1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
use super::poison::*;
use core::{
arch::asm,
cell::UnsafeCell,
marker::PhantomData,
ops::{Deref, DerefMut},
};
#[derive(Debug, Default)]
pub struct Mutex<T: ?Sized> {
is_locked: u32,
inner: UnsafeCell<T>,
}
impl<T> Mutex<T> {
/// Creates a new mutex in an unlocked state ready for use.
pub const fn new(t: T) -> Self {
Mutex {
is_locked: 0,
inner: UnsafeCell::new(t),
}
}
}
unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
impl<T: ?Sized> Mutex<T> {
/// Acquires a mutex, blocking the current thread until it is able to do so.
///
/// This function will block the local thread until it is available to acquire
/// the mutex. Upon returning, the thread is the only thread with the lock
/// held. An RAII guard is returned to allow scoped unlock of the lock. When
/// the guard goes out of scope, the mutex will be unlocked.
///
/// The exact behavior on locking a mutex in the thread which already holds
/// the lock is left unspecified. However, this function will not return on
/// the second call (it might panic or deadlock, for example).
///
/// # Errors
///
/// Currently this function cannot fail. The standard library's Mutex may fail if there is a
/// panic while the lock is held, but without the standard library we currently have no good
/// way to detect panics. Poisoning may be added at a later time.
///
/// # Panics
///
/// This function might panic when called if the lock is already held by
/// the current thread.
pub fn lock(&self) -> LockResult<MutexGuard<'_, T>> {
self.lock_impl(true)
}
pub(crate) fn lock_impl(&self, _yield_on_fail: bool) -> LockResult<MutexGuard<'_, T>> {
aarch64_cpu::asm::sevl();
loop {
aarch64_cpu::asm::wfe();
match self.try_lock() {
Ok(g) => return Ok(g),
Err(TryLockError::WouldBlock) => {
#[cfg(feature = "alloc")]
if _yield_on_fail {
crate::thread::yield_now();
}
continue;
}
}
}
}
/// Attempts to acquire this lock.
///
/// If the lock could not be acquired at this time, then [`Err`] is returned.
/// Otherwise, an RAII guard is returned. The lock will be unlocked when the
/// guard is dropped.
///
/// This function does not block.
///
/// # Errors
///
/// If the mutex could not be acquired because it is already locked, then
/// this call will return the [`WouldBlock`] error.
pub fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>> {
let mut result: u32;
unsafe {
asm!(
"ldaxr {result:w}, [{is_locked_addr}]",
"cmp {result:w}, 0",
"bne 1f",
"mov {tmp:w}, 1",
"stlxr {result:w}, {tmp:w}, [{is_locked_addr}]",
"1:",
is_locked_addr = in(reg) &self.is_locked as *const u32 as u64,
tmp = out(reg) _,
result = out(reg) result,
options(nostack),
);
}
if result == 0 {
Ok(MutexGuard {
lock: self,
_make_unsend: PhantomData,
})
} else {
Err(TryLockError::WouldBlock)
}
}
/// Consumes this mutex, returning the underlying data.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error instead.
pub fn into_inner(self) -> LockResult<T>
where
T: Sized,
{
Ok(self.inner.into_inner())
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the `Mutex` mutably, no actual locking needs to
/// take place -- the mutable borrow statically guarantees no locks exist.
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error instead.
pub fn get_mut(&mut self) -> LockResult<&mut T> {
Ok(self.inner.get_mut())
}
}
#[derive(Debug)]
pub struct MutexGuard<'a, T: ?Sized + 'a> {
lock: &'a Mutex<T>,
_make_unsend: PhantomData<*const u8>,
}
unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {}
impl<T: ?Sized> Deref for MutexGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.lock.inner.get() }
}
}
impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.lock.inner.get() }
}
}
impl<'a, T: ?Sized> Drop for MutexGuard<'a, T> {
fn drop(&mut self) {
// TODO: poison the lock if there's a way to find out if we're panicking
unsafe {
asm!(
"stlr {1:w}, [{0}]",
"sev",
in(reg) &self.lock.is_locked as *const u32 as *mut u32,
in(reg) 0u32,
options(nostack),
);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_no_contention() {
let n = Mutex::new(1);
{
let mut guard = n.lock().unwrap();
assert!(n.try_lock().is_err());
*guard += 1;
assert_eq!(*guard, 2);
}
{
let mut guard = n.lock().unwrap();
assert!(n.try_lock().is_err());
*guard += 1;
assert_eq!(*guard, 3);
}
{
let mut guard = n.try_lock().unwrap();
*guard += 1;
assert_eq!(*guard, 4);
}
}
}