))
    }

    fn try_inv(&self, elem: &Self::Elem) -> Option<Self::Elem> {
        assert!(elem.len() == self.len);
        let mut v = Vec::with_capacity(self.len);
        for x in elem.iter() {
            if let Some(y) = self.base.try_inv(x) {
                v.push(y)
            } else {
                return None;
            }
        }
        Some(v)
    }

    fn invertible(&self, elem: &Self::Elem) -> bool {
        assert!(elem.len() == self.len);
        elem.iter().all(|x| self.base.invertible(x))
    }
}

impl<A> Group for VectorAlgebra<A>
where
    A: Group,
{
    fn inv(&self, elem: &Self::Elem) -> Self::Elem {
        assert!(elem.len() == self.len);
        elem.iter().map(|x| self.base.inv(x)).collect()
    }
}

impl<A> AbelianGroup for VectorAlgebra<A>
where
    A: AbelianGroup,
{
    fn zero(&self) -> Self::Elem {
        self.diagonal(self.base.zero())
    }

    fn is_zero(&self, elem: &Self::Elem) -> bool {
        assert!(elem.len() == self.len);
        elem.iter().all(|x| self.base.is_zero(x))
    }

    fn neg(&self, elem: &Self::Elem) -> Self::Elem {
        assert!(elem.len() == self.len);
        elem.iter().map(|x| self.base.neg(x)).collect()
    }

    fn neg_assign(&self, elem: &mut Self::Elem) {
        assert!(elem.len() == self.len);
        elem.iter_mut().for_each(|x| self.base.neg_assign(x))
    }

    fn add(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        assert!(elem1.len() == self.len && elem2.len() == self.len);
        elem1
            .iter()
            .zip(elem2.iter())
            .map(|(x, y)| self.base.add(x, y))
            .collect()
    }

    fn add_assign(&self, elem1: &mut Self::Elem, elem2: &Self::Elem) {
        assert!(elem1.len() == self.len && elem2.len() == self.len);
        elem1
            .iter_mut()
            .zip(elem2.iter())
            .for_each(|(x, y)| self.base.add_assign(x, y));
    }

    fn double(&self, elem: &mut Self::Elem) {
        assert!(elem.len() == self.len);
        elem.iter_mut().for_each(|x| self.base.double(x))
    }

    fn sub(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        assert!(elem1.len() == self.len && elem2.len() == self.len);
        elem1
            .iter()
            .zip(elem2.iter())
            .map(|(x, y)| self.base.sub(x, y))
            .collect()
    }

    fn sub_assign(&self, elem1: &mut Self::Elem, elem2: &Self::Elem) {
        assert!(elem1.len() == self.len && elem2.len() == self.len);
        elem1
            .iter_mut()
            .zip(elem2.iter())
            .for_each(|(x, y)| self.base.sub_assign(x, y));
    }
}

impl<A> UnitaryRing for VectorAlgebra<A>
where
    A: UnitaryRing,
{
    fn int(&self, elem: isize) -> Self::Elem {
        self.diagonal(self.base.int(elem))
    }
}

impl<A> PartialOrder for VectorAlgebra<A>
where
    A: PartialOrder,
{
    fn leq(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> bool {
        assert!(elem1.len() == self.len && elem2.len() == self.len);
        elem1
            .iter()
            .zip(elem2.iter())
            .all(|(x, y)| self.base.leq(x, y))
    }
}

impl<A> BoundedOrder for VectorAlgebra<A>
where
    A: BoundedOrder,
{
    fn max(&self) -> Self::Elem {
        self.diagonal(self.base.max())
    }

    fn min(&self) -> Self::Elem {
        self.diagonal(self.base.min())
    }
}

impl<A> Lattice for VectorAlgebra<A>
where
    A: Lattice,
{
    fn meet(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        assert!(elem1.len() == self.len && elem2.len() == self.len);
        elem1
            .iter()
            .zip(elem2.iter())
            .map(|(x, y)| self.base.meet(x, y))
            .collect()
    }

    fn join(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        assert!(elem1.len() == self.len && elem2.len() == self.len);
        elem1
            .iter()
            .zip(elem2.iter())
            .map(|(x, y)| self.base.join(x, y))
            .collect()
    }
}

impl<A> DistributiveLattice for VectorAlgebra<A> where A: DistributiveLattice {}

impl<A> BooleanAlgebra for VectorAlgebra<A>
where
    A: BooleanAlgebra,
{
    fn not(&self, elem: &Self::Elem) -> Self::Elem {
        assert!(elem.len() == self.len);
        elem.iter().map(|x| self.base.not(x)).collect()
    }
}