pub trait InstBuilder<'f>: InstBuilderBase<'f> {
Show 235 methods fn jump(self, block: Block, args: &[Value]) -> Inst { ... } fn brz(self, c: Value, block: Block, args: &[Value]) -> Inst { ... } fn brnz(self, c: Value, block: Block, args: &[Value]) -> Inst { ... } fn br_table(self, x: Value, block: Block, JT: JumpTable) -> Inst { ... } fn debugtrap(self) -> Inst { ... } fn trap<T1: Into<TrapCode>>(self, code: T1) -> Inst { ... } fn trapz<T1: Into<TrapCode>>(self, c: Value, code: T1) -> Inst { ... } fn resumable_trap<T1: Into<TrapCode>>(self, code: T1) -> Inst { ... } fn trapnz<T1: Into<TrapCode>>(self, c: Value, code: T1) -> Inst { ... } fn resumable_trapnz<T1: Into<TrapCode>>(self, c: Value, code: T1) -> Inst { ... } fn return_(self, rvals: &[Value]) -> Inst { ... } fn call(self, FN: FuncRef, args: &[Value]) -> Inst { ... } fn call_indirect(self, SIG: SigRef, callee: Value, args: &[Value]) -> Inst { ... } fn func_addr(self, iAddr: Type, FN: FuncRef) -> Value { ... } fn splat(self, TxN: Type, x: Value) -> Value { ... } fn swizzle(self, TxN: Type, x: Value, y: Value) -> Value { ... } fn insertlane<T1: Into<Uimm8>>(self, x: Value, y: Value, Idx: T1) -> Value { ... } fn extractlane<T1: Into<Uimm8>>(self, x: Value, Idx: T1) -> Value { ... } fn smin(self, x: Value, y: Value) -> Value { ... } fn umin(self, x: Value, y: Value) -> Value { ... } fn smax(self, x: Value, y: Value) -> Value { ... } fn umax(self, x: Value, y: Value) -> Value { ... } fn avg_round(self, x: Value, y: Value) -> Value { ... } fn uadd_sat(self, x: Value, y: Value) -> Value { ... } fn sadd_sat(self, x: Value, y: Value) -> Value { ... } fn usub_sat(self, x: Value, y: Value) -> Value { ... } fn ssub_sat(self, x: Value, y: Value) -> Value { ... } fn load<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        Mem: Type,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn store<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        x: Value,
        p: Value,
        Offset: T2
    ) -> Inst { ... } fn uload8<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        iExt8: Type,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn sload8<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        iExt8: Type,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn istore8<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        x: Value,
        p: Value,
        Offset: T2
    ) -> Inst { ... } fn uload16<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        iExt16: Type,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn sload16<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        iExt16: Type,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn istore16<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        x: Value,
        p: Value,
        Offset: T2
    ) -> Inst { ... } fn uload32<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn sload32<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn istore32<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        x: Value,
        p: Value,
        Offset: T2
    ) -> Inst { ... } fn uload8x8<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn sload8x8<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn uload16x4<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn sload16x4<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn uload32x2<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn sload32x2<T1: Into<MemFlags>, T2: Into<Offset32>>(
        self,
        MemFlags: T1,
        p: Value,
        Offset: T2
    ) -> Value { ... } fn stack_load<T1: Into<Offset32>>(
        self,
        Mem: Type,
        SS: StackSlot,
        Offset: T1
    ) -> Value { ... } fn stack_store<T1: Into<Offset32>>(
        self,
        x: Value,
        SS: StackSlot,
        Offset: T1
    ) -> Inst { ... } fn stack_addr<T1: Into<Offset32>>(
        self,
        iAddr: Type,
        SS: StackSlot,
        Offset: T1
    ) -> Value { ... } fn dynamic_stack_load(self, Mem: Type, DSS: DynamicStackSlot) -> Value { ... } fn dynamic_stack_store(self, x: Value, DSS: DynamicStackSlot) -> Inst { ... } fn dynamic_stack_addr(self, iAddr: Type, DSS: DynamicStackSlot) -> Value { ... } fn global_value(self, Mem: Type, GV: GlobalValue) -> Value { ... } fn symbol_value(self, Mem: Type, GV: GlobalValue) -> Value { ... } fn tls_value(self, Mem: Type, GV: GlobalValue) -> Value { ... } fn heap_addr<T1: Into<Uimm32>, T2: Into<Uimm8>>(
        self,
        iAddr: Type,
        H: Heap,
        index: Value,
        Offset: T1,
        Size: T2
    ) -> Value { ... } fn heap_load<T1: Into<HeapImm>>(
        self,
        Mem: Type,
        heap_imm: T1,
        index: Value
    ) -> Value { ... } fn heap_store<T1: Into<HeapImm>>(
        self,
        heap_imm: T1,
        index: Value,
        a: Value
    ) -> Inst { ... } fn get_pinned_reg(self, iAddr: Type) -> Value { ... } fn set_pinned_reg(self, addr: Value) -> Inst { ... } fn get_frame_pointer(self, iAddr: Type) -> Value { ... } fn get_stack_pointer(self, iAddr: Type) -> Value { ... } fn get_return_address(self, iAddr: Type) -> Value { ... } fn table_addr<T1: Into<Offset32>>(
        self,
        iAddr: Type,
        T: Table,
        p: Value,
        Offset: T1
    ) -> Value { ... } fn iconst<T1: Into<Imm64>>(self, NarrowInt: Type, N: T1) -> Value { ... } fn f32const<T1: Into<Ieee32>>(self, N: T1) -> Value { ... } fn f64const<T1: Into<Ieee64>>(self, N: T1) -> Value { ... } fn vconst<T1: Into<Constant>>(self, TxN: Type, N: T1) -> Value { ... } fn shuffle<T1: Into<Immediate>>(self, a: Value, b: Value, mask: T1) -> Value { ... } fn null(self, Ref: Type) -> Value { ... } fn nop(self) -> Inst { ... } fn select(self, c: Value, x: Value, y: Value) -> Value { ... } fn select_spectre_guard(self, c: Value, x: Value, y: Value) -> Value { ... } fn bitselect(self, c: Value, x: Value, y: Value) -> Value { ... } fn vsplit(self, x: Value) -> (Value, Value) { ... } fn vconcat(self, x: Value, y: Value) -> Value { ... } fn vselect(self, c: Value, x: Value, y: Value) -> Value { ... } fn vany_true(self, a: Value) -> Value { ... } fn vall_true(self, a: Value) -> Value { ... } fn vhigh_bits(self, Int: Type, a: Value) -> Value { ... } fn icmp<T1: Into<IntCC>>(self, Cond: T1, x: Value, y: Value) -> Value { ... } fn icmp_imm<T1: Into<IntCC>, T2: Into<Imm64>>(
        self,
        Cond: T1,
        x: Value,
        Y: T2
    ) -> Value { ... } fn ifcmp(self, x: Value, y: Value) -> Value { ... } fn ifcmp_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn iadd(self, x: Value, y: Value) -> Value { ... } fn isub(self, x: Value, y: Value) -> Value { ... } fn ineg(self, x: Value) -> Value { ... } fn iabs(self, x: Value) -> Value { ... } fn imul(self, x: Value, y: Value) -> Value { ... } fn umulhi(self, x: Value, y: Value) -> Value { ... } fn smulhi(self, x: Value, y: Value) -> Value { ... } fn sqmul_round_sat(self, x: Value, y: Value) -> Value { ... } fn udiv(self, x: Value, y: Value) -> Value { ... } fn sdiv(self, x: Value, y: Value) -> Value { ... } fn urem(self, x: Value, y: Value) -> Value { ... } fn srem(self, x: Value, y: Value) -> Value { ... } fn iadd_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn imul_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn udiv_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn sdiv_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn urem_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn srem_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn irsub_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn iadd_cin(self, x: Value, y: Value, c_in: Value) -> Value { ... } fn iadd_ifcin(self, x: Value, y: Value, c_in: Value) -> Value { ... } fn iadd_cout(self, x: Value, y: Value) -> (Value, Value) { ... } fn iadd_ifcout(self, x: Value, y: Value) -> (Value, Value) { ... } fn iadd_carry(self, x: Value, y: Value, c_in: Value) -> (Value, Value) { ... } fn iadd_ifcarry(self, x: Value, y: Value, c_in: Value) -> (Value, Value) { ... } fn uadd_overflow_trap<T1: Into<TrapCode>>(
        self,
        x: Value,
        y: Value,
        code: T1
    ) -> Value { ... } fn isub_bin(self, x: Value, y: Value, b_in: Value) -> Value { ... } fn isub_ifbin(self, x: Value, y: Value, b_in: Value) -> Value { ... } fn isub_bout(self, x: Value, y: Value) -> (Value, Value) { ... } fn isub_ifbout(self, x: Value, y: Value) -> (Value, Value) { ... } fn isub_borrow(self, x: Value, y: Value, b_in: Value) -> (Value, Value) { ... } fn isub_ifborrow(self, x: Value, y: Value, b_in: Value) -> (Value, Value) { ... } fn band(self, x: Value, y: Value) -> Value { ... } fn bor(self, x: Value, y: Value) -> Value { ... } fn bxor(self, x: Value, y: Value) -> Value { ... } fn bnot(self, x: Value) -> Value { ... } fn band_not(self, x: Value, y: Value) -> Value { ... } fn bor_not(self, x: Value, y: Value) -> Value { ... } fn bxor_not(self, x: Value, y: Value) -> Value { ... } fn band_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn bor_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn bxor_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn rotl(self, x: Value, y: Value) -> Value { ... } fn rotr(self, x: Value, y: Value) -> Value { ... } fn rotl_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn rotr_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn ishl(self, x: Value, y: Value) -> Value { ... } fn ushr(self, x: Value, y: Value) -> Value { ... } fn sshr(self, x: Value, y: Value) -> Value { ... } fn ishl_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn ushr_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn sshr_imm<T1: Into<Imm64>>(self, x: Value, Y: T1) -> Value { ... } fn bitrev(self, x: Value) -> Value { ... } fn clz(self, x: Value) -> Value { ... } fn cls(self, x: Value) -> Value { ... } fn ctz(self, x: Value) -> Value { ... } fn bswap(self, x: Value) -> Value { ... } fn popcnt(self, x: Value) -> Value { ... } fn fcmp<T1: Into<FloatCC>>(self, Cond: T1, x: Value, y: Value) -> Value { ... } fn ffcmp(self, x: Value, y: Value) -> Value { ... } fn fadd(self, x: Value, y: Value) -> Value { ... } fn fsub(self, x: Value, y: Value) -> Value { ... } fn fmul(self, x: Value, y: Value) -> Value { ... } fn fdiv(self, x: Value, y: Value) -> Value { ... } fn sqrt(self, x: Value) -> Value { ... } fn fma(self, x: Value, y: Value, z: Value) -> Value { ... } fn fneg(self, x: Value) -> Value { ... } fn fabs(self, x: Value) -> Value { ... } fn fcopysign(self, x: Value, y: Value) -> Value { ... } fn fmin(self, x: Value, y: Value) -> Value { ... } fn fmin_pseudo(self, x: Value, y: Value) -> Value { ... } fn fmax(self, x: Value, y: Value) -> Value { ... } fn fmax_pseudo(self, x: Value, y: Value) -> Value { ... } fn ceil(self, x: Value) -> Value { ... } fn floor(self, x: Value) -> Value { ... } fn trunc(self, x: Value) -> Value { ... } fn nearest(self, x: Value) -> Value { ... } fn is_null(self, x: Value) -> Value { ... } fn is_invalid(self, x: Value) -> Value { ... } fn bitcast<T1: Into<MemFlags>>(
        self,
        MemTo: Type,
        MemFlags: T1,
        x: Value
    ) -> Value { ... } fn scalar_to_vector(self, TxN: Type, s: Value) -> Value { ... } fn bmask(self, IntTo: Type, x: Value) -> Value { ... } fn ireduce(self, IntTo: Type, x: Value) -> Value { ... } fn snarrow(self, x: Value, y: Value) -> Value { ... } fn unarrow(self, x: Value, y: Value) -> Value { ... } fn uunarrow(self, x: Value, y: Value) -> Value { ... } fn swiden_low(self, x: Value) -> Value { ... } fn swiden_high(self, x: Value) -> Value { ... } fn uwiden_low(self, x: Value) -> Value { ... } fn uwiden_high(self, x: Value) -> Value { ... } fn iadd_pairwise(self, x: Value, y: Value) -> Value { ... } fn widening_pairwise_dot_product_s(self, x: Value, y: Value) -> Value { ... } fn uextend(self, IntTo: Type, x: Value) -> Value { ... } fn sextend(self, IntTo: Type, x: Value) -> Value { ... } fn fpromote(self, FloatTo: Type, x: Value) -> Value { ... } fn fdemote(self, FloatTo: Type, x: Value) -> Value { ... } fn fvdemote(self, x: Value) -> Value { ... } fn fvpromote_low(self, a: Value) -> Value { ... } fn fcvt_to_uint(self, IntTo: Type, x: Value) -> Value { ... } fn fcvt_to_sint(self, IntTo: Type, x: Value) -> Value { ... } fn fcvt_to_uint_sat(self, IntTo: Type, x: Value) -> Value { ... } fn fcvt_to_sint_sat(self, IntTo: Type, x: Value) -> Value { ... } fn fcvt_from_uint(self, FloatTo: Type, x: Value) -> Value { ... } fn fcvt_from_sint(self, FloatTo: Type, x: Value) -> Value { ... } fn fcvt_low_from_sint(self, FloatTo: Type, x: Value) -> Value { ... } fn isplit(self, x: Value) -> (Value, Value) { ... } fn iconcat(self, lo: Value, hi: Value) -> Value { ... } fn atomic_rmw<T1: Into<MemFlags>, T2: Into<AtomicRmwOp>>(
        self,
        AtomicMem: Type,
        MemFlags: T1,
        AtomicRmwOp: T2,
        p: Value,
        x: Value
    ) -> Value { ... } fn atomic_cas<T1: Into<MemFlags>>(
        self,
        MemFlags: T1,
        p: Value,
        e: Value,
        x: Value
    ) -> Value { ... } fn atomic_load<T1: Into<MemFlags>>(
        self,
        AtomicMem: Type,
        MemFlags: T1,
        p: Value
    ) -> Value { ... } fn atomic_store<T1: Into<MemFlags>>(
        self,
        MemFlags: T1,
        x: Value,
        p: Value
    ) -> Inst { ... } fn fence(self) -> Inst { ... } fn extract_vector<T1: Into<Uimm8>>(self, x: Value, y: T1) -> Value { ... } fn AtomicCas(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        flags: MemFlags,
        arg0: Value,
        arg1: Value,
        arg2: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn AtomicRmw(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        flags: MemFlags,
        op: AtomicRmwOp,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Binary(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn BinaryImm64(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Imm64,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn BinaryImm8(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Uimm8,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Branch(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        destination: Block,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn BranchTable(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        destination: Block,
        table: JumpTable,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Call(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        func_ref: FuncRef,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn CallIndirect(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        sig_ref: SigRef,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn CondTrap(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        code: TrapCode,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn DynamicStackLoad(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        dynamic_stack_slot: DynamicStackSlot
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn DynamicStackStore(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        dynamic_stack_slot: DynamicStackSlot,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn FloatCompare(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: FloatCC,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn FuncAddr(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        func_ref: FuncRef
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn HeapAddr(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        heap: Heap,
        offset: Uimm32,
        size: Uimm8,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn HeapLoad(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        heap_imm: HeapImm,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn HeapStore(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        heap_imm: HeapImm,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn IntAddTrap(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        code: TrapCode,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn IntCompare(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: IntCC,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn IntCompareImm(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        cond: IntCC,
        imm: Imm64,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Jump(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        destination: Block,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Load(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        flags: MemFlags,
        offset: Offset32,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn LoadNoOffset(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        flags: MemFlags,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn MultiAry(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        args: ValueList
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn NullAry(
        self,
        opcode: Opcode,
        ctrl_typevar: Type
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Shuffle(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Immediate,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn StackLoad(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        stack_slot: StackSlot,
        offset: Offset32
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn StackStore(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        stack_slot: StackSlot,
        offset: Offset32,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Store(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        flags: MemFlags,
        offset: Offset32,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn StoreNoOffset(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        flags: MemFlags,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn TableAddr(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        table: Table,
        offset: Offset32,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Ternary(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        arg0: Value,
        arg1: Value,
        arg2: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn TernaryImm8(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Uimm8,
        arg0: Value,
        arg1: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Trap(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        code: TrapCode
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn Unary(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        arg0: Value
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryConst(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        constant_handle: Constant
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryGlobalValue(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        global_value: GlobalValue
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryIeee32(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Ieee32
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryIeee64(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Ieee64
    ) -> (Inst, &'f mut DataFlowGraph) { ... } fn UnaryImm(
        self,
        opcode: Opcode,
        ctrl_typevar: Type,
        imm: Imm64
    ) -> (Inst, &'f mut DataFlowGraph) { ... }
}
Expand description

Convenience methods for building instructions.

The InstBuilder trait has one method per instruction opcode for conveniently constructing the instruction with minimum arguments. Polymorphic instructions infer their result types from the input arguments when possible. In some cases, an explicit ctrl_typevar argument is required.

The opcode methods return the new instruction’s result values, or the Inst itself for instructions that don’t have any results.

There is also a method per instruction format. These methods all return an Inst.

Provided Methods§

Jump.

Unconditionally jump to a basic block, passing the specified block arguments. The number and types of arguments must match the destination block.

Inputs:

  • block: Destination basic block
  • args: block arguments
Examples found in repository?
src/licm.rs (line 96)
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
fn create_pre_header(
    header: Block,
    func: &mut Function,
    cfg: &mut ControlFlowGraph,
    domtree: &DominatorTree,
) -> Block {
    let pool = &mut ListPool::<Value>::new();
    let header_args_values = func.dfg.block_params(header).to_vec();
    let header_args_types: Vec<Type> = header_args_values
        .into_iter()
        .map(|val| func.dfg.value_type(val))
        .collect();
    let pre_header = func.dfg.make_block();
    let mut pre_header_args_value: EntityList<Value> = EntityList::new();
    for typ in header_args_types {
        pre_header_args_value.push(func.dfg.append_block_param(pre_header, typ), pool);
    }

    for BlockPredecessor {
        inst: last_inst, ..
    } in cfg.pred_iter(header)
    {
        // We only follow normal edges (not the back edges)
        if !domtree.dominates(header, last_inst, &func.layout) {
            func.rewrite_branch_destination(last_inst, header, pre_header);
        }
    }

    // Inserts the pre-header at the right place in the layout.
    let mut pos = FuncCursor::new(func).at_top(header);
    pos.insert_block(pre_header);
    pos.next_inst();
    pos.ins().jump(header, pre_header_args_value.as_slice(pool));

    pre_header
}
More examples
Hide additional examples
src/legalizer/mod.rs (line 320)
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
fn expand_cond_trap(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    opcode: ir::Opcode,
    arg: ir::Value,
    code: ir::TrapCode,
) {
    trace!(
        "expanding conditional trap: {:?}: {}",
        inst,
        func.dfg.display_inst(inst)
    );

    // Parse the instruction.
    let trapz = match opcode {
        ir::Opcode::Trapz => true,
        ir::Opcode::Trapnz | ir::Opcode::ResumableTrapnz => false,
        _ => panic!("Expected cond trap: {}", func.dfg.display_inst(inst)),
    };

    // Split the block after `inst`:
    //
    //     trapnz arg
    //     ..
    //
    // Becomes:
    //
    //     brz arg, new_block_resume
    //     jump new_block_trap
    //
    //   new_block_trap:
    //     trap
    //
    //   new_block_resume:
    //     ..
    let old_block = func.layout.pp_block(inst);
    let new_block_trap = func.dfg.make_block();
    let new_block_resume = func.dfg.make_block();

    // Trapping is a rare event, mark the trapping block as cold.
    func.layout.set_cold(new_block_trap);

    // Replace trap instruction by the inverted condition.
    if trapz {
        func.dfg.replace(inst).brnz(arg, new_block_resume, &[]);
    } else {
        func.dfg.replace(inst).brz(arg, new_block_resume, &[]);
    }

    // Add jump instruction after the inverted branch.
    let mut pos = FuncCursor::new(func).after_inst(inst);
    pos.use_srcloc(inst);
    pos.ins().jump(new_block_trap, &[]);

    // Insert the new label and the unconditional trap terminator.
    pos.insert_block(new_block_trap);

    match opcode {
        ir::Opcode::Trapz | ir::Opcode::Trapnz => {
            pos.ins().trap(code);
        }
        ir::Opcode::ResumableTrapnz => {
            pos.ins().resumable_trap(code);
            pos.ins().jump(new_block_resume, &[]);
        }
        _ => unreachable!(),
    }

    // Insert the new label and resume the execution when the trap fails.
    pos.insert_block(new_block_resume);

    // Finally update the CFG.
    cfg.recompute_block(pos.func, old_block);
    cfg.recompute_block(pos.func, new_block_resume);
    cfg.recompute_block(pos.func, new_block_trap);
}
src/simple_preopt.rs (line 555)
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
fn branch_order(pos: &mut FuncCursor, cfg: &mut ControlFlowGraph, block: Block, inst: Inst) {
    let (term_inst, term_inst_args, term_dest, cond_inst, cond_inst_args, cond_dest, kind) =
        match pos.func.dfg[inst] {
            InstructionData::Jump {
                opcode: Opcode::Jump,
                destination,
                ref args,
            } => {
                let next_block = if let Some(next_block) = pos.func.layout.next_block(block) {
                    next_block
                } else {
                    return;
                };

                if destination == next_block {
                    return;
                }

                let prev_inst = if let Some(prev_inst) = pos.func.layout.prev_inst(inst) {
                    prev_inst
                } else {
                    return;
                };

                let prev_inst_data = &pos.func.dfg[prev_inst];

                if let Some(prev_dest) = prev_inst_data.branch_destination() {
                    if prev_dest != next_block {
                        return;
                    }
                } else {
                    return;
                }

                match prev_inst_data {
                    InstructionData::Branch {
                        opcode,
                        args: ref prev_args,
                        destination: cond_dest,
                    } => {
                        let cond_arg = {
                            let args = pos.func.dfg.inst_args(prev_inst);
                            args[0]
                        };

                        let kind = match opcode {
                            Opcode::Brz => BranchOrderKind::BrzToBrnz(cond_arg),
                            Opcode::Brnz => BranchOrderKind::BrnzToBrz(cond_arg),
                            _ => panic!("unexpected opcode"),
                        };

                        (
                            inst,
                            args.clone(),
                            destination,
                            prev_inst,
                            prev_args.clone(),
                            *cond_dest,
                            kind,
                        )
                    }
                    _ => return,
                }
            }

            _ => return,
        };

    let cond_args = cond_inst_args.as_slice(&pos.func.dfg.value_lists).to_vec();
    let term_args = term_inst_args.as_slice(&pos.func.dfg.value_lists).to_vec();

    match kind {
        BranchOrderKind::BrnzToBrz(cond_arg) => {
            pos.func
                .dfg
                .replace(term_inst)
                .jump(cond_dest, &cond_args[1..]);
            pos.func
                .dfg
                .replace(cond_inst)
                .brz(cond_arg, term_dest, &term_args);
        }
        BranchOrderKind::BrzToBrnz(cond_arg) => {
            pos.func
                .dfg
                .replace(term_inst)
                .jump(cond_dest, &cond_args[1..]);
            pos.func
                .dfg
                .replace(cond_inst)
                .brnz(cond_arg, term_dest, &term_args);
        }
    }

    cfg.recompute_block(pos.func, block);
}

Branch when zero.

Take the branch when c = 0.

Inputs:

  • c: Controlling value to test
  • block: Destination basic block
  • args: block arguments
Examples found in repository?
src/legalizer/mod.rs (line 314)
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
fn expand_cond_trap(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    opcode: ir::Opcode,
    arg: ir::Value,
    code: ir::TrapCode,
) {
    trace!(
        "expanding conditional trap: {:?}: {}",
        inst,
        func.dfg.display_inst(inst)
    );

    // Parse the instruction.
    let trapz = match opcode {
        ir::Opcode::Trapz => true,
        ir::Opcode::Trapnz | ir::Opcode::ResumableTrapnz => false,
        _ => panic!("Expected cond trap: {}", func.dfg.display_inst(inst)),
    };

    // Split the block after `inst`:
    //
    //     trapnz arg
    //     ..
    //
    // Becomes:
    //
    //     brz arg, new_block_resume
    //     jump new_block_trap
    //
    //   new_block_trap:
    //     trap
    //
    //   new_block_resume:
    //     ..
    let old_block = func.layout.pp_block(inst);
    let new_block_trap = func.dfg.make_block();
    let new_block_resume = func.dfg.make_block();

    // Trapping is a rare event, mark the trapping block as cold.
    func.layout.set_cold(new_block_trap);

    // Replace trap instruction by the inverted condition.
    if trapz {
        func.dfg.replace(inst).brnz(arg, new_block_resume, &[]);
    } else {
        func.dfg.replace(inst).brz(arg, new_block_resume, &[]);
    }

    // Add jump instruction after the inverted branch.
    let mut pos = FuncCursor::new(func).after_inst(inst);
    pos.use_srcloc(inst);
    pos.ins().jump(new_block_trap, &[]);

    // Insert the new label and the unconditional trap terminator.
    pos.insert_block(new_block_trap);

    match opcode {
        ir::Opcode::Trapz | ir::Opcode::Trapnz => {
            pos.ins().trap(code);
        }
        ir::Opcode::ResumableTrapnz => {
            pos.ins().resumable_trap(code);
            pos.ins().jump(new_block_resume, &[]);
        }
        _ => unreachable!(),
    }

    // Insert the new label and resume the execution when the trap fails.
    pos.insert_block(new_block_resume);

    // Finally update the CFG.
    cfg.recompute_block(pos.func, old_block);
    cfg.recompute_block(pos.func, new_block_resume);
    cfg.recompute_block(pos.func, new_block_trap);
}
More examples
Hide additional examples
src/simple_preopt.rs (line 559)
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
fn branch_order(pos: &mut FuncCursor, cfg: &mut ControlFlowGraph, block: Block, inst: Inst) {
    let (term_inst, term_inst_args, term_dest, cond_inst, cond_inst_args, cond_dest, kind) =
        match pos.func.dfg[inst] {
            InstructionData::Jump {
                opcode: Opcode::Jump,
                destination,
                ref args,
            } => {
                let next_block = if let Some(next_block) = pos.func.layout.next_block(block) {
                    next_block
                } else {
                    return;
                };

                if destination == next_block {
                    return;
                }

                let prev_inst = if let Some(prev_inst) = pos.func.layout.prev_inst(inst) {
                    prev_inst
                } else {
                    return;
                };

                let prev_inst_data = &pos.func.dfg[prev_inst];

                if let Some(prev_dest) = prev_inst_data.branch_destination() {
                    if prev_dest != next_block {
                        return;
                    }
                } else {
                    return;
                }

                match prev_inst_data {
                    InstructionData::Branch {
                        opcode,
                        args: ref prev_args,
                        destination: cond_dest,
                    } => {
                        let cond_arg = {
                            let args = pos.func.dfg.inst_args(prev_inst);
                            args[0]
                        };

                        let kind = match opcode {
                            Opcode::Brz => BranchOrderKind::BrzToBrnz(cond_arg),
                            Opcode::Brnz => BranchOrderKind::BrnzToBrz(cond_arg),
                            _ => panic!("unexpected opcode"),
                        };

                        (
                            inst,
                            args.clone(),
                            destination,
                            prev_inst,
                            prev_args.clone(),
                            *cond_dest,
                            kind,
                        )
                    }
                    _ => return,
                }
            }

            _ => return,
        };

    let cond_args = cond_inst_args.as_slice(&pos.func.dfg.value_lists).to_vec();
    let term_args = term_inst_args.as_slice(&pos.func.dfg.value_lists).to_vec();

    match kind {
        BranchOrderKind::BrnzToBrz(cond_arg) => {
            pos.func
                .dfg
                .replace(term_inst)
                .jump(cond_dest, &cond_args[1..]);
            pos.func
                .dfg
                .replace(cond_inst)
                .brz(cond_arg, term_dest, &term_args);
        }
        BranchOrderKind::BrzToBrnz(cond_arg) => {
            pos.func
                .dfg
                .replace(term_inst)
                .jump(cond_dest, &cond_args[1..]);
            pos.func
                .dfg
                .replace(cond_inst)
                .brnz(cond_arg, term_dest, &term_args);
        }
    }

    cfg.recompute_block(pos.func, block);
}

Branch when non-zero.

Take the branch when c != 0.

Inputs:

  • c: Controlling value to test
  • block: Destination basic block
  • args: block arguments
Examples found in repository?
src/legalizer/mod.rs (line 312)
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
fn expand_cond_trap(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    opcode: ir::Opcode,
    arg: ir::Value,
    code: ir::TrapCode,
) {
    trace!(
        "expanding conditional trap: {:?}: {}",
        inst,
        func.dfg.display_inst(inst)
    );

    // Parse the instruction.
    let trapz = match opcode {
        ir::Opcode::Trapz => true,
        ir::Opcode::Trapnz | ir::Opcode::ResumableTrapnz => false,
        _ => panic!("Expected cond trap: {}", func.dfg.display_inst(inst)),
    };

    // Split the block after `inst`:
    //
    //     trapnz arg
    //     ..
    //
    // Becomes:
    //
    //     brz arg, new_block_resume
    //     jump new_block_trap
    //
    //   new_block_trap:
    //     trap
    //
    //   new_block_resume:
    //     ..
    let old_block = func.layout.pp_block(inst);
    let new_block_trap = func.dfg.make_block();
    let new_block_resume = func.dfg.make_block();

    // Trapping is a rare event, mark the trapping block as cold.
    func.layout.set_cold(new_block_trap);

    // Replace trap instruction by the inverted condition.
    if trapz {
        func.dfg.replace(inst).brnz(arg, new_block_resume, &[]);
    } else {
        func.dfg.replace(inst).brz(arg, new_block_resume, &[]);
    }

    // Add jump instruction after the inverted branch.
    let mut pos = FuncCursor::new(func).after_inst(inst);
    pos.use_srcloc(inst);
    pos.ins().jump(new_block_trap, &[]);

    // Insert the new label and the unconditional trap terminator.
    pos.insert_block(new_block_trap);

    match opcode {
        ir::Opcode::Trapz | ir::Opcode::Trapnz => {
            pos.ins().trap(code);
        }
        ir::Opcode::ResumableTrapnz => {
            pos.ins().resumable_trap(code);
            pos.ins().jump(new_block_resume, &[]);
        }
        _ => unreachable!(),
    }

    // Insert the new label and resume the execution when the trap fails.
    pos.insert_block(new_block_resume);

    // Finally update the CFG.
    cfg.recompute_block(pos.func, old_block);
    cfg.recompute_block(pos.func, new_block_resume);
    cfg.recompute_block(pos.func, new_block_trap);
}
More examples
Hide additional examples
src/simple_preopt.rs (line 569)
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
fn branch_order(pos: &mut FuncCursor, cfg: &mut ControlFlowGraph, block: Block, inst: Inst) {
    let (term_inst, term_inst_args, term_dest, cond_inst, cond_inst_args, cond_dest, kind) =
        match pos.func.dfg[inst] {
            InstructionData::Jump {
                opcode: Opcode::Jump,
                destination,
                ref args,
            } => {
                let next_block = if let Some(next_block) = pos.func.layout.next_block(block) {
                    next_block
                } else {
                    return;
                };

                if destination == next_block {
                    return;
                }

                let prev_inst = if let Some(prev_inst) = pos.func.layout.prev_inst(inst) {
                    prev_inst
                } else {
                    return;
                };

                let prev_inst_data = &pos.func.dfg[prev_inst];

                if let Some(prev_dest) = prev_inst_data.branch_destination() {
                    if prev_dest != next_block {
                        return;
                    }
                } else {
                    return;
                }

                match prev_inst_data {
                    InstructionData::Branch {
                        opcode,
                        args: ref prev_args,
                        destination: cond_dest,
                    } => {
                        let cond_arg = {
                            let args = pos.func.dfg.inst_args(prev_inst);
                            args[0]
                        };

                        let kind = match opcode {
                            Opcode::Brz => BranchOrderKind::BrzToBrnz(cond_arg),
                            Opcode::Brnz => BranchOrderKind::BrnzToBrz(cond_arg),
                            _ => panic!("unexpected opcode"),
                        };

                        (
                            inst,
                            args.clone(),
                            destination,
                            prev_inst,
                            prev_args.clone(),
                            *cond_dest,
                            kind,
                        )
                    }
                    _ => return,
                }
            }

            _ => return,
        };

    let cond_args = cond_inst_args.as_slice(&pos.func.dfg.value_lists).to_vec();
    let term_args = term_inst_args.as_slice(&pos.func.dfg.value_lists).to_vec();

    match kind {
        BranchOrderKind::BrnzToBrz(cond_arg) => {
            pos.func
                .dfg
                .replace(term_inst)
                .jump(cond_dest, &cond_args[1..]);
            pos.func
                .dfg
                .replace(cond_inst)
                .brz(cond_arg, term_dest, &term_args);
        }
        BranchOrderKind::BrzToBrnz(cond_arg) => {
            pos.func
                .dfg
                .replace(term_inst)
                .jump(cond_dest, &cond_args[1..]);
            pos.func
                .dfg
                .replace(cond_inst)
                .brnz(cond_arg, term_dest, &term_args);
        }
    }

    cfg.recompute_block(pos.func, block);
}

Indirect branch via jump table.

Use x as an unsigned index into the jump table JT. If a jump table entry is found, branch to the corresponding block. If no entry was found or the index is out-of-bounds, branch to the given default block.

Note that this branch instruction can’t pass arguments to the targeted blocks. Split critical edges as needed to work around this.

Do not confuse this with “tables” in WebAssembly. br_table is for jump tables with destinations within the current function only – think of a match in Rust or a switch in C. If you want to call a function in a dynamic library, that will typically use call_indirect.

Inputs:

  • x: i32 index into jump table
  • block: Destination basic block
  • JT: A jump table.

Encodes an assembly debug trap.

Terminate execution unconditionally.

Inputs:

  • code: A trap reason code.
Examples found in repository?
src/legalizer/mod.rs (line 327)
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
fn expand_cond_trap(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    opcode: ir::Opcode,
    arg: ir::Value,
    code: ir::TrapCode,
) {
    trace!(
        "expanding conditional trap: {:?}: {}",
        inst,
        func.dfg.display_inst(inst)
    );

    // Parse the instruction.
    let trapz = match opcode {
        ir::Opcode::Trapz => true,
        ir::Opcode::Trapnz | ir::Opcode::ResumableTrapnz => false,
        _ => panic!("Expected cond trap: {}", func.dfg.display_inst(inst)),
    };

    // Split the block after `inst`:
    //
    //     trapnz arg
    //     ..
    //
    // Becomes:
    //
    //     brz arg, new_block_resume
    //     jump new_block_trap
    //
    //   new_block_trap:
    //     trap
    //
    //   new_block_resume:
    //     ..
    let old_block = func.layout.pp_block(inst);
    let new_block_trap = func.dfg.make_block();
    let new_block_resume = func.dfg.make_block();

    // Trapping is a rare event, mark the trapping block as cold.
    func.layout.set_cold(new_block_trap);

    // Replace trap instruction by the inverted condition.
    if trapz {
        func.dfg.replace(inst).brnz(arg, new_block_resume, &[]);
    } else {
        func.dfg.replace(inst).brz(arg, new_block_resume, &[]);
    }

    // Add jump instruction after the inverted branch.
    let mut pos = FuncCursor::new(func).after_inst(inst);
    pos.use_srcloc(inst);
    pos.ins().jump(new_block_trap, &[]);

    // Insert the new label and the unconditional trap terminator.
    pos.insert_block(new_block_trap);

    match opcode {
        ir::Opcode::Trapz | ir::Opcode::Trapnz => {
            pos.ins().trap(code);
        }
        ir::Opcode::ResumableTrapnz => {
            pos.ins().resumable_trap(code);
            pos.ins().jump(new_block_resume, &[]);
        }
        _ => unreachable!(),
    }

    // Insert the new label and resume the execution when the trap fails.
    pos.insert_block(new_block_resume);

    // Finally update the CFG.
    cfg.recompute_block(pos.func, old_block);
    cfg.recompute_block(pos.func, new_block_resume);
    cfg.recompute_block(pos.func, new_block_trap);
}
More examples
Hide additional examples
src/legalizer/heap.rs (line 275)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
fn bounds_check_and_compute_addr(
    pos: &mut FuncCursor,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
    heap: ir::Heap,
    // Dynamic operand indexing into the heap.
    index: ir::Value,
    // Static immediate added to the index.
    offset: u32,
    // Static size of the heap access.
    access_size: u8,
) -> ir::Value {
    let pointer_type = isa.pointer_type();
    let spectre = isa.flags().enable_heap_access_spectre_mitigation();
    let offset_and_size = offset_plus_size(offset, access_size);

    let ir::HeapData {
        base: _,
        min_size,
        offset_guard_size: guard_size,
        style,
        index_type,
    } = pos.func.heaps[heap].clone();

    let index = cast_index_to_pointer_ty(index, index_type, pointer_type, pos);

    // We need to emit code that will trap (or compute an address that will trap
    // when accessed) if
    //
    //     index + offset + access_size > bound
    //
    // or if the `index + offset + access_size` addition overflows.
    //
    // Note that we ultimately want a 64-bit integer (we only target 64-bit
    // architectures at the moment) and that `offset` is a `u32` and
    // `access_size` is a `u8`. This means that we can add the latter together
    // as `u64`s without fear of overflow, and we only have to be concerned with
    // whether adding in `index` will overflow.
    //
    // Finally, the following right-hand sides of the matches do have a little
    // bit of duplicated code across them, but I think writing it this way is
    // worth it for readability and seeing very clearly each of our cases for
    // different bounds checks and optimizations of those bounds checks. It is
    // intentionally written in a straightforward case-matching style that will
    // hopefully make it easy to port to ISLE one day.
    match style {
        // ====== Dynamic Memories ======
        //
        // 1. First special case for when `offset + access_size == 1`:
        //
        //            index + 1 > bound
        //        ==> index >= bound
        //
        //    1.a. When Spectre mitigations are enabled, avoid duplicating
        //         bounds checks between the mitigations and the regular bounds
        //         checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 && spectre => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThanOrEqual,
                    lhs: index,
                    rhs: bound,
                }),
            )
        }
        //    1.b. Emit explicit `index >= bound` bounds checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 2. Second special case for when `offset + access_size <= min_size`.
        //
        //    We know that `bound >= min_size`, so we can do the following
        //    comparison, without fear of the right-hand side wrapping around:
        //
        //            index + offset + access_size > bound
        //        ==> index > bound - (offset + access_size)
        //
        //    2.a. Dedupe bounds checks with Spectre mitigations.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size <= min_size.into() && spectre => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let adjusted_bound = pos.ins().iadd_imm(bound, -(offset_and_size as i64));
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: index,
                    rhs: adjusted_bound,
                }),
            )
        }
        //    2.b. Emit explicit `index > bound - (offset + access_size)` bounds
        //         checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size <= min_size.into() => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let adjusted_bound = pos.ins().iadd_imm(bound, -(offset_and_size as i64));
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThan, index, adjusted_bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 3. General case for dynamic memories:
        //
        //        index + offset + access_size > bound
        //
        //    And we have to handle the overflow case in the left-hand side.
        //
        //    3.a. Dedupe bounds checks with Spectre mitigations.
        ir::HeapStyle::Dynamic { bound_gv } if spectre => {
            let access_size_val = pos.ins().iconst(pointer_type, offset_and_size as i64);
            let adjusted_index =
                pos.ins()
                    .uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: adjusted_index,
                    rhs: bound,
                }),
            )
        }
        //    3.b. Emit an explicit `index + offset + access_size > bound`
        //         check.
        ir::HeapStyle::Dynamic { bound_gv } => {
            let access_size_val = pos.ins().iconst(pointer_type, offset_and_size as i64);
            let adjusted_index =
                pos.ins()
                    .uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThan, adjusted_index, bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // ====== Static Memories ======
        //
        // With static memories we know the size of the heap bound at compile
        // time.
        //
        // 1. First special case: trap immediately if `offset + access_size >
        //    bound`, since we will end up being out-of-bounds regardless of the
        //    given `index`.
        ir::HeapStyle::Static { bound } if offset_and_size > bound.into() => {
            pos.ins().trap(ir::TrapCode::HeapOutOfBounds);

            // Split the block, as the trap is a terminator instruction.
            let curr_block = pos.current_block().expect("Cursor is not in a block");
            let new_block = pos.func.dfg.make_block();
            pos.insert_block(new_block);
            cfg.recompute_block(pos.func, curr_block);
            cfg.recompute_block(pos.func, new_block);

            let null = pos.ins().iconst(pointer_type, 0);
            return null;
        }

        // 2. Second special case for when we can completely omit explicit
        //    bounds checks for 32-bit static memories.
        //
        //    First, let's rewrite our comparison to move all of the constants
        //    to one side:
        //
        //            index + offset + access_size > bound
        //        ==> index > bound - (offset + access_size)
        //
        //    We know the subtraction on the right-hand side won't wrap because
        //    we didn't hit the first special case.
        //
        //    Additionally, we add our guard pages (if any) to the right-hand
        //    side, since we can rely on the virtual memory subsystem at runtime
        //    to catch out-of-bound accesses within the range `bound .. bound +
        //    guard_size`. So now we are dealing with
        //
        //        index > bound + guard_size - (offset + access_size)
        //
        //    Note that `bound + guard_size` cannot overflow for
        //    correctly-configured heaps, as otherwise the heap wouldn't fit in
        //    a 64-bit memory space.
        //
        //    The complement of our should-this-trap comparison expression is
        //    the should-this-not-trap comparison expression:
        //
        //        index <= bound + guard_size - (offset + access_size)
        //
        //    If we know the right-hand side is greater than or equal to
        //    `u32::MAX`, then
        //
        //        index <= u32::MAX <= bound + guard_size - (offset + access_size)
        //
        //    This expression is always true when the heap is indexed with
        //    32-bit integers because `index` cannot be larger than
        //    `u32::MAX`. This means that `index` is always either in bounds or
        //    within the guard page region, neither of which require emitting an
        //    explicit bounds check.
        ir::HeapStyle::Static { bound }
            if index_type == ir::types::I32
                && u64::from(u32::MAX)
                    <= u64::from(bound) + u64::from(guard_size) - offset_and_size =>
        {
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 3. General case for static memories.
        //
        //    We have to explicitly test whether
        //
        //        index > bound - (offset + access_size)
        //
        //    and trap if so.
        //
        //    Since we have to emit explicit bounds checks, we might as well be
        //    precise, not rely on the virtual memory subsystem at all, and not
        //    factor in the guard pages here.
        //
        //    3.a. Dedupe the Spectre mitigation and the explicit bounds check.
        ir::HeapStyle::Static { bound } if spectre => {
            // NB: this subtraction cannot wrap because we didn't hit the first
            // special case.
            let adjusted_bound = u64::from(bound) - offset_and_size;
            let adjusted_bound = pos.ins().iconst(pointer_type, adjusted_bound as i64);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: index,
                    rhs: adjusted_bound,
                }),
            )
        }
        //    3.b. Emit the explicit `index > bound - (offset + access_size)`
        //         check.
        ir::HeapStyle::Static { bound } => {
            // See comment in 3.a. above.
            let adjusted_bound = u64::from(bound) - offset_and_size;
            let oob = pos
                .ins()
                .icmp_imm(IntCC::UnsignedGreaterThan, index, adjusted_bound as i64);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }
    }
}

Trap when zero.

if c is non-zero, execution continues at the following instruction.

Inputs:

  • c: Controlling value to test
  • code: A trap reason code.

A resumable trap.

This instruction allows non-conditional traps to be used as non-terminal instructions.

Inputs:

  • code: A trap reason code.
Examples found in repository?
src/legalizer/mod.rs (line 330)
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
fn expand_cond_trap(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    opcode: ir::Opcode,
    arg: ir::Value,
    code: ir::TrapCode,
) {
    trace!(
        "expanding conditional trap: {:?}: {}",
        inst,
        func.dfg.display_inst(inst)
    );

    // Parse the instruction.
    let trapz = match opcode {
        ir::Opcode::Trapz => true,
        ir::Opcode::Trapnz | ir::Opcode::ResumableTrapnz => false,
        _ => panic!("Expected cond trap: {}", func.dfg.display_inst(inst)),
    };

    // Split the block after `inst`:
    //
    //     trapnz arg
    //     ..
    //
    // Becomes:
    //
    //     brz arg, new_block_resume
    //     jump new_block_trap
    //
    //   new_block_trap:
    //     trap
    //
    //   new_block_resume:
    //     ..
    let old_block = func.layout.pp_block(inst);
    let new_block_trap = func.dfg.make_block();
    let new_block_resume = func.dfg.make_block();

    // Trapping is a rare event, mark the trapping block as cold.
    func.layout.set_cold(new_block_trap);

    // Replace trap instruction by the inverted condition.
    if trapz {
        func.dfg.replace(inst).brnz(arg, new_block_resume, &[]);
    } else {
        func.dfg.replace(inst).brz(arg, new_block_resume, &[]);
    }

    // Add jump instruction after the inverted branch.
    let mut pos = FuncCursor::new(func).after_inst(inst);
    pos.use_srcloc(inst);
    pos.ins().jump(new_block_trap, &[]);

    // Insert the new label and the unconditional trap terminator.
    pos.insert_block(new_block_trap);

    match opcode {
        ir::Opcode::Trapz | ir::Opcode::Trapnz => {
            pos.ins().trap(code);
        }
        ir::Opcode::ResumableTrapnz => {
            pos.ins().resumable_trap(code);
            pos.ins().jump(new_block_resume, &[]);
        }
        _ => unreachable!(),
    }

    // Insert the new label and resume the execution when the trap fails.
    pos.insert_block(new_block_resume);

    // Finally update the CFG.
    cfg.recompute_block(pos.func, old_block);
    cfg.recompute_block(pos.func, new_block_resume);
    cfg.recompute_block(pos.func, new_block_trap);
}

Trap when non-zero.

If c is zero, execution continues at the following instruction.

Inputs:

  • c: Controlling value to test
  • code: A trap reason code.
Examples found in repository?
src/legalizer/table.rs (line 34)
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
pub fn expand_table_addr(
    isa: &dyn TargetIsa,
    inst: ir::Inst,
    func: &mut ir::Function,
    table: ir::Table,
    index: ir::Value,
    element_offset: Offset32,
) {
    let bound_gv = func.tables[table].bound_gv;
    let index_ty = func.dfg.value_type(index);
    let addr_ty = func.dfg.value_type(func.dfg.first_result(inst));
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Start with the bounds check. Trap if `index + 1 > bound`.
    let bound = pos.ins().global_value(index_ty, bound_gv);

    // `index > bound - 1` is the same as `index >= bound`.
    let oob = pos
        .ins()
        .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
    pos.ins().trapnz(oob, ir::TrapCode::TableOutOfBounds);

    // If Spectre mitigations are enabled, we will use a comparison to
    // short-circuit the computed table element address to the start
    // of the table on the misspeculation path when out-of-bounds.
    let spectre_oob_cmp = if isa.flags().enable_table_access_spectre_mitigation() {
        Some((index, bound))
    } else {
        None
    };

    compute_addr(
        inst,
        table,
        addr_ty,
        index,
        index_ty,
        element_offset,
        pos.func,
        spectre_oob_cmp,
    );
}
More examples
Hide additional examples
src/legalizer/heap.rs (line 182)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
fn bounds_check_and_compute_addr(
    pos: &mut FuncCursor,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
    heap: ir::Heap,
    // Dynamic operand indexing into the heap.
    index: ir::Value,
    // Static immediate added to the index.
    offset: u32,
    // Static size of the heap access.
    access_size: u8,
) -> ir::Value {
    let pointer_type = isa.pointer_type();
    let spectre = isa.flags().enable_heap_access_spectre_mitigation();
    let offset_and_size = offset_plus_size(offset, access_size);

    let ir::HeapData {
        base: _,
        min_size,
        offset_guard_size: guard_size,
        style,
        index_type,
    } = pos.func.heaps[heap].clone();

    let index = cast_index_to_pointer_ty(index, index_type, pointer_type, pos);

    // We need to emit code that will trap (or compute an address that will trap
    // when accessed) if
    //
    //     index + offset + access_size > bound
    //
    // or if the `index + offset + access_size` addition overflows.
    //
    // Note that we ultimately want a 64-bit integer (we only target 64-bit
    // architectures at the moment) and that `offset` is a `u32` and
    // `access_size` is a `u8`. This means that we can add the latter together
    // as `u64`s without fear of overflow, and we only have to be concerned with
    // whether adding in `index` will overflow.
    //
    // Finally, the following right-hand sides of the matches do have a little
    // bit of duplicated code across them, but I think writing it this way is
    // worth it for readability and seeing very clearly each of our cases for
    // different bounds checks and optimizations of those bounds checks. It is
    // intentionally written in a straightforward case-matching style that will
    // hopefully make it easy to port to ISLE one day.
    match style {
        // ====== Dynamic Memories ======
        //
        // 1. First special case for when `offset + access_size == 1`:
        //
        //            index + 1 > bound
        //        ==> index >= bound
        //
        //    1.a. When Spectre mitigations are enabled, avoid duplicating
        //         bounds checks between the mitigations and the regular bounds
        //         checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 && spectre => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThanOrEqual,
                    lhs: index,
                    rhs: bound,
                }),
            )
        }
        //    1.b. Emit explicit `index >= bound` bounds checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 2. Second special case for when `offset + access_size <= min_size`.
        //
        //    We know that `bound >= min_size`, so we can do the following
        //    comparison, without fear of the right-hand side wrapping around:
        //
        //            index + offset + access_size > bound
        //        ==> index > bound - (offset + access_size)
        //
        //    2.a. Dedupe bounds checks with Spectre mitigations.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size <= min_size.into() && spectre => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let adjusted_bound = pos.ins().iadd_imm(bound, -(offset_and_size as i64));
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: index,
                    rhs: adjusted_bound,
                }),
            )
        }
        //    2.b. Emit explicit `index > bound - (offset + access_size)` bounds
        //         checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size <= min_size.into() => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let adjusted_bound = pos.ins().iadd_imm(bound, -(offset_and_size as i64));
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThan, index, adjusted_bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 3. General case for dynamic memories:
        //
        //        index + offset + access_size > bound
        //
        //    And we have to handle the overflow case in the left-hand side.
        //
        //    3.a. Dedupe bounds checks with Spectre mitigations.
        ir::HeapStyle::Dynamic { bound_gv } if spectre => {
            let access_size_val = pos.ins().iconst(pointer_type, offset_and_size as i64);
            let adjusted_index =
                pos.ins()
                    .uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: adjusted_index,
                    rhs: bound,
                }),
            )
        }
        //    3.b. Emit an explicit `index + offset + access_size > bound`
        //         check.
        ir::HeapStyle::Dynamic { bound_gv } => {
            let access_size_val = pos.ins().iconst(pointer_type, offset_and_size as i64);
            let adjusted_index =
                pos.ins()
                    .uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThan, adjusted_index, bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // ====== Static Memories ======
        //
        // With static memories we know the size of the heap bound at compile
        // time.
        //
        // 1. First special case: trap immediately if `offset + access_size >
        //    bound`, since we will end up being out-of-bounds regardless of the
        //    given `index`.
        ir::HeapStyle::Static { bound } if offset_and_size > bound.into() => {
            pos.ins().trap(ir::TrapCode::HeapOutOfBounds);

            // Split the block, as the trap is a terminator instruction.
            let curr_block = pos.current_block().expect("Cursor is not in a block");
            let new_block = pos.func.dfg.make_block();
            pos.insert_block(new_block);
            cfg.recompute_block(pos.func, curr_block);
            cfg.recompute_block(pos.func, new_block);

            let null = pos.ins().iconst(pointer_type, 0);
            return null;
        }

        // 2. Second special case for when we can completely omit explicit
        //    bounds checks for 32-bit static memories.
        //
        //    First, let's rewrite our comparison to move all of the constants
        //    to one side:
        //
        //            index + offset + access_size > bound
        //        ==> index > bound - (offset + access_size)
        //
        //    We know the subtraction on the right-hand side won't wrap because
        //    we didn't hit the first special case.
        //
        //    Additionally, we add our guard pages (if any) to the right-hand
        //    side, since we can rely on the virtual memory subsystem at runtime
        //    to catch out-of-bound accesses within the range `bound .. bound +
        //    guard_size`. So now we are dealing with
        //
        //        index > bound + guard_size - (offset + access_size)
        //
        //    Note that `bound + guard_size` cannot overflow for
        //    correctly-configured heaps, as otherwise the heap wouldn't fit in
        //    a 64-bit memory space.
        //
        //    The complement of our should-this-trap comparison expression is
        //    the should-this-not-trap comparison expression:
        //
        //        index <= bound + guard_size - (offset + access_size)
        //
        //    If we know the right-hand side is greater than or equal to
        //    `u32::MAX`, then
        //
        //        index <= u32::MAX <= bound + guard_size - (offset + access_size)
        //
        //    This expression is always true when the heap is indexed with
        //    32-bit integers because `index` cannot be larger than
        //    `u32::MAX`. This means that `index` is always either in bounds or
        //    within the guard page region, neither of which require emitting an
        //    explicit bounds check.
        ir::HeapStyle::Static { bound }
            if index_type == ir::types::I32
                && u64::from(u32::MAX)
                    <= u64::from(bound) + u64::from(guard_size) - offset_and_size =>
        {
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 3. General case for static memories.
        //
        //    We have to explicitly test whether
        //
        //        index > bound - (offset + access_size)
        //
        //    and trap if so.
        //
        //    Since we have to emit explicit bounds checks, we might as well be
        //    precise, not rely on the virtual memory subsystem at all, and not
        //    factor in the guard pages here.
        //
        //    3.a. Dedupe the Spectre mitigation and the explicit bounds check.
        ir::HeapStyle::Static { bound } if spectre => {
            // NB: this subtraction cannot wrap because we didn't hit the first
            // special case.
            let adjusted_bound = u64::from(bound) - offset_and_size;
            let adjusted_bound = pos.ins().iconst(pointer_type, adjusted_bound as i64);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: index,
                    rhs: adjusted_bound,
                }),
            )
        }
        //    3.b. Emit the explicit `index > bound - (offset + access_size)`
        //         check.
        ir::HeapStyle::Static { bound } => {
            // See comment in 3.a. above.
            let adjusted_bound = u64::from(bound) - offset_and_size;
            let oob = pos
                .ins()
                .icmp_imm(IntCC::UnsignedGreaterThan, index, adjusted_bound as i64);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }
    }
}

A resumable trap to be called when the passed condition is non-zero.

If c is zero, execution continues at the following instruction.

Inputs:

  • c: Controlling value to test
  • code: A trap reason code.

Return from the function.

Unconditionally transfer control to the calling function, passing the provided return values. The list of return values must match the function signature’s return types.

Inputs:

  • rvals: return values

Direct function call.

Call a function which has been declared in the preamble. The argument types must match the function’s signature.

Inputs:

  • FN: function to call, declared by function
  • args: call arguments

Outputs:

  • rvals: return values

Indirect function call.

Call the function pointed to by callee with the given arguments. The called function must match the specified signature.

Note that this is different from WebAssembly’s call_indirect; the callee is a native address, rather than a table index. For WebAssembly, table_addr and load are used to obtain a native address from a table.

Inputs:

  • SIG: function signature
  • callee: address of function to call
  • args: call arguments

Outputs:

  • rvals: return values

Get the address of a function.

Compute the absolute address of a function declared in the preamble. The returned address can be used as a callee argument to call_indirect. This is also a method for calling functions that are too far away to be addressable by a direct call instruction.

Inputs:

  • iAddr (controlling type variable): An integer address type
  • FN: function to call, declared by function

Outputs:

  • addr: An integer address type

Vector splat.

Return a vector whose lanes are all x.

Inputs:

  • TxN (controlling type variable): A SIMD vector type
  • x: Value to splat to all lanes

Outputs:

  • a: A SIMD vector type
Examples found in repository?
src/nan_canonicalization.rs (line 89)
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
fn add_nan_canon_seq(pos: &mut FuncCursor, inst: Inst) {
    // Select the instruction result, result type. Replace the instruction
    // result and step forward before inserting the canonicalization sequence.
    let val = pos.func.dfg.first_result(inst);
    let val_type = pos.func.dfg.value_type(val);
    let new_res = pos.func.dfg.replace_result(val, val_type);
    let _next_inst = pos.next_inst().expect("block missing terminator!");

    // Insert a comparison instruction, to check if `inst_res` is NaN. Select
    // the canonical NaN value if `val` is NaN, assign the result to `inst`.
    let is_nan = pos.ins().fcmp(FloatCC::NotEqual, new_res, new_res);

    let scalar_select = |pos: &mut FuncCursor, canon_nan: Value| {
        pos.ins()
            .with_result(val)
            .select(is_nan, canon_nan, new_res);
    };
    let vector_select = |pos: &mut FuncCursor, canon_nan: Value| {
        pos.ins()
            .with_result(val)
            .vselect(is_nan, canon_nan, new_res);
    };

    match val_type {
        types::F32 => {
            let canon_nan = pos.ins().f32const(Ieee32::with_bits(CANON_32BIT_NAN));
            scalar_select(pos, canon_nan);
        }
        types::F64 => {
            let canon_nan = pos.ins().f64const(Ieee64::with_bits(CANON_64BIT_NAN));
            scalar_select(pos, canon_nan);
        }
        types::F32X4 => {
            let canon_nan = pos.ins().f32const(Ieee32::with_bits(CANON_32BIT_NAN));
            let canon_nan = pos.ins().splat(types::F32X4, canon_nan);
            vector_select(pos, canon_nan);
        }
        types::F64X2 => {
            let canon_nan = pos.ins().f64const(Ieee64::with_bits(CANON_64BIT_NAN));
            let canon_nan = pos.ins().splat(types::F64X2, canon_nan);
            vector_select(pos, canon_nan);
        }
        _ => {
            // Panic if the type given was not an IEEE floating point type.
            panic!("Could not canonicalize NaN: Unexpected result type found.");
        }
    }

    pos.prev_inst(); // Step backwards so the pass does not skip instructions.
}

Vector swizzle.

Returns a new vector with byte-width lanes selected from the lanes of the first input vector x specified in the second input vector s. The indices i in range [0, 15] select the i-th element of x. For indices outside of the range the resulting lane is 0. Note that this operates on byte-width lanes.

Inputs:

  • TxN (controlling type variable): A SIMD vector type
  • x: Vector to modify by re-arranging lanes
  • y: Mask for re-arranging lanes

Outputs:

  • a: A SIMD vector type

Insert y as lane Idx in x.

The lane index, Idx, is an immediate value, not an SSA value. It must indicate a valid lane index for the type of x.

Inputs:

  • x: The vector to modify
  • y: New lane value
  • Idx: Lane index

Outputs:

  • a: A SIMD vector type

Extract lane Idx from x.

The lane index, Idx, is an immediate value, not an SSA value. It must indicate a valid lane index for the type of x. Note that the upper bits of a may or may not be zeroed depending on the ISA but the type system should prevent using a as anything other than the extracted value.

Inputs:

  • x: A SIMD vector type
  • Idx: Lane index

Outputs:

  • a:

Signed integer minimum.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Unsigned integer minimum.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Signed integer maximum.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Unsigned integer maximum.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Unsigned average with rounding: a := (x + y + 1) // 2

The addition does not lose any information (such as from overflow).

Inputs:

  • x: A SIMD vector type containing integers
  • y: A SIMD vector type containing integers

Outputs:

  • a: A SIMD vector type containing integers

Add with unsigned saturation.

This is similar to iadd but the operands are interpreted as unsigned integers and their summed result, instead of wrapping, will be saturated to the highest unsigned integer for the controlling type (e.g. 0xFF for i8).

Inputs:

  • x: A SIMD vector type containing integers
  • y: A SIMD vector type containing integers

Outputs:

  • a: A SIMD vector type containing integers

Add with signed saturation.

This is similar to iadd but the operands are interpreted as signed integers and their summed result, instead of wrapping, will be saturated to the lowest or highest signed integer for the controlling type (e.g. 0x80 or 0x7F for i8). For example, since an sadd_sat.i8 of 0x70 and 0x70 is greater than 0x7F, the result will be clamped to 0x7F.

Inputs:

  • x: A SIMD vector type containing integers
  • y: A SIMD vector type containing integers

Outputs:

  • a: A SIMD vector type containing integers

Subtract with unsigned saturation.

This is similar to isub but the operands are interpreted as unsigned integers and their difference, instead of wrapping, will be saturated to the lowest unsigned integer for the controlling type (e.g. 0x00 for i8).

Inputs:

  • x: A SIMD vector type containing integers
  • y: A SIMD vector type containing integers

Outputs:

  • a: A SIMD vector type containing integers

Subtract with signed saturation.

This is similar to isub but the operands are interpreted as signed integers and their difference, instead of wrapping, will be saturated to the lowest or highest signed integer for the controlling type (e.g. 0x80 or 0x7F for i8).

Inputs:

  • x: A SIMD vector type containing integers
  • y: A SIMD vector type containing integers

Outputs:

  • a: A SIMD vector type containing integers

Load from memory at p + Offset.

This is a polymorphic instruction that can load any value type which has a memory representation.

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded
Examples found in repository?
src/legalizer/heap.rs (line 42)
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
pub fn expand_heap_load(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
    heap_imm: ir::HeapImm,
    index: ir::Value,
) {
    let HeapImmData {
        flags,
        heap,
        offset,
    } = func.dfg.heap_imms[heap_imm];

    let result_ty = func.dfg.ctrl_typevar(inst);
    let access_size = result_ty.bytes();
    let access_size = u8::try_from(access_size).unwrap();

    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    let addr =
        bounds_check_and_compute_addr(&mut pos, cfg, isa, heap, index, offset.into(), access_size);

    pos.func
        .dfg
        .replace(inst)
        .load(result_ty, flags, addr, Offset32::new(0));
}
More examples
Hide additional examples
src/legalizer/globalvalue.rs (line 129)
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
fn load_addr(
    inst: ir::Inst,
    func: &mut ir::Function,
    base: ir::GlobalValue,
    offset: ir::immediates::Offset32,
    global_type: ir::Type,
    readonly: bool,
    isa: &dyn TargetIsa,
) {
    // We need to load a pointer from the `base` global value, so insert a new `global_value`
    // instruction. This depends on the iterative legalization loop. Note that the IR verifier
    // detects any cycles in the `load` globals.
    let ptr_ty = isa.pointer_type();
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Get the value for the base. For tidiness, expand VMContext here so that we avoid
    // `vmctx_addr` which creates an otherwise unneeded value alias.
    let base_addr = if let ir::GlobalValueData::VMContext = pos.func.global_values[base] {
        pos.func
            .special_param(ir::ArgumentPurpose::VMContext)
            .expect("Missing vmctx parameter")
    } else {
        pos.ins().global_value(ptr_ty, base)
    };

    // Global-value loads are always notrap and aligned. They may be readonly.
    let mut mflags = ir::MemFlags::trusted();
    if readonly {
        mflags.set_readonly();
    }

    // Perform the load.
    pos.func
        .dfg
        .replace(inst)
        .load(global_type, mflags, base_addr, offset);
}
src/legalizer/mod.rs (line 106)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Store x to memory at p + Offset.

This is a polymorphic instruction that can store any value type with a memory representation.

Inputs:

  • MemFlags: Memory operation flags
  • x: Value to be stored
  • p: An integer address type
  • Offset: Byte offset from base address
Examples found in repository?
src/legalizer/heap.rs (line 73)
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
pub fn expand_heap_store(
    inst: ir::Inst,
    func: &mut ir::Function,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
    heap_imm: ir::HeapImm,
    index: ir::Value,
    value: ir::Value,
) {
    let HeapImmData {
        flags,
        heap,
        offset,
    } = func.dfg.heap_imms[heap_imm];

    let store_ty = func.dfg.value_type(value);
    let access_size = u8::try_from(store_ty.bytes()).unwrap();

    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    let addr =
        bounds_check_and_compute_addr(&mut pos, cfg, isa, heap, index, offset.into(), access_size);

    pos.func
        .dfg
        .replace(inst)
        .store(flags, value, addr, Offset32::new(0));
}
More examples
Hide additional examples
src/legalizer/mod.rs (line 125)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Load 8 bits from memory at p + Offset and zero-extend.

This is equivalent to load.i8 followed by uextend.

Inputs:

  • iExt8 (controlling type variable): An integer type with more than 8 bits
  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 8 bits

Load 8 bits from memory at p + Offset and sign-extend.

This is equivalent to load.i8 followed by sextend.

Inputs:

  • iExt8 (controlling type variable): An integer type with more than 8 bits
  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 8 bits

Store the low 8 bits of x to memory at p + Offset.

This is equivalent to ireduce.i8 followed by store.i8.

Inputs:

  • MemFlags: Memory operation flags
  • x: An integer type with more than 8 bits
  • p: An integer address type
  • Offset: Byte offset from base address

Load 16 bits from memory at p + Offset and zero-extend.

This is equivalent to load.i16 followed by uextend.

Inputs:

  • iExt16 (controlling type variable): An integer type with more than 16 bits
  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 16 bits

Load 16 bits from memory at p + Offset and sign-extend.

This is equivalent to load.i16 followed by sextend.

Inputs:

  • iExt16 (controlling type variable): An integer type with more than 16 bits
  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 16 bits

Store the low 16 bits of x to memory at p + Offset.

This is equivalent to ireduce.i16 followed by store.i16.

Inputs:

  • MemFlags: Memory operation flags
  • x: An integer type with more than 16 bits
  • p: An integer address type
  • Offset: Byte offset from base address

Load 32 bits from memory at p + Offset and zero-extend.

This is equivalent to load.i32 followed by uextend.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 32 bits

Load 32 bits from memory at p + Offset and sign-extend.

This is equivalent to load.i32 followed by sextend.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: An integer type with more than 32 bits

Store the low 32 bits of x to memory at p + Offset.

This is equivalent to ireduce.i32 followed by store.i32.

Inputs:

  • MemFlags: Memory operation flags
  • x: An integer type with more than 32 bits
  • p: An integer address type
  • Offset: Byte offset from base address

Load an 8x8 vector (64 bits) from memory at p + Offset and zero-extend into an i16x8 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

Load an 8x8 vector (64 bits) from memory at p + Offset and sign-extend into an i16x8 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

Load a 16x4 vector (64 bits) from memory at p + Offset and zero-extend into an i32x4 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

Load a 16x4 vector (64 bits) from memory at p + Offset and sign-extend into an i32x4 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

Load an 32x2 vector (64 bits) from memory at p + Offset and zero-extend into an i64x2 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

Load a 32x2 vector (64 bits) from memory at p + Offset and sign-extend into an i64x2 vector.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • Offset: Byte offset from base address

Outputs:

  • a: Value loaded

Load a value from a stack slot at the constant offset.

This is a polymorphic instruction that can load any value type which has a memory representation.

The offset is an immediate constant, not an SSA value. The memory access cannot go out of bounds, i.e. sizeof(a) + Offset <= sizeof(SS).

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • SS: A stack slot
  • Offset: In-bounds offset into stack slot

Outputs:

  • a: Value loaded

Store a value to a stack slot at a constant offset.

This is a polymorphic instruction that can store any value type with a memory representation.

The offset is an immediate constant, not an SSA value. The memory access cannot go out of bounds, i.e. sizeof(a) + Offset <= sizeof(SS).

Inputs:

  • x: Value to be stored
  • SS: A stack slot
  • Offset: In-bounds offset into stack slot

Get the address of a stack slot.

Compute the absolute address of a byte in a stack slot. The offset must refer to a byte inside the stack slot: 0 <= Offset < sizeof(SS).

Inputs:

  • iAddr (controlling type variable): An integer address type
  • SS: A stack slot
  • Offset: In-bounds offset into stack slot

Outputs:

  • addr: An integer address type
Examples found in repository?
src/legalizer/mod.rs (line 102)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Load a value from a dynamic stack slot.

This is a polymorphic instruction that can load any value type which has a memory representation.

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • DSS: A dynamic stack slot

Outputs:

  • a: Value loaded

Store a value to a dynamic stack slot.

This is a polymorphic instruction that can store any dynamic value type with a memory representation.

Inputs:

  • x: Value to be stored
  • DSS: A dynamic stack slot

Get the address of a dynamic stack slot.

Compute the absolute address of the first byte of a dynamic stack slot.

Inputs:

  • iAddr (controlling type variable): An integer address type
  • DSS: A dynamic stack slot

Outputs:

  • addr: An integer address type
Examples found in repository?
src/legalizer/mod.rs (line 138)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Compute the value of global GV.

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • GV: A global value.

Outputs:

  • a: Value loaded
Examples found in repository?
src/legalizer/globalvalue.rs (line 85)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
fn iadd_imm_addr(
    inst: ir::Inst,
    func: &mut ir::Function,
    base: ir::GlobalValue,
    offset: i64,
    global_type: ir::Type,
) {
    let mut pos = FuncCursor::new(func).at_inst(inst);

    // Get the value for the lhs. For tidiness, expand VMContext here so that we avoid
    // `vmctx_addr` which creates an otherwise unneeded value alias.
    let lhs = if let ir::GlobalValueData::VMContext = pos.func.global_values[base] {
        pos.func
            .special_param(ir::ArgumentPurpose::VMContext)
            .expect("Missing vmctx parameter")
    } else {
        pos.ins().global_value(global_type, base)
    };

    // Simply replace the `global_value` instruction with an `iadd_imm`, reusing the result value.
    pos.func.dfg.replace(inst).iadd_imm(lhs, offset);
}

/// Expand a `global_value` instruction for a load global.
fn load_addr(
    inst: ir::Inst,
    func: &mut ir::Function,
    base: ir::GlobalValue,
    offset: ir::immediates::Offset32,
    global_type: ir::Type,
    readonly: bool,
    isa: &dyn TargetIsa,
) {
    // We need to load a pointer from the `base` global value, so insert a new `global_value`
    // instruction. This depends on the iterative legalization loop. Note that the IR verifier
    // detects any cycles in the `load` globals.
    let ptr_ty = isa.pointer_type();
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Get the value for the base. For tidiness, expand VMContext here so that we avoid
    // `vmctx_addr` which creates an otherwise unneeded value alias.
    let base_addr = if let ir::GlobalValueData::VMContext = pos.func.global_values[base] {
        pos.func
            .special_param(ir::ArgumentPurpose::VMContext)
            .expect("Missing vmctx parameter")
    } else {
        pos.ins().global_value(ptr_ty, base)
    };

    // Global-value loads are always notrap and aligned. They may be readonly.
    let mut mflags = ir::MemFlags::trusted();
    if readonly {
        mflags.set_readonly();
    }

    // Perform the load.
    pos.func
        .dfg
        .replace(inst)
        .load(global_type, mflags, base_addr, offset);
}
More examples
Hide additional examples
src/legalizer/table.rs (line 28)
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
pub fn expand_table_addr(
    isa: &dyn TargetIsa,
    inst: ir::Inst,
    func: &mut ir::Function,
    table: ir::Table,
    index: ir::Value,
    element_offset: Offset32,
) {
    let bound_gv = func.tables[table].bound_gv;
    let index_ty = func.dfg.value_type(index);
    let addr_ty = func.dfg.value_type(func.dfg.first_result(inst));
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Start with the bounds check. Trap if `index + 1 > bound`.
    let bound = pos.ins().global_value(index_ty, bound_gv);

    // `index > bound - 1` is the same as `index >= bound`.
    let oob = pos
        .ins()
        .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
    pos.ins().trapnz(oob, ir::TrapCode::TableOutOfBounds);

    // If Spectre mitigations are enabled, we will use a comparison to
    // short-circuit the computed table element address to the start
    // of the table on the misspeculation path when out-of-bounds.
    let spectre_oob_cmp = if isa.flags().enable_table_access_spectre_mitigation() {
        Some((index, bound))
    } else {
        None
    };

    compute_addr(
        inst,
        table,
        addr_ty,
        index,
        index_ty,
        element_offset,
        pos.func,
        spectre_oob_cmp,
    );
}

/// Emit code for the base address computation of a `table_addr` instruction.
fn compute_addr(
    inst: ir::Inst,
    table: ir::Table,
    addr_ty: ir::Type,
    mut index: ir::Value,
    index_ty: ir::Type,
    element_offset: Offset32,
    func: &mut ir::Function,
    spectre_oob_cmp: Option<(ir::Value, ir::Value)>,
) {
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Convert `index` to `addr_ty`.
    if index_ty != addr_ty {
        index = pos.ins().uextend(addr_ty, index);
    }

    // Add the table base address base
    let base_gv = pos.func.tables[table].base_gv;
    let base = pos.ins().global_value(addr_ty, base_gv);

    let element_size = pos.func.tables[table].element_size;
    let mut offset;
    let element_size: u64 = element_size.into();
    if element_size == 1 {
        offset = index;
    } else if element_size.is_power_of_two() {
        offset = pos
            .ins()
            .ishl_imm(index, i64::from(element_size.trailing_zeros()));
    } else {
        offset = pos.ins().imul_imm(index, element_size as i64);
    }

    let element_addr = if element_offset == Offset32::new(0) {
        pos.ins().iadd(base, offset)
    } else {
        let imm: i64 = element_offset.into();
        offset = pos.ins().iadd(base, offset);
        pos.ins().iadd_imm(offset, imm)
    };

    let element_addr = if let Some((index, bound)) = spectre_oob_cmp {
        let cond = pos
            .ins()
            .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
        // If out-of-bounds, choose the table base on the misspeculation path.
        pos.ins().select_spectre_guard(cond, base, element_addr)
    } else {
        element_addr
    };
    let new_inst = pos.func.dfg.value_def(element_addr).inst().unwrap();

    pos.func.dfg.replace_with_aliases(inst, new_inst);
    pos.remove_inst();
}
src/legalizer/heap.rs (line 161)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
fn bounds_check_and_compute_addr(
    pos: &mut FuncCursor,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
    heap: ir::Heap,
    // Dynamic operand indexing into the heap.
    index: ir::Value,
    // Static immediate added to the index.
    offset: u32,
    // Static size of the heap access.
    access_size: u8,
) -> ir::Value {
    let pointer_type = isa.pointer_type();
    let spectre = isa.flags().enable_heap_access_spectre_mitigation();
    let offset_and_size = offset_plus_size(offset, access_size);

    let ir::HeapData {
        base: _,
        min_size,
        offset_guard_size: guard_size,
        style,
        index_type,
    } = pos.func.heaps[heap].clone();

    let index = cast_index_to_pointer_ty(index, index_type, pointer_type, pos);

    // We need to emit code that will trap (or compute an address that will trap
    // when accessed) if
    //
    //     index + offset + access_size > bound
    //
    // or if the `index + offset + access_size` addition overflows.
    //
    // Note that we ultimately want a 64-bit integer (we only target 64-bit
    // architectures at the moment) and that `offset` is a `u32` and
    // `access_size` is a `u8`. This means that we can add the latter together
    // as `u64`s without fear of overflow, and we only have to be concerned with
    // whether adding in `index` will overflow.
    //
    // Finally, the following right-hand sides of the matches do have a little
    // bit of duplicated code across them, but I think writing it this way is
    // worth it for readability and seeing very clearly each of our cases for
    // different bounds checks and optimizations of those bounds checks. It is
    // intentionally written in a straightforward case-matching style that will
    // hopefully make it easy to port to ISLE one day.
    match style {
        // ====== Dynamic Memories ======
        //
        // 1. First special case for when `offset + access_size == 1`:
        //
        //            index + 1 > bound
        //        ==> index >= bound
        //
        //    1.a. When Spectre mitigations are enabled, avoid duplicating
        //         bounds checks between the mitigations and the regular bounds
        //         checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 && spectre => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThanOrEqual,
                    lhs: index,
                    rhs: bound,
                }),
            )
        }
        //    1.b. Emit explicit `index >= bound` bounds checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 2. Second special case for when `offset + access_size <= min_size`.
        //
        //    We know that `bound >= min_size`, so we can do the following
        //    comparison, without fear of the right-hand side wrapping around:
        //
        //            index + offset + access_size > bound
        //        ==> index > bound - (offset + access_size)
        //
        //    2.a. Dedupe bounds checks with Spectre mitigations.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size <= min_size.into() && spectre => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let adjusted_bound = pos.ins().iadd_imm(bound, -(offset_and_size as i64));
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: index,
                    rhs: adjusted_bound,
                }),
            )
        }
        //    2.b. Emit explicit `index > bound - (offset + access_size)` bounds
        //         checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size <= min_size.into() => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let adjusted_bound = pos.ins().iadd_imm(bound, -(offset_and_size as i64));
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThan, index, adjusted_bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 3. General case for dynamic memories:
        //
        //        index + offset + access_size > bound
        //
        //    And we have to handle the overflow case in the left-hand side.
        //
        //    3.a. Dedupe bounds checks with Spectre mitigations.
        ir::HeapStyle::Dynamic { bound_gv } if spectre => {
            let access_size_val = pos.ins().iconst(pointer_type, offset_and_size as i64);
            let adjusted_index =
                pos.ins()
                    .uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: adjusted_index,
                    rhs: bound,
                }),
            )
        }
        //    3.b. Emit an explicit `index + offset + access_size > bound`
        //         check.
        ir::HeapStyle::Dynamic { bound_gv } => {
            let access_size_val = pos.ins().iconst(pointer_type, offset_and_size as i64);
            let adjusted_index =
                pos.ins()
                    .uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThan, adjusted_index, bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // ====== Static Memories ======
        //
        // With static memories we know the size of the heap bound at compile
        // time.
        //
        // 1. First special case: trap immediately if `offset + access_size >
        //    bound`, since we will end up being out-of-bounds regardless of the
        //    given `index`.
        ir::HeapStyle::Static { bound } if offset_and_size > bound.into() => {
            pos.ins().trap(ir::TrapCode::HeapOutOfBounds);

            // Split the block, as the trap is a terminator instruction.
            let curr_block = pos.current_block().expect("Cursor is not in a block");
            let new_block = pos.func.dfg.make_block();
            pos.insert_block(new_block);
            cfg.recompute_block(pos.func, curr_block);
            cfg.recompute_block(pos.func, new_block);

            let null = pos.ins().iconst(pointer_type, 0);
            return null;
        }

        // 2. Second special case for when we can completely omit explicit
        //    bounds checks for 32-bit static memories.
        //
        //    First, let's rewrite our comparison to move all of the constants
        //    to one side:
        //
        //            index + offset + access_size > bound
        //        ==> index > bound - (offset + access_size)
        //
        //    We know the subtraction on the right-hand side won't wrap because
        //    we didn't hit the first special case.
        //
        //    Additionally, we add our guard pages (if any) to the right-hand
        //    side, since we can rely on the virtual memory subsystem at runtime
        //    to catch out-of-bound accesses within the range `bound .. bound +
        //    guard_size`. So now we are dealing with
        //
        //        index > bound + guard_size - (offset + access_size)
        //
        //    Note that `bound + guard_size` cannot overflow for
        //    correctly-configured heaps, as otherwise the heap wouldn't fit in
        //    a 64-bit memory space.
        //
        //    The complement of our should-this-trap comparison expression is
        //    the should-this-not-trap comparison expression:
        //
        //        index <= bound + guard_size - (offset + access_size)
        //
        //    If we know the right-hand side is greater than or equal to
        //    `u32::MAX`, then
        //
        //        index <= u32::MAX <= bound + guard_size - (offset + access_size)
        //
        //    This expression is always true when the heap is indexed with
        //    32-bit integers because `index` cannot be larger than
        //    `u32::MAX`. This means that `index` is always either in bounds or
        //    within the guard page region, neither of which require emitting an
        //    explicit bounds check.
        ir::HeapStyle::Static { bound }
            if index_type == ir::types::I32
                && u64::from(u32::MAX)
                    <= u64::from(bound) + u64::from(guard_size) - offset_and_size =>
        {
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 3. General case for static memories.
        //
        //    We have to explicitly test whether
        //
        //        index > bound - (offset + access_size)
        //
        //    and trap if so.
        //
        //    Since we have to emit explicit bounds checks, we might as well be
        //    precise, not rely on the virtual memory subsystem at all, and not
        //    factor in the guard pages here.
        //
        //    3.a. Dedupe the Spectre mitigation and the explicit bounds check.
        ir::HeapStyle::Static { bound } if spectre => {
            // NB: this subtraction cannot wrap because we didn't hit the first
            // special case.
            let adjusted_bound = u64::from(bound) - offset_and_size;
            let adjusted_bound = pos.ins().iconst(pointer_type, adjusted_bound as i64);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: index,
                    rhs: adjusted_bound,
                }),
            )
        }
        //    3.b. Emit the explicit `index > bound - (offset + access_size)`
        //         check.
        ir::HeapStyle::Static { bound } => {
            // See comment in 3.a. above.
            let adjusted_bound = u64::from(bound) - offset_and_size;
            let oob = pos
                .ins()
                .icmp_imm(IntCC::UnsignedGreaterThan, index, adjusted_bound as i64);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }
    }
}

fn cast_index_to_pointer_ty(
    index: ir::Value,
    index_ty: ir::Type,
    pointer_ty: ir::Type,
    pos: &mut FuncCursor,
) -> ir::Value {
    if index_ty == pointer_ty {
        return index;
    }
    // Note that using 64-bit heaps on a 32-bit host is not currently supported,
    // would require at least a bounds check here to ensure that the truncation
    // from 64-to-32 bits doesn't lose any upper bits. For now though we're
    // mostly interested in the 32-bit-heaps-on-64-bit-hosts cast.
    assert!(index_ty.bits() < pointer_ty.bits());

    // Convert `index` to `addr_ty`.
    let extended_index = pos.ins().uextend(pointer_ty, index);

    // Add debug value-label alias so that debuginfo can name the extended
    // value as the address
    let loc = pos.srcloc();
    let loc = RelSourceLoc::from_base_offset(pos.func.params.base_srcloc(), loc);
    pos.func
        .stencil
        .dfg
        .add_value_label_alias(extended_index, loc, index);

    extended_index
}

struct SpectreOobComparison {
    cc: IntCC,
    lhs: ir::Value,
    rhs: ir::Value,
}

/// Emit code for the base address computation of a `heap_addr` instruction,
/// without any bounds checks (other than optional Spectre mitigations).
fn compute_addr(
    isa: &dyn TargetIsa,
    pos: &mut FuncCursor,
    heap: ir::Heap,
    addr_ty: ir::Type,
    index: ir::Value,
    offset: u32,
    // If we are performing Spectre mitigation with conditional selects, the
    // values to compare and the condition code that indicates an out-of bounds
    // condition; on this condition, the conditional move will choose a
    // speculatively safe address (a zero / null pointer) instead.
    spectre_oob_comparison: Option<SpectreOobComparison>,
) -> ir::Value {
    debug_assert_eq!(pos.func.dfg.value_type(index), addr_ty);

    // Add the heap base address base
    let base = if isa.flags().enable_pinned_reg() && isa.flags().use_pinned_reg_as_heap_base() {
        let base = pos.ins().get_pinned_reg(isa.pointer_type());
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(base));
        base
    } else {
        let base_gv = pos.func.heaps[heap].base;
        let base = pos.ins().global_value(addr_ty, base_gv);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(base));
        base
    };

    if let Some(SpectreOobComparison { cc, lhs, rhs }) = spectre_oob_comparison {
        let final_base = pos.ins().iadd(base, index);
        // NB: The addition of the offset immediate must happen *before* the
        // `select_spectre_guard`. If it happens after, then we potentially are
        // letting speculative execution read the whole first 4GiB of memory.
        let final_addr = if offset == 0 {
            final_base
        } else {
            let final_addr = pos.ins().iadd_imm(final_base, offset as i64);
            trace!(
                "  inserting: {}",
                pos.func.dfg.display_value_inst(final_addr)
            );
            final_addr
        };
        let zero = pos.ins().iconst(addr_ty, 0);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(zero));

        let cmp = pos.ins().icmp(cc, lhs, rhs);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(cmp));

        let value = pos.ins().select_spectre_guard(cmp, zero, final_addr);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(value));
        value
    } else if offset == 0 {
        let addr = pos.ins().iadd(base, index);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(addr));
        addr
    } else {
        let final_base = pos.ins().iadd(base, index);
        trace!(
            "  inserting: {}",
            pos.func.dfg.display_value_inst(final_base)
        );
        let addr = pos.ins().iadd_imm(final_base, offset as i64);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(addr));
        addr
    }
}

Compute the value of global GV, which is a symbolic value.

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • GV: A global value.

Outputs:

  • a: Value loaded
Examples found in repository?
src/legalizer/globalvalue.rs (line 145)
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
fn symbol(
    inst: ir::Inst,
    func: &mut ir::Function,
    gv: ir::GlobalValue,
    isa: &dyn TargetIsa,
    tls: bool,
) {
    let ptr_ty = isa.pointer_type();

    if tls {
        func.dfg.replace(inst).tls_value(ptr_ty, gv);
    } else {
        func.dfg.replace(inst).symbol_value(ptr_ty, gv);
    }
}

Compute the value of global GV, which is a TLS (thread local storage) value.

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • GV: A global value.

Outputs:

  • a: Value loaded
Examples found in repository?
src/legalizer/globalvalue.rs (line 143)
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
fn symbol(
    inst: ir::Inst,
    func: &mut ir::Function,
    gv: ir::GlobalValue,
    isa: &dyn TargetIsa,
    tls: bool,
) {
    let ptr_ty = isa.pointer_type();

    if tls {
        func.dfg.replace(inst).tls_value(ptr_ty, gv);
    } else {
        func.dfg.replace(inst).symbol_value(ptr_ty, gv);
    }
}

Bounds check and compute absolute address of index + Offset in heap memory.

Verify that the range index .. index + Offset + Size is in bounds for the heap H, and generate an absolute address that is safe to dereference.

  1. If index + Offset + Size is less than or equal ot the heap bound, return an absolute address corresponding to a byte offset of index + Offset from the heap’s base address.

  2. If index + Offset + Size is greater than the heap bound, return the NULL pointer or any other address that is guaranteed to generate a trap when accessed.

Inputs:

  • iAddr (controlling type variable): An integer address type
  • H: A heap.
  • index: An unsigned heap offset
  • Offset: Static offset immediate in bytes
  • Size: Static size immediate in bytes

Outputs:

  • addr: An integer address type

Load a value from the given heap at address index + offset, trapping on out-of-bounds accesses.

Checks that index + offset .. index + offset + sizeof(a) is within the heap’s bounds, trapping if it is not. Otherwise, when that range is in bounds, loads the value from the heap.

Traps on index + offset + sizeof(a) overflow.

Inputs:

  • Mem (controlling type variable): Any type that can be stored in memory
  • heap_imm: Reference to out-of-line heap access immediates
  • index: Dynamic index (in bytes) into the heap

Outputs:

  • a: The value loaded from the heap

Store a into the given heap at address index + offset, trapping on out-of-bounds accesses.

Checks that index + offset .. index + offset + sizeof(a) is within the heap’s bounds, trapping if it is not. Otherwise, when that range is in bounds, stores the value into the heap.

Traps on index + offset + sizeof(a) overflow.

Inputs:

  • heap_imm: Reference to out-of-line heap access immediates
  • index: Dynamic index (in bytes) into the heap
  • a: The value stored into the heap

Gets the content of the pinned register, when it’s enabled.

Inputs:

  • iAddr (controlling type variable): An integer address type

Outputs:

  • addr: An integer address type
Examples found in repository?
src/legalizer/heap.rs (line 435)
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
fn compute_addr(
    isa: &dyn TargetIsa,
    pos: &mut FuncCursor,
    heap: ir::Heap,
    addr_ty: ir::Type,
    index: ir::Value,
    offset: u32,
    // If we are performing Spectre mitigation with conditional selects, the
    // values to compare and the condition code that indicates an out-of bounds
    // condition; on this condition, the conditional move will choose a
    // speculatively safe address (a zero / null pointer) instead.
    spectre_oob_comparison: Option<SpectreOobComparison>,
) -> ir::Value {
    debug_assert_eq!(pos.func.dfg.value_type(index), addr_ty);

    // Add the heap base address base
    let base = if isa.flags().enable_pinned_reg() && isa.flags().use_pinned_reg_as_heap_base() {
        let base = pos.ins().get_pinned_reg(isa.pointer_type());
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(base));
        base
    } else {
        let base_gv = pos.func.heaps[heap].base;
        let base = pos.ins().global_value(addr_ty, base_gv);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(base));
        base
    };

    if let Some(SpectreOobComparison { cc, lhs, rhs }) = spectre_oob_comparison {
        let final_base = pos.ins().iadd(base, index);
        // NB: The addition of the offset immediate must happen *before* the
        // `select_spectre_guard`. If it happens after, then we potentially are
        // letting speculative execution read the whole first 4GiB of memory.
        let final_addr = if offset == 0 {
            final_base
        } else {
            let final_addr = pos.ins().iadd_imm(final_base, offset as i64);
            trace!(
                "  inserting: {}",
                pos.func.dfg.display_value_inst(final_addr)
            );
            final_addr
        };
        let zero = pos.ins().iconst(addr_ty, 0);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(zero));

        let cmp = pos.ins().icmp(cc, lhs, rhs);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(cmp));

        let value = pos.ins().select_spectre_guard(cmp, zero, final_addr);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(value));
        value
    } else if offset == 0 {
        let addr = pos.ins().iadd(base, index);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(addr));
        addr
    } else {
        let final_base = pos.ins().iadd(base, index);
        trace!(
            "  inserting: {}",
            pos.func.dfg.display_value_inst(final_base)
        );
        let addr = pos.ins().iadd_imm(final_base, offset as i64);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(addr));
        addr
    }
}

Sets the content of the pinned register, when it’s enabled.

Inputs:

  • addr: An integer address type

Get the address in the frame pointer register.

Usage of this instruction requires setting preserve_frame_pointers to true.

Inputs:

  • iAddr (controlling type variable): An integer address type

Outputs:

  • addr: An integer address type

Get the address in the stack pointer register.

Inputs:

  • iAddr (controlling type variable): An integer address type

Outputs:

  • addr: An integer address type

Get the PC where this function will transfer control to when it returns.

Usage of this instruction requires setting preserve_frame_pointers to true.

Inputs:

  • iAddr (controlling type variable): An integer address type

Outputs:

  • addr: An integer address type

Bounds check and compute absolute address of a table entry.

Verify that the offset p is in bounds for the table T, and generate an absolute address that is safe to dereference.

Offset must be less than the size of a table element.

  1. If p is not greater than the table bound, return an absolute address corresponding to a byte offset of p from the table’s base address.
  2. If p is greater than the table bound, generate a trap.

Inputs:

  • iAddr (controlling type variable): An integer address type
  • T: A table.
  • p: An unsigned table offset
  • Offset: Byte offset from element address

Outputs:

  • addr: An integer address type

Integer constant.

Create a scalar integer SSA value with an immediate constant value, or an integer vector where all the lanes have the same value.

Inputs:

  • NarrowInt (controlling type variable): An integer type with lanes type to i64
  • N: A 64-bit immediate integer.

Outputs:

  • a: A constant integer scalar or vector value
Examples found in repository?
src/legalizer/globalvalue.rs (line 51)
43
44
45
46
47
48
49
50
51
52
fn const_vector_scale(inst: ir::Inst, func: &mut ir::Function, ty: ir::Type, isa: &dyn TargetIsa) {
    assert!(ty.bytes() <= 16);

    // Use a minimum of 128-bits for the base type.
    let base_bytes = std::cmp::max(ty.bytes(), 16);
    let scale = (isa.dynamic_vector_bytes(ty) / base_bytes) as i64;
    assert!(scale > 0);
    let pos = FuncCursor::new(func).at_inst(inst);
    pos.func.dfg.replace(inst).iconst(isa.pointer_type(), scale);
}
More examples
Hide additional examples
src/legalizer/mod.rs (line 36)
32
33
34
35
36
37
38
39
40
41
42
43
44
45
fn imm_const(pos: &mut FuncCursor, arg: Value, imm: Imm64, is_signed: bool) -> Value {
    let ty = pos.func.dfg.value_type(arg);
    match (ty, is_signed) {
        (I128, true) => {
            let imm = pos.ins().iconst(I64, imm);
            pos.ins().sextend(I128, imm)
        }
        (I128, false) => {
            let imm = pos.ins().iconst(I64, imm);
            pos.ins().uextend(I128, imm)
        }
        _ => pos.ins().iconst(ty.lane_type(), imm),
    }
}
src/legalizer/heap.rs (line 232)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
fn bounds_check_and_compute_addr(
    pos: &mut FuncCursor,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
    heap: ir::Heap,
    // Dynamic operand indexing into the heap.
    index: ir::Value,
    // Static immediate added to the index.
    offset: u32,
    // Static size of the heap access.
    access_size: u8,
) -> ir::Value {
    let pointer_type = isa.pointer_type();
    let spectre = isa.flags().enable_heap_access_spectre_mitigation();
    let offset_and_size = offset_plus_size(offset, access_size);

    let ir::HeapData {
        base: _,
        min_size,
        offset_guard_size: guard_size,
        style,
        index_type,
    } = pos.func.heaps[heap].clone();

    let index = cast_index_to_pointer_ty(index, index_type, pointer_type, pos);

    // We need to emit code that will trap (or compute an address that will trap
    // when accessed) if
    //
    //     index + offset + access_size > bound
    //
    // or if the `index + offset + access_size` addition overflows.
    //
    // Note that we ultimately want a 64-bit integer (we only target 64-bit
    // architectures at the moment) and that `offset` is a `u32` and
    // `access_size` is a `u8`. This means that we can add the latter together
    // as `u64`s without fear of overflow, and we only have to be concerned with
    // whether adding in `index` will overflow.
    //
    // Finally, the following right-hand sides of the matches do have a little
    // bit of duplicated code across them, but I think writing it this way is
    // worth it for readability and seeing very clearly each of our cases for
    // different bounds checks and optimizations of those bounds checks. It is
    // intentionally written in a straightforward case-matching style that will
    // hopefully make it easy to port to ISLE one day.
    match style {
        // ====== Dynamic Memories ======
        //
        // 1. First special case for when `offset + access_size == 1`:
        //
        //            index + 1 > bound
        //        ==> index >= bound
        //
        //    1.a. When Spectre mitigations are enabled, avoid duplicating
        //         bounds checks between the mitigations and the regular bounds
        //         checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 && spectre => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThanOrEqual,
                    lhs: index,
                    rhs: bound,
                }),
            )
        }
        //    1.b. Emit explicit `index >= bound` bounds checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 2. Second special case for when `offset + access_size <= min_size`.
        //
        //    We know that `bound >= min_size`, so we can do the following
        //    comparison, without fear of the right-hand side wrapping around:
        //
        //            index + offset + access_size > bound
        //        ==> index > bound - (offset + access_size)
        //
        //    2.a. Dedupe bounds checks with Spectre mitigations.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size <= min_size.into() && spectre => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let adjusted_bound = pos.ins().iadd_imm(bound, -(offset_and_size as i64));
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: index,
                    rhs: adjusted_bound,
                }),
            )
        }
        //    2.b. Emit explicit `index > bound - (offset + access_size)` bounds
        //         checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size <= min_size.into() => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let adjusted_bound = pos.ins().iadd_imm(bound, -(offset_and_size as i64));
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThan, index, adjusted_bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 3. General case for dynamic memories:
        //
        //        index + offset + access_size > bound
        //
        //    And we have to handle the overflow case in the left-hand side.
        //
        //    3.a. Dedupe bounds checks with Spectre mitigations.
        ir::HeapStyle::Dynamic { bound_gv } if spectre => {
            let access_size_val = pos.ins().iconst(pointer_type, offset_and_size as i64);
            let adjusted_index =
                pos.ins()
                    .uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: adjusted_index,
                    rhs: bound,
                }),
            )
        }
        //    3.b. Emit an explicit `index + offset + access_size > bound`
        //         check.
        ir::HeapStyle::Dynamic { bound_gv } => {
            let access_size_val = pos.ins().iconst(pointer_type, offset_and_size as i64);
            let adjusted_index =
                pos.ins()
                    .uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThan, adjusted_index, bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // ====== Static Memories ======
        //
        // With static memories we know the size of the heap bound at compile
        // time.
        //
        // 1. First special case: trap immediately if `offset + access_size >
        //    bound`, since we will end up being out-of-bounds regardless of the
        //    given `index`.
        ir::HeapStyle::Static { bound } if offset_and_size > bound.into() => {
            pos.ins().trap(ir::TrapCode::HeapOutOfBounds);

            // Split the block, as the trap is a terminator instruction.
            let curr_block = pos.current_block().expect("Cursor is not in a block");
            let new_block = pos.func.dfg.make_block();
            pos.insert_block(new_block);
            cfg.recompute_block(pos.func, curr_block);
            cfg.recompute_block(pos.func, new_block);

            let null = pos.ins().iconst(pointer_type, 0);
            return null;
        }

        // 2. Second special case for when we can completely omit explicit
        //    bounds checks for 32-bit static memories.
        //
        //    First, let's rewrite our comparison to move all of the constants
        //    to one side:
        //
        //            index + offset + access_size > bound
        //        ==> index > bound - (offset + access_size)
        //
        //    We know the subtraction on the right-hand side won't wrap because
        //    we didn't hit the first special case.
        //
        //    Additionally, we add our guard pages (if any) to the right-hand
        //    side, since we can rely on the virtual memory subsystem at runtime
        //    to catch out-of-bound accesses within the range `bound .. bound +
        //    guard_size`. So now we are dealing with
        //
        //        index > bound + guard_size - (offset + access_size)
        //
        //    Note that `bound + guard_size` cannot overflow for
        //    correctly-configured heaps, as otherwise the heap wouldn't fit in
        //    a 64-bit memory space.
        //
        //    The complement of our should-this-trap comparison expression is
        //    the should-this-not-trap comparison expression:
        //
        //        index <= bound + guard_size - (offset + access_size)
        //
        //    If we know the right-hand side is greater than or equal to
        //    `u32::MAX`, then
        //
        //        index <= u32::MAX <= bound + guard_size - (offset + access_size)
        //
        //    This expression is always true when the heap is indexed with
        //    32-bit integers because `index` cannot be larger than
        //    `u32::MAX`. This means that `index` is always either in bounds or
        //    within the guard page region, neither of which require emitting an
        //    explicit bounds check.
        ir::HeapStyle::Static { bound }
            if index_type == ir::types::I32
                && u64::from(u32::MAX)
                    <= u64::from(bound) + u64::from(guard_size) - offset_and_size =>
        {
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 3. General case for static memories.
        //
        //    We have to explicitly test whether
        //
        //        index > bound - (offset + access_size)
        //
        //    and trap if so.
        //
        //    Since we have to emit explicit bounds checks, we might as well be
        //    precise, not rely on the virtual memory subsystem at all, and not
        //    factor in the guard pages here.
        //
        //    3.a. Dedupe the Spectre mitigation and the explicit bounds check.
        ir::HeapStyle::Static { bound } if spectre => {
            // NB: this subtraction cannot wrap because we didn't hit the first
            // special case.
            let adjusted_bound = u64::from(bound) - offset_and_size;
            let adjusted_bound = pos.ins().iconst(pointer_type, adjusted_bound as i64);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: index,
                    rhs: adjusted_bound,
                }),
            )
        }
        //    3.b. Emit the explicit `index > bound - (offset + access_size)`
        //         check.
        ir::HeapStyle::Static { bound } => {
            // See comment in 3.a. above.
            let adjusted_bound = u64::from(bound) - offset_and_size;
            let oob = pos
                .ins()
                .icmp_imm(IntCC::UnsignedGreaterThan, index, adjusted_bound as i64);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }
    }
}

fn cast_index_to_pointer_ty(
    index: ir::Value,
    index_ty: ir::Type,
    pointer_ty: ir::Type,
    pos: &mut FuncCursor,
) -> ir::Value {
    if index_ty == pointer_ty {
        return index;
    }
    // Note that using 64-bit heaps on a 32-bit host is not currently supported,
    // would require at least a bounds check here to ensure that the truncation
    // from 64-to-32 bits doesn't lose any upper bits. For now though we're
    // mostly interested in the 32-bit-heaps-on-64-bit-hosts cast.
    assert!(index_ty.bits() < pointer_ty.bits());

    // Convert `index` to `addr_ty`.
    let extended_index = pos.ins().uextend(pointer_ty, index);

    // Add debug value-label alias so that debuginfo can name the extended
    // value as the address
    let loc = pos.srcloc();
    let loc = RelSourceLoc::from_base_offset(pos.func.params.base_srcloc(), loc);
    pos.func
        .stencil
        .dfg
        .add_value_label_alias(extended_index, loc, index);

    extended_index
}

struct SpectreOobComparison {
    cc: IntCC,
    lhs: ir::Value,
    rhs: ir::Value,
}

/// Emit code for the base address computation of a `heap_addr` instruction,
/// without any bounds checks (other than optional Spectre mitigations).
fn compute_addr(
    isa: &dyn TargetIsa,
    pos: &mut FuncCursor,
    heap: ir::Heap,
    addr_ty: ir::Type,
    index: ir::Value,
    offset: u32,
    // If we are performing Spectre mitigation with conditional selects, the
    // values to compare and the condition code that indicates an out-of bounds
    // condition; on this condition, the conditional move will choose a
    // speculatively safe address (a zero / null pointer) instead.
    spectre_oob_comparison: Option<SpectreOobComparison>,
) -> ir::Value {
    debug_assert_eq!(pos.func.dfg.value_type(index), addr_ty);

    // Add the heap base address base
    let base = if isa.flags().enable_pinned_reg() && isa.flags().use_pinned_reg_as_heap_base() {
        let base = pos.ins().get_pinned_reg(isa.pointer_type());
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(base));
        base
    } else {
        let base_gv = pos.func.heaps[heap].base;
        let base = pos.ins().global_value(addr_ty, base_gv);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(base));
        base
    };

    if let Some(SpectreOobComparison { cc, lhs, rhs }) = spectre_oob_comparison {
        let final_base = pos.ins().iadd(base, index);
        // NB: The addition of the offset immediate must happen *before* the
        // `select_spectre_guard`. If it happens after, then we potentially are
        // letting speculative execution read the whole first 4GiB of memory.
        let final_addr = if offset == 0 {
            final_base
        } else {
            let final_addr = pos.ins().iadd_imm(final_base, offset as i64);
            trace!(
                "  inserting: {}",
                pos.func.dfg.display_value_inst(final_addr)
            );
            final_addr
        };
        let zero = pos.ins().iconst(addr_ty, 0);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(zero));

        let cmp = pos.ins().icmp(cc, lhs, rhs);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(cmp));

        let value = pos.ins().select_spectre_guard(cmp, zero, final_addr);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(value));
        value
    } else if offset == 0 {
        let addr = pos.ins().iadd(base, index);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(addr));
        addr
    } else {
        let final_base = pos.ins().iadd(base, index);
        trace!(
            "  inserting: {}",
            pos.func.dfg.display_value_inst(final_base)
        );
        let addr = pos.ins().iadd_imm(final_base, offset as i64);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(addr));
        addr
    }
}
src/simple_preopt.rs (line 186)
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCursor, inst: Inst) {
    let is_rem = match *divrem_info {
        DivRemByConstInfo::DivU32(_, _)
        | DivRemByConstInfo::DivU64(_, _)
        | DivRemByConstInfo::DivS32(_, _)
        | DivRemByConstInfo::DivS64(_, _) => false,
        DivRemByConstInfo::RemU32(_, _)
        | DivRemByConstInfo::RemU64(_, _)
        | DivRemByConstInfo::RemS32(_, _)
        | DivRemByConstInfo::RemS64(_, _) => true,
    };

    match *divrem_info {
        // -------------------- U32 --------------------

        // U32 div, rem by zero: ignore
        DivRemByConstInfo::DivU32(_n1, 0) | DivRemByConstInfo::RemU32(_n1, 0) => {}

        // U32 div by 1: identity
        // U32 rem by 1: zero
        DivRemByConstInfo::DivU32(n1, 1) | DivRemByConstInfo::RemU32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U32 div, rem by a power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 31);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U32 div, rem by non-power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d) => {
            debug_assert!(d >= 3);
            let MU32 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u32(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I32, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 32);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- U64 --------------------

        // U64 div, rem by zero: ignore
        DivRemByConstInfo::DivU64(_n1, 0) | DivRemByConstInfo::RemU64(_n1, 0) => {}

        // U64 div by 1: identity
        // U64 rem by 1: zero
        DivRemByConstInfo::DivU64(n1, 1) | DivRemByConstInfo::RemU64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U64 div, rem by a power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 63);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U64 div, rem by non-power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d) => {
            debug_assert!(d >= 3);
            let MU64 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u64(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I64, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 64);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- S32 --------------------

        // S32 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS32(_n1, -1)
        | DivRemByConstInfo::RemS32(_n1, -1)
        | DivRemByConstInfo::DivS32(_n1, 0)
        | DivRemByConstInfo::RemS32(_n1, 0) => {}

        // S32 div by 1: identity
        // S32 rem by 1: zero
        DivRemByConstInfo::DivS32(n1, 1) | DivRemByConstInfo::RemS32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS32(n1, d) | DivRemByConstInfo::RemS32(n1, d) => {
            if let Some((is_negative, k)) = i32_is_power_of_two(d) {
                // k can be 31 only in the case that d is -2^31.
                debug_assert!(k >= 1 && k <= 31);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (32 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S32 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i32::wrapping_neg(1 << k) as i64);
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S32 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S32 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS32 { mul_by, shift_by } = magic_s32(d);
                let q0 = pos.ins().iconst(I32, mul_by as i64);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 31);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d as i64);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }

        // -------------------- S64 --------------------

        // S64 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS64(_n1, -1)
        | DivRemByConstInfo::RemS64(_n1, -1)
        | DivRemByConstInfo::DivS64(_n1, 0)
        | DivRemByConstInfo::RemS64(_n1, 0) => {}

        // S64 div by 1: identity
        // S64 rem by 1: zero
        DivRemByConstInfo::DivS64(n1, 1) | DivRemByConstInfo::RemS64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS64(n1, d) | DivRemByConstInfo::RemS64(n1, d) => {
            if let Some((is_negative, k)) = i64_is_power_of_two(d) {
                // k can be 63 only in the case that d is -2^63.
                debug_assert!(k >= 1 && k <= 63);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (64 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S64 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i64::wrapping_neg(1 << k));
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S64 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S64 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS64 { mul_by, shift_by } = magic_s64(d);
                let q0 = pos.ins().iconst(I64, mul_by);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 63);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }
    }
}

enum BranchOrderKind {
    BrzToBrnz(Value),
    BrnzToBrz(Value),
}

/// Reorder branches to encourage fallthroughs.
///
/// When a block ends with a conditional branch followed by an unconditional
/// branch, this will reorder them if one of them is branching to the next Block
/// layout-wise. The unconditional jump can then become a fallthrough.
fn branch_order(pos: &mut FuncCursor, cfg: &mut ControlFlowGraph, block: Block, inst: Inst) {
    let (term_inst, term_inst_args, term_dest, cond_inst, cond_inst_args, cond_dest, kind) =
        match pos.func.dfg[inst] {
            InstructionData::Jump {
                opcode: Opcode::Jump,
                destination,
                ref args,
            } => {
                let next_block = if let Some(next_block) = pos.func.layout.next_block(block) {
                    next_block
                } else {
                    return;
                };

                if destination == next_block {
                    return;
                }

                let prev_inst = if let Some(prev_inst) = pos.func.layout.prev_inst(inst) {
                    prev_inst
                } else {
                    return;
                };

                let prev_inst_data = &pos.func.dfg[prev_inst];

                if let Some(prev_dest) = prev_inst_data.branch_destination() {
                    if prev_dest != next_block {
                        return;
                    }
                } else {
                    return;
                }

                match prev_inst_data {
                    InstructionData::Branch {
                        opcode,
                        args: ref prev_args,
                        destination: cond_dest,
                    } => {
                        let cond_arg = {
                            let args = pos.func.dfg.inst_args(prev_inst);
                            args[0]
                        };

                        let kind = match opcode {
                            Opcode::Brz => BranchOrderKind::BrzToBrnz(cond_arg),
                            Opcode::Brnz => BranchOrderKind::BrnzToBrz(cond_arg),
                            _ => panic!("unexpected opcode"),
                        };

                        (
                            inst,
                            args.clone(),
                            destination,
                            prev_inst,
                            prev_args.clone(),
                            *cond_dest,
                            kind,
                        )
                    }
                    _ => return,
                }
            }

            _ => return,
        };

    let cond_args = cond_inst_args.as_slice(&pos.func.dfg.value_lists).to_vec();
    let term_args = term_inst_args.as_slice(&pos.func.dfg.value_lists).to_vec();

    match kind {
        BranchOrderKind::BrnzToBrz(cond_arg) => {
            pos.func
                .dfg
                .replace(term_inst)
                .jump(cond_dest, &cond_args[1..]);
            pos.func
                .dfg
                .replace(cond_inst)
                .brz(cond_arg, term_dest, &term_args);
        }
        BranchOrderKind::BrzToBrnz(cond_arg) => {
            pos.func
                .dfg
                .replace(term_inst)
                .jump(cond_dest, &cond_args[1..]);
            pos.func
                .dfg
                .replace(cond_inst)
                .brnz(cond_arg, term_dest, &term_args);
        }
    }

    cfg.recompute_block(pos.func, block);
}

mod simplify {
    use super::*;
    use crate::ir::{
        dfg::ValueDef,
        immediates,
        instructions::{Opcode, ValueList},
        types::{I16, I32, I8},
    };
    use std::marker::PhantomData;

    pub struct PeepholeOptimizer<'a, 'b> {
        phantom: PhantomData<(&'a (), &'b ())>,
    }

    pub fn peephole_optimizer<'a, 'b>(_: &dyn TargetIsa) -> PeepholeOptimizer<'a, 'b> {
        PeepholeOptimizer {
            phantom: PhantomData,
        }
    }

    pub fn apply_all<'a, 'b>(
        _optimizer: &mut PeepholeOptimizer<'a, 'b>,
        pos: &mut FuncCursor<'a>,
        inst: Inst,
        native_word_width: u32,
    ) {
        simplify(pos, inst, native_word_width);
        branch_opt(pos, inst);
    }

    #[inline]
    fn resolve_imm64_value(dfg: &DataFlowGraph, value: Value) -> Option<immediates::Imm64> {
        if let ValueDef::Result(candidate_inst, _) = dfg.value_def(value) {
            if let InstructionData::UnaryImm {
                opcode: Opcode::Iconst,
                imm,
            } = dfg[candidate_inst]
            {
                return Some(imm);
            }
        }
        None
    }

    /// Try to transform [(x << N) >> N] into a (un)signed-extending move.
    /// Returns true if the final instruction has been converted to such a move.
    fn try_fold_extended_move(
        pos: &mut FuncCursor,
        inst: Inst,
        opcode: Opcode,
        arg: Value,
        imm: immediates::Imm64,
    ) -> bool {
        if let ValueDef::Result(arg_inst, _) = pos.func.dfg.value_def(arg) {
            if let InstructionData::BinaryImm64 {
                opcode: Opcode::IshlImm,
                arg: prev_arg,
                imm: prev_imm,
            } = &pos.func.dfg[arg_inst]
            {
                if imm != *prev_imm {
                    return false;
                }

                let dest_ty = pos.func.dfg.ctrl_typevar(inst);
                if dest_ty != pos.func.dfg.ctrl_typevar(arg_inst) || !dest_ty.is_int() {
                    return false;
                }

                let imm_bits: i64 = imm.into();
                let ireduce_ty = match (dest_ty.lane_bits() as i64).wrapping_sub(imm_bits) {
                    8 => I8,
                    16 => I16,
                    32 => I32,
                    _ => return false,
                };
                let ireduce_ty = ireduce_ty.by(dest_ty.lane_count()).unwrap();

                // This becomes a no-op, since ireduce_ty has a smaller lane width than
                // the argument type (also the destination type).
                let arg = *prev_arg;
                let narrower_arg = pos.ins().ireduce(ireduce_ty, arg);

                if opcode == Opcode::UshrImm {
                    pos.func.dfg.replace(inst).uextend(dest_ty, narrower_arg);
                } else {
                    pos.func.dfg.replace(inst).sextend(dest_ty, narrower_arg);
                }
                return true;
            }
        }
        false
    }

    /// Apply basic simplifications.
    ///
    /// This folds constants with arithmetic to form `_imm` instructions, and other minor
    /// simplifications.
    ///
    /// Doesn't apply some simplifications if the native word width (in bytes) is smaller than the
    /// controlling type's width of the instruction. This would result in an illegal instruction that
    /// would likely be expanded back into an instruction on smaller types with the same initial
    /// opcode, creating unnecessary churn.
    fn simplify(pos: &mut FuncCursor, inst: Inst, native_word_width: u32) {
        match pos.func.dfg[inst] {
            InstructionData::Binary { opcode, args } => {
                if let Some(mut imm) = resolve_imm64_value(&pos.func.dfg, args[1]) {
                    let new_opcode = match opcode {
                        Opcode::Iadd => Opcode::IaddImm,
                        Opcode::Imul => Opcode::ImulImm,
                        Opcode::Sdiv => Opcode::SdivImm,
                        Opcode::Udiv => Opcode::UdivImm,
                        Opcode::Srem => Opcode::SremImm,
                        Opcode::Urem => Opcode::UremImm,
                        Opcode::Band => Opcode::BandImm,
                        Opcode::Bor => Opcode::BorImm,
                        Opcode::Bxor => Opcode::BxorImm,
                        Opcode::Rotl => Opcode::RotlImm,
                        Opcode::Rotr => Opcode::RotrImm,
                        Opcode::Ishl => Opcode::IshlImm,
                        Opcode::Ushr => Opcode::UshrImm,
                        Opcode::Sshr => Opcode::SshrImm,
                        Opcode::Isub => {
                            imm = imm.wrapping_neg();
                            Opcode::IaddImm
                        }
                        Opcode::Ifcmp => Opcode::IfcmpImm,
                        _ => return,
                    };
                    let ty = pos.func.dfg.ctrl_typevar(inst);
                    if ty.bytes() <= native_word_width {
                        pos.func
                            .dfg
                            .replace(inst)
                            .BinaryImm64(new_opcode, ty, imm, args[0]);

                        // Repeat for BinaryImm simplification.
                        simplify(pos, inst, native_word_width);
                    }
                } else if let Some(imm) = resolve_imm64_value(&pos.func.dfg, args[0]) {
                    let new_opcode = match opcode {
                        Opcode::Iadd => Opcode::IaddImm,
                        Opcode::Imul => Opcode::ImulImm,
                        Opcode::Band => Opcode::BandImm,
                        Opcode::Bor => Opcode::BorImm,
                        Opcode::Bxor => Opcode::BxorImm,
                        Opcode::Isub => Opcode::IrsubImm,
                        _ => return,
                    };
                    let ty = pos.func.dfg.ctrl_typevar(inst);
                    if ty.bytes() <= native_word_width {
                        pos.func
                            .dfg
                            .replace(inst)
                            .BinaryImm64(new_opcode, ty, imm, args[1]);
                    }
                }
            }

            InstructionData::BinaryImm64 { opcode, arg, imm } => {
                let ty = pos.func.dfg.ctrl_typevar(inst);

                let mut arg = arg;
                let mut imm = imm;
                match opcode {
                    Opcode::IaddImm
                    | Opcode::ImulImm
                    | Opcode::BorImm
                    | Opcode::BandImm
                    | Opcode::BxorImm => {
                        // Fold binary_op(C2, binary_op(C1, x)) into binary_op(binary_op(C1, C2), x)
                        if let ValueDef::Result(arg_inst, _) = pos.func.dfg.value_def(arg) {
                            if let InstructionData::BinaryImm64 {
                                opcode: prev_opcode,
                                arg: prev_arg,
                                imm: prev_imm,
                            } = &pos.func.dfg[arg_inst]
                            {
                                if opcode == *prev_opcode
                                    && ty == pos.func.dfg.ctrl_typevar(arg_inst)
                                {
                                    let lhs: i64 = imm.into();
                                    let rhs: i64 = (*prev_imm).into();
                                    let new_imm = match opcode {
                                        Opcode::BorImm => lhs | rhs,
                                        Opcode::BandImm => lhs & rhs,
                                        Opcode::BxorImm => lhs ^ rhs,
                                        Opcode::IaddImm => lhs.wrapping_add(rhs),
                                        Opcode::ImulImm => lhs.wrapping_mul(rhs),
                                        _ => panic!("can't happen"),
                                    };
                                    let new_imm = immediates::Imm64::from(new_imm);
                                    let new_arg = *prev_arg;
                                    pos.func
                                        .dfg
                                        .replace(inst)
                                        .BinaryImm64(opcode, ty, new_imm, new_arg);
                                    imm = new_imm;
                                    arg = new_arg;
                                }
                            }
                        }
                    }

                    Opcode::UshrImm | Opcode::SshrImm => {
                        if pos.func.dfg.ctrl_typevar(inst).bytes() <= native_word_width
                            && try_fold_extended_move(pos, inst, opcode, arg, imm)
                        {
                            return;
                        }
                    }

                    _ => {}
                };

                // Replace operations that are no-ops.
                match (opcode, imm.into(), ty) {
                    (Opcode::IaddImm, 0, _)
                    | (Opcode::ImulImm, 1, _)
                    | (Opcode::SdivImm, 1, _)
                    | (Opcode::UdivImm, 1, _)
                    | (Opcode::BorImm, 0, _)
                    | (Opcode::BandImm, -1, _)
                    | (Opcode::BxorImm, 0, _)
                    | (Opcode::RotlImm, 0, _)
                    | (Opcode::RotrImm, 0, _)
                    | (Opcode::IshlImm, 0, _)
                    | (Opcode::UshrImm, 0, _)
                    | (Opcode::SshrImm, 0, _) => {
                        // Alias the result value with the original argument.
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, arg);
                    }
                    (Opcode::ImulImm, 0, ty) | (Opcode::BandImm, 0, ty) if ty != I128 => {
                        // Replace by zero.
                        pos.func.dfg.replace(inst).iconst(ty, 0);
                    }
                    (Opcode::BorImm, -1, ty) if ty != I128 => {
                        // Replace by minus one.
                        pos.func.dfg.replace(inst).iconst(ty, -1);
                    }
                    _ => {}
                }
            }

            InstructionData::IntCompare { opcode, cond, args } => {
                debug_assert_eq!(opcode, Opcode::Icmp);
                if let Some(imm) = resolve_imm64_value(&pos.func.dfg, args[1]) {
                    if pos.func.dfg.ctrl_typevar(inst).bytes() <= native_word_width {
                        pos.func.dfg.replace(inst).icmp_imm(cond, args[0], imm);
                    }
                }
            }

            _ => {}
        }
    }

Floating point constant.

Create a f32 SSA value with an immediate constant value.

Inputs:

  • N: A 32-bit immediate floating point number.

Outputs:

  • a: A constant f32 scalar value
Examples found in repository?
src/nan_canonicalization.rs (line 80)
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
fn add_nan_canon_seq(pos: &mut FuncCursor, inst: Inst) {
    // Select the instruction result, result type. Replace the instruction
    // result and step forward before inserting the canonicalization sequence.
    let val = pos.func.dfg.first_result(inst);
    let val_type = pos.func.dfg.value_type(val);
    let new_res = pos.func.dfg.replace_result(val, val_type);
    let _next_inst = pos.next_inst().expect("block missing terminator!");

    // Insert a comparison instruction, to check if `inst_res` is NaN. Select
    // the canonical NaN value if `val` is NaN, assign the result to `inst`.
    let is_nan = pos.ins().fcmp(FloatCC::NotEqual, new_res, new_res);

    let scalar_select = |pos: &mut FuncCursor, canon_nan: Value| {
        pos.ins()
            .with_result(val)
            .select(is_nan, canon_nan, new_res);
    };
    let vector_select = |pos: &mut FuncCursor, canon_nan: Value| {
        pos.ins()
            .with_result(val)
            .vselect(is_nan, canon_nan, new_res);
    };

    match val_type {
        types::F32 => {
            let canon_nan = pos.ins().f32const(Ieee32::with_bits(CANON_32BIT_NAN));
            scalar_select(pos, canon_nan);
        }
        types::F64 => {
            let canon_nan = pos.ins().f64const(Ieee64::with_bits(CANON_64BIT_NAN));
            scalar_select(pos, canon_nan);
        }
        types::F32X4 => {
            let canon_nan = pos.ins().f32const(Ieee32::with_bits(CANON_32BIT_NAN));
            let canon_nan = pos.ins().splat(types::F32X4, canon_nan);
            vector_select(pos, canon_nan);
        }
        types::F64X2 => {
            let canon_nan = pos.ins().f64const(Ieee64::with_bits(CANON_64BIT_NAN));
            let canon_nan = pos.ins().splat(types::F64X2, canon_nan);
            vector_select(pos, canon_nan);
        }
        _ => {
            // Panic if the type given was not an IEEE floating point type.
            panic!("Could not canonicalize NaN: Unexpected result type found.");
        }
    }

    pos.prev_inst(); // Step backwards so the pass does not skip instructions.
}

Floating point constant.

Create a f64 SSA value with an immediate constant value.

Inputs:

  • N: A 64-bit immediate floating point number.

Outputs:

  • a: A constant f64 scalar value
Examples found in repository?
src/nan_canonicalization.rs (line 84)
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
fn add_nan_canon_seq(pos: &mut FuncCursor, inst: Inst) {
    // Select the instruction result, result type. Replace the instruction
    // result and step forward before inserting the canonicalization sequence.
    let val = pos.func.dfg.first_result(inst);
    let val_type = pos.func.dfg.value_type(val);
    let new_res = pos.func.dfg.replace_result(val, val_type);
    let _next_inst = pos.next_inst().expect("block missing terminator!");

    // Insert a comparison instruction, to check if `inst_res` is NaN. Select
    // the canonical NaN value if `val` is NaN, assign the result to `inst`.
    let is_nan = pos.ins().fcmp(FloatCC::NotEqual, new_res, new_res);

    let scalar_select = |pos: &mut FuncCursor, canon_nan: Value| {
        pos.ins()
            .with_result(val)
            .select(is_nan, canon_nan, new_res);
    };
    let vector_select = |pos: &mut FuncCursor, canon_nan: Value| {
        pos.ins()
            .with_result(val)
            .vselect(is_nan, canon_nan, new_res);
    };

    match val_type {
        types::F32 => {
            let canon_nan = pos.ins().f32const(Ieee32::with_bits(CANON_32BIT_NAN));
            scalar_select(pos, canon_nan);
        }
        types::F64 => {
            let canon_nan = pos.ins().f64const(Ieee64::with_bits(CANON_64BIT_NAN));
            scalar_select(pos, canon_nan);
        }
        types::F32X4 => {
            let canon_nan = pos.ins().f32const(Ieee32::with_bits(CANON_32BIT_NAN));
            let canon_nan = pos.ins().splat(types::F32X4, canon_nan);
            vector_select(pos, canon_nan);
        }
        types::F64X2 => {
            let canon_nan = pos.ins().f64const(Ieee64::with_bits(CANON_64BIT_NAN));
            let canon_nan = pos.ins().splat(types::F64X2, canon_nan);
            vector_select(pos, canon_nan);
        }
        _ => {
            // Panic if the type given was not an IEEE floating point type.
            panic!("Could not canonicalize NaN: Unexpected result type found.");
        }
    }

    pos.prev_inst(); // Step backwards so the pass does not skip instructions.
}

SIMD vector constant.

Construct a vector with the given immediate bytes.

Inputs:

  • TxN (controlling type variable): A SIMD vector type
  • N: The 16 immediate bytes of a 128-bit vector

Outputs:

  • a: A constant vector value

SIMD vector shuffle.

Shuffle two vectors using the given immediate bytes. For each of the 16 bytes of the immediate, a value i of 0-15 selects the i-th element of the first vector and a value i of 16-31 selects the (i-16)th element of the second vector. Immediate values outside of the 0-31 range place a 0 in the resulting vector lane.

Inputs:

  • a: A vector value
  • b: A vector value
  • mask: The 16 immediate bytes used for selecting the elements to shuffle

Outputs:

  • a: A vector value

Null constant value for reference types.

Create a scalar reference SSA value with a constant null value.

Inputs:

  • Ref (controlling type variable): A scalar reference type

Outputs:

  • a: A constant reference null value

Just a dummy instruction.

Note: this doesn’t compile to a machine code nop.

Examples found in repository?
src/simple_preopt.rs (line 32)
24
25
26
27
28
29
30
31
32
33
fn replace_single_result_with_alias(dfg: &mut DataFlowGraph, inst: Inst, value: Value) {
    // Replace the result value by an alias.
    let results = dfg.detach_results(inst);
    debug_assert!(results.len(&dfg.value_lists) == 1);
    let result = results.get(0, &dfg.value_lists).unwrap();
    dfg.change_to_alias(result, value);

    // Replace instruction by a nop.
    dfg.replace(inst).nop();
}

Conditional select.

This instruction selects whole values. Use vselect for lane-wise selection.

Inputs:

  • c: Controlling value to test
  • x: Value to use when c is true
  • y: Value to use when c is false

Outputs:

  • a: Any integer, float, or reference scalar or vector type
Examples found in repository?
src/nan_canonicalization.rs (line 70)
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
fn add_nan_canon_seq(pos: &mut FuncCursor, inst: Inst) {
    // Select the instruction result, result type. Replace the instruction
    // result and step forward before inserting the canonicalization sequence.
    let val = pos.func.dfg.first_result(inst);
    let val_type = pos.func.dfg.value_type(val);
    let new_res = pos.func.dfg.replace_result(val, val_type);
    let _next_inst = pos.next_inst().expect("block missing terminator!");

    // Insert a comparison instruction, to check if `inst_res` is NaN. Select
    // the canonical NaN value if `val` is NaN, assign the result to `inst`.
    let is_nan = pos.ins().fcmp(FloatCC::NotEqual, new_res, new_res);

    let scalar_select = |pos: &mut FuncCursor, canon_nan: Value| {
        pos.ins()
            .with_result(val)
            .select(is_nan, canon_nan, new_res);
    };
    let vector_select = |pos: &mut FuncCursor, canon_nan: Value| {
        pos.ins()
            .with_result(val)
            .vselect(is_nan, canon_nan, new_res);
    };

    match val_type {
        types::F32 => {
            let canon_nan = pos.ins().f32const(Ieee32::with_bits(CANON_32BIT_NAN));
            scalar_select(pos, canon_nan);
        }
        types::F64 => {
            let canon_nan = pos.ins().f64const(Ieee64::with_bits(CANON_64BIT_NAN));
            scalar_select(pos, canon_nan);
        }
        types::F32X4 => {
            let canon_nan = pos.ins().f32const(Ieee32::with_bits(CANON_32BIT_NAN));
            let canon_nan = pos.ins().splat(types::F32X4, canon_nan);
            vector_select(pos, canon_nan);
        }
        types::F64X2 => {
            let canon_nan = pos.ins().f64const(Ieee64::with_bits(CANON_64BIT_NAN));
            let canon_nan = pos.ins().splat(types::F64X2, canon_nan);
            vector_select(pos, canon_nan);
        }
        _ => {
            // Panic if the type given was not an IEEE floating point type.
            panic!("Could not canonicalize NaN: Unexpected result type found.");
        }
    }

    pos.prev_inst(); // Step backwards so the pass does not skip instructions.
}

Conditional select intended for Spectre guards.

This operation is semantically equivalent to a select instruction. However, it is guaranteed to not be removed or otherwise altered by any optimization pass, and is guaranteed to result in a conditional-move instruction, not a branch-based lowering. As such, it is suitable for use when producing Spectre guards. For example, a bounds-check may guard against unsafe speculation past a bounds-check conditional branch by passing the address or index to be accessed through a conditional move, also gated on the same condition. Because no Spectre-vulnerable processors are known to perform speculation on conditional move instructions, this is guaranteed to pick the correct input. If the selected input in case of overflow is a “safe” value, for example a null pointer that causes an exception in the speculative path, this ensures that no Spectre vulnerability will exist.

Inputs:

  • c: Controlling value to test
  • x: Value to use when c is true
  • y: Value to use when c is false

Outputs:

  • a: Any integer, float, or reference scalar or vector type
Examples found in repository?
src/legalizer/table.rs (line 106)
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
fn compute_addr(
    inst: ir::Inst,
    table: ir::Table,
    addr_ty: ir::Type,
    mut index: ir::Value,
    index_ty: ir::Type,
    element_offset: Offset32,
    func: &mut ir::Function,
    spectre_oob_cmp: Option<(ir::Value, ir::Value)>,
) {
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Convert `index` to `addr_ty`.
    if index_ty != addr_ty {
        index = pos.ins().uextend(addr_ty, index);
    }

    // Add the table base address base
    let base_gv = pos.func.tables[table].base_gv;
    let base = pos.ins().global_value(addr_ty, base_gv);

    let element_size = pos.func.tables[table].element_size;
    let mut offset;
    let element_size: u64 = element_size.into();
    if element_size == 1 {
        offset = index;
    } else if element_size.is_power_of_two() {
        offset = pos
            .ins()
            .ishl_imm(index, i64::from(element_size.trailing_zeros()));
    } else {
        offset = pos.ins().imul_imm(index, element_size as i64);
    }

    let element_addr = if element_offset == Offset32::new(0) {
        pos.ins().iadd(base, offset)
    } else {
        let imm: i64 = element_offset.into();
        offset = pos.ins().iadd(base, offset);
        pos.ins().iadd_imm(offset, imm)
    };

    let element_addr = if let Some((index, bound)) = spectre_oob_cmp {
        let cond = pos
            .ins()
            .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
        // If out-of-bounds, choose the table base on the misspeculation path.
        pos.ins().select_spectre_guard(cond, base, element_addr)
    } else {
        element_addr
    };
    let new_inst = pos.func.dfg.value_def(element_addr).inst().unwrap();

    pos.func.dfg.replace_with_aliases(inst, new_inst);
    pos.remove_inst();
}
More examples
Hide additional examples
src/legalizer/heap.rs (line 466)
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
fn compute_addr(
    isa: &dyn TargetIsa,
    pos: &mut FuncCursor,
    heap: ir::Heap,
    addr_ty: ir::Type,
    index: ir::Value,
    offset: u32,
    // If we are performing Spectre mitigation with conditional selects, the
    // values to compare and the condition code that indicates an out-of bounds
    // condition; on this condition, the conditional move will choose a
    // speculatively safe address (a zero / null pointer) instead.
    spectre_oob_comparison: Option<SpectreOobComparison>,
) -> ir::Value {
    debug_assert_eq!(pos.func.dfg.value_type(index), addr_ty);

    // Add the heap base address base
    let base = if isa.flags().enable_pinned_reg() && isa.flags().use_pinned_reg_as_heap_base() {
        let base = pos.ins().get_pinned_reg(isa.pointer_type());
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(base));
        base
    } else {
        let base_gv = pos.func.heaps[heap].base;
        let base = pos.ins().global_value(addr_ty, base_gv);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(base));
        base
    };

    if let Some(SpectreOobComparison { cc, lhs, rhs }) = spectre_oob_comparison {
        let final_base = pos.ins().iadd(base, index);
        // NB: The addition of the offset immediate must happen *before* the
        // `select_spectre_guard`. If it happens after, then we potentially are
        // letting speculative execution read the whole first 4GiB of memory.
        let final_addr = if offset == 0 {
            final_base
        } else {
            let final_addr = pos.ins().iadd_imm(final_base, offset as i64);
            trace!(
                "  inserting: {}",
                pos.func.dfg.display_value_inst(final_addr)
            );
            final_addr
        };
        let zero = pos.ins().iconst(addr_ty, 0);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(zero));

        let cmp = pos.ins().icmp(cc, lhs, rhs);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(cmp));

        let value = pos.ins().select_spectre_guard(cmp, zero, final_addr);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(value));
        value
    } else if offset == 0 {
        let addr = pos.ins().iadd(base, index);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(addr));
        addr
    } else {
        let final_base = pos.ins().iadd(base, index);
        trace!(
            "  inserting: {}",
            pos.func.dfg.display_value_inst(final_base)
        );
        let addr = pos.ins().iadd_imm(final_base, offset as i64);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(addr));
        addr
    }
}

Conditional select of bits.

For each bit in c, this instruction selects the corresponding bit from x if the bit in c is 1 and the corresponding bit from y if the bit in c is 0. See also: select, vselect.

Inputs:

  • c: Controlling value to test
  • x: Value to use when c is true
  • y: Value to use when c is false

Outputs:

  • a: Any integer, float, or reference scalar or vector type

Split a vector into two halves.

Split the vector x into two separate values, each containing half of the lanes from x. The result may be two scalars if x only had two lanes.

Inputs:

  • x: Vector to split

Outputs:

  • lo: Low-numbered lanes of x
  • hi: High-numbered lanes of x

Vector concatenation.

Return a vector formed by concatenating x and y. The resulting vector type has twice as many lanes as each of the inputs. The lanes of x appear as the low-numbered lanes, and the lanes of y become the high-numbered lanes of a.

It is possible to form a vector by concatenating two scalars.

Inputs:

  • x: Low-numbered lanes
  • y: High-numbered lanes

Outputs:

  • a: Concatenation of x and y

Vector lane select.

Select lanes from x or y controlled by the lanes of the truthy vector c.

Inputs:

  • c: Controlling vector
  • x: Value to use where c is true
  • y: Value to use where c is false

Outputs:

  • a: A SIMD vector type
Examples found in repository?
src/nan_canonicalization.rs (line 75)
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
fn add_nan_canon_seq(pos: &mut FuncCursor, inst: Inst) {
    // Select the instruction result, result type. Replace the instruction
    // result and step forward before inserting the canonicalization sequence.
    let val = pos.func.dfg.first_result(inst);
    let val_type = pos.func.dfg.value_type(val);
    let new_res = pos.func.dfg.replace_result(val, val_type);
    let _next_inst = pos.next_inst().expect("block missing terminator!");

    // Insert a comparison instruction, to check if `inst_res` is NaN. Select
    // the canonical NaN value if `val` is NaN, assign the result to `inst`.
    let is_nan = pos.ins().fcmp(FloatCC::NotEqual, new_res, new_res);

    let scalar_select = |pos: &mut FuncCursor, canon_nan: Value| {
        pos.ins()
            .with_result(val)
            .select(is_nan, canon_nan, new_res);
    };
    let vector_select = |pos: &mut FuncCursor, canon_nan: Value| {
        pos.ins()
            .with_result(val)
            .vselect(is_nan, canon_nan, new_res);
    };

    match val_type {
        types::F32 => {
            let canon_nan = pos.ins().f32const(Ieee32::with_bits(CANON_32BIT_NAN));
            scalar_select(pos, canon_nan);
        }
        types::F64 => {
            let canon_nan = pos.ins().f64const(Ieee64::with_bits(CANON_64BIT_NAN));
            scalar_select(pos, canon_nan);
        }
        types::F32X4 => {
            let canon_nan = pos.ins().f32const(Ieee32::with_bits(CANON_32BIT_NAN));
            let canon_nan = pos.ins().splat(types::F32X4, canon_nan);
            vector_select(pos, canon_nan);
        }
        types::F64X2 => {
            let canon_nan = pos.ins().f64const(Ieee64::with_bits(CANON_64BIT_NAN));
            let canon_nan = pos.ins().splat(types::F64X2, canon_nan);
            vector_select(pos, canon_nan);
        }
        _ => {
            // Panic if the type given was not an IEEE floating point type.
            panic!("Could not canonicalize NaN: Unexpected result type found.");
        }
    }

    pos.prev_inst(); // Step backwards so the pass does not skip instructions.
}

Reduce a vector to a scalar boolean.

Return a scalar boolean true if any lane in a is non-zero, false otherwise.

Inputs:

  • a: A SIMD vector type

Outputs:

  • s: An integer type with 8 bits. WARNING: arithmetic on 8bit integers is incomplete

Reduce a vector to a scalar boolean.

Return a scalar boolean true if all lanes in i are non-zero, false otherwise.

Inputs:

  • a: A SIMD vector type

Outputs:

  • s: An integer type with 8 bits. WARNING: arithmetic on 8bit integers is incomplete

Reduce a vector to a scalar integer.

Return a scalar integer, consisting of the concatenation of the most significant bit of each lane of a.

Inputs:

  • Int (controlling type variable): A scalar or vector integer type
  • a: A SIMD vector type

Outputs:

  • x: A scalar or vector integer type

Integer comparison.

The condition code determines if the operands are interpreted as signed or unsigned integers.

SignedUnsignedCondition
eqeqEqual
neneNot equal
sltultLess than
sgeugeGreater than or equal
sgtugtGreater than
sleuleLess than or equal

When this instruction compares integer vectors, it returns a vector of lane-wise comparisons.

Inputs:

  • Cond: An integer comparison condition code.
  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a:
Examples found in repository?
src/legalizer/table.rs (line 33)
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
pub fn expand_table_addr(
    isa: &dyn TargetIsa,
    inst: ir::Inst,
    func: &mut ir::Function,
    table: ir::Table,
    index: ir::Value,
    element_offset: Offset32,
) {
    let bound_gv = func.tables[table].bound_gv;
    let index_ty = func.dfg.value_type(index);
    let addr_ty = func.dfg.value_type(func.dfg.first_result(inst));
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Start with the bounds check. Trap if `index + 1 > bound`.
    let bound = pos.ins().global_value(index_ty, bound_gv);

    // `index > bound - 1` is the same as `index >= bound`.
    let oob = pos
        .ins()
        .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
    pos.ins().trapnz(oob, ir::TrapCode::TableOutOfBounds);

    // If Spectre mitigations are enabled, we will use a comparison to
    // short-circuit the computed table element address to the start
    // of the table on the misspeculation path when out-of-bounds.
    let spectre_oob_cmp = if isa.flags().enable_table_access_spectre_mitigation() {
        Some((index, bound))
    } else {
        None
    };

    compute_addr(
        inst,
        table,
        addr_ty,
        index,
        index_ty,
        element_offset,
        pos.func,
        spectre_oob_cmp,
    );
}

/// Emit code for the base address computation of a `table_addr` instruction.
fn compute_addr(
    inst: ir::Inst,
    table: ir::Table,
    addr_ty: ir::Type,
    mut index: ir::Value,
    index_ty: ir::Type,
    element_offset: Offset32,
    func: &mut ir::Function,
    spectre_oob_cmp: Option<(ir::Value, ir::Value)>,
) {
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Convert `index` to `addr_ty`.
    if index_ty != addr_ty {
        index = pos.ins().uextend(addr_ty, index);
    }

    // Add the table base address base
    let base_gv = pos.func.tables[table].base_gv;
    let base = pos.ins().global_value(addr_ty, base_gv);

    let element_size = pos.func.tables[table].element_size;
    let mut offset;
    let element_size: u64 = element_size.into();
    if element_size == 1 {
        offset = index;
    } else if element_size.is_power_of_two() {
        offset = pos
            .ins()
            .ishl_imm(index, i64::from(element_size.trailing_zeros()));
    } else {
        offset = pos.ins().imul_imm(index, element_size as i64);
    }

    let element_addr = if element_offset == Offset32::new(0) {
        pos.ins().iadd(base, offset)
    } else {
        let imm: i64 = element_offset.into();
        offset = pos.ins().iadd(base, offset);
        pos.ins().iadd_imm(offset, imm)
    };

    let element_addr = if let Some((index, bound)) = spectre_oob_cmp {
        let cond = pos
            .ins()
            .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
        // If out-of-bounds, choose the table base on the misspeculation path.
        pos.ins().select_spectre_guard(cond, base, element_addr)
    } else {
        element_addr
    };
    let new_inst = pos.func.dfg.value_def(element_addr).inst().unwrap();

    pos.func.dfg.replace_with_aliases(inst, new_inst);
    pos.remove_inst();
}
More examples
Hide additional examples
src/legalizer/mod.rs (line 248)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}
src/legalizer/heap.rs (line 181)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
fn bounds_check_and_compute_addr(
    pos: &mut FuncCursor,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
    heap: ir::Heap,
    // Dynamic operand indexing into the heap.
    index: ir::Value,
    // Static immediate added to the index.
    offset: u32,
    // Static size of the heap access.
    access_size: u8,
) -> ir::Value {
    let pointer_type = isa.pointer_type();
    let spectre = isa.flags().enable_heap_access_spectre_mitigation();
    let offset_and_size = offset_plus_size(offset, access_size);

    let ir::HeapData {
        base: _,
        min_size,
        offset_guard_size: guard_size,
        style,
        index_type,
    } = pos.func.heaps[heap].clone();

    let index = cast_index_to_pointer_ty(index, index_type, pointer_type, pos);

    // We need to emit code that will trap (or compute an address that will trap
    // when accessed) if
    //
    //     index + offset + access_size > bound
    //
    // or if the `index + offset + access_size` addition overflows.
    //
    // Note that we ultimately want a 64-bit integer (we only target 64-bit
    // architectures at the moment) and that `offset` is a `u32` and
    // `access_size` is a `u8`. This means that we can add the latter together
    // as `u64`s without fear of overflow, and we only have to be concerned with
    // whether adding in `index` will overflow.
    //
    // Finally, the following right-hand sides of the matches do have a little
    // bit of duplicated code across them, but I think writing it this way is
    // worth it for readability and seeing very clearly each of our cases for
    // different bounds checks and optimizations of those bounds checks. It is
    // intentionally written in a straightforward case-matching style that will
    // hopefully make it easy to port to ISLE one day.
    match style {
        // ====== Dynamic Memories ======
        //
        // 1. First special case for when `offset + access_size == 1`:
        //
        //            index + 1 > bound
        //        ==> index >= bound
        //
        //    1.a. When Spectre mitigations are enabled, avoid duplicating
        //         bounds checks between the mitigations and the regular bounds
        //         checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 && spectre => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThanOrEqual,
                    lhs: index,
                    rhs: bound,
                }),
            )
        }
        //    1.b. Emit explicit `index >= bound` bounds checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 2. Second special case for when `offset + access_size <= min_size`.
        //
        //    We know that `bound >= min_size`, so we can do the following
        //    comparison, without fear of the right-hand side wrapping around:
        //
        //            index + offset + access_size > bound
        //        ==> index > bound - (offset + access_size)
        //
        //    2.a. Dedupe bounds checks with Spectre mitigations.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size <= min_size.into() && spectre => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let adjusted_bound = pos.ins().iadd_imm(bound, -(offset_and_size as i64));
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: index,
                    rhs: adjusted_bound,
                }),
            )
        }
        //    2.b. Emit explicit `index > bound - (offset + access_size)` bounds
        //         checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size <= min_size.into() => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let adjusted_bound = pos.ins().iadd_imm(bound, -(offset_and_size as i64));
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThan, index, adjusted_bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 3. General case for dynamic memories:
        //
        //        index + offset + access_size > bound
        //
        //    And we have to handle the overflow case in the left-hand side.
        //
        //    3.a. Dedupe bounds checks with Spectre mitigations.
        ir::HeapStyle::Dynamic { bound_gv } if spectre => {
            let access_size_val = pos.ins().iconst(pointer_type, offset_and_size as i64);
            let adjusted_index =
                pos.ins()
                    .uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: adjusted_index,
                    rhs: bound,
                }),
            )
        }
        //    3.b. Emit an explicit `index + offset + access_size > bound`
        //         check.
        ir::HeapStyle::Dynamic { bound_gv } => {
            let access_size_val = pos.ins().iconst(pointer_type, offset_and_size as i64);
            let adjusted_index =
                pos.ins()
                    .uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThan, adjusted_index, bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // ====== Static Memories ======
        //
        // With static memories we know the size of the heap bound at compile
        // time.
        //
        // 1. First special case: trap immediately if `offset + access_size >
        //    bound`, since we will end up being out-of-bounds regardless of the
        //    given `index`.
        ir::HeapStyle::Static { bound } if offset_and_size > bound.into() => {
            pos.ins().trap(ir::TrapCode::HeapOutOfBounds);

            // Split the block, as the trap is a terminator instruction.
            let curr_block = pos.current_block().expect("Cursor is not in a block");
            let new_block = pos.func.dfg.make_block();
            pos.insert_block(new_block);
            cfg.recompute_block(pos.func, curr_block);
            cfg.recompute_block(pos.func, new_block);

            let null = pos.ins().iconst(pointer_type, 0);
            return null;
        }

        // 2. Second special case for when we can completely omit explicit
        //    bounds checks for 32-bit static memories.
        //
        //    First, let's rewrite our comparison to move all of the constants
        //    to one side:
        //
        //            index + offset + access_size > bound
        //        ==> index > bound - (offset + access_size)
        //
        //    We know the subtraction on the right-hand side won't wrap because
        //    we didn't hit the first special case.
        //
        //    Additionally, we add our guard pages (if any) to the right-hand
        //    side, since we can rely on the virtual memory subsystem at runtime
        //    to catch out-of-bound accesses within the range `bound .. bound +
        //    guard_size`. So now we are dealing with
        //
        //        index > bound + guard_size - (offset + access_size)
        //
        //    Note that `bound + guard_size` cannot overflow for
        //    correctly-configured heaps, as otherwise the heap wouldn't fit in
        //    a 64-bit memory space.
        //
        //    The complement of our should-this-trap comparison expression is
        //    the should-this-not-trap comparison expression:
        //
        //        index <= bound + guard_size - (offset + access_size)
        //
        //    If we know the right-hand side is greater than or equal to
        //    `u32::MAX`, then
        //
        //        index <= u32::MAX <= bound + guard_size - (offset + access_size)
        //
        //    This expression is always true when the heap is indexed with
        //    32-bit integers because `index` cannot be larger than
        //    `u32::MAX`. This means that `index` is always either in bounds or
        //    within the guard page region, neither of which require emitting an
        //    explicit bounds check.
        ir::HeapStyle::Static { bound }
            if index_type == ir::types::I32
                && u64::from(u32::MAX)
                    <= u64::from(bound) + u64::from(guard_size) - offset_and_size =>
        {
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 3. General case for static memories.
        //
        //    We have to explicitly test whether
        //
        //        index > bound - (offset + access_size)
        //
        //    and trap if so.
        //
        //    Since we have to emit explicit bounds checks, we might as well be
        //    precise, not rely on the virtual memory subsystem at all, and not
        //    factor in the guard pages here.
        //
        //    3.a. Dedupe the Spectre mitigation and the explicit bounds check.
        ir::HeapStyle::Static { bound } if spectre => {
            // NB: this subtraction cannot wrap because we didn't hit the first
            // special case.
            let adjusted_bound = u64::from(bound) - offset_and_size;
            let adjusted_bound = pos.ins().iconst(pointer_type, adjusted_bound as i64);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: index,
                    rhs: adjusted_bound,
                }),
            )
        }
        //    3.b. Emit the explicit `index > bound - (offset + access_size)`
        //         check.
        ir::HeapStyle::Static { bound } => {
            // See comment in 3.a. above.
            let adjusted_bound = u64::from(bound) - offset_and_size;
            let oob = pos
                .ins()
                .icmp_imm(IntCC::UnsignedGreaterThan, index, adjusted_bound as i64);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }
    }
}

fn cast_index_to_pointer_ty(
    index: ir::Value,
    index_ty: ir::Type,
    pointer_ty: ir::Type,
    pos: &mut FuncCursor,
) -> ir::Value {
    if index_ty == pointer_ty {
        return index;
    }
    // Note that using 64-bit heaps on a 32-bit host is not currently supported,
    // would require at least a bounds check here to ensure that the truncation
    // from 64-to-32 bits doesn't lose any upper bits. For now though we're
    // mostly interested in the 32-bit-heaps-on-64-bit-hosts cast.
    assert!(index_ty.bits() < pointer_ty.bits());

    // Convert `index` to `addr_ty`.
    let extended_index = pos.ins().uextend(pointer_ty, index);

    // Add debug value-label alias so that debuginfo can name the extended
    // value as the address
    let loc = pos.srcloc();
    let loc = RelSourceLoc::from_base_offset(pos.func.params.base_srcloc(), loc);
    pos.func
        .stencil
        .dfg
        .add_value_label_alias(extended_index, loc, index);

    extended_index
}

struct SpectreOobComparison {
    cc: IntCC,
    lhs: ir::Value,
    rhs: ir::Value,
}

/// Emit code for the base address computation of a `heap_addr` instruction,
/// without any bounds checks (other than optional Spectre mitigations).
fn compute_addr(
    isa: &dyn TargetIsa,
    pos: &mut FuncCursor,
    heap: ir::Heap,
    addr_ty: ir::Type,
    index: ir::Value,
    offset: u32,
    // If we are performing Spectre mitigation with conditional selects, the
    // values to compare and the condition code that indicates an out-of bounds
    // condition; on this condition, the conditional move will choose a
    // speculatively safe address (a zero / null pointer) instead.
    spectre_oob_comparison: Option<SpectreOobComparison>,
) -> ir::Value {
    debug_assert_eq!(pos.func.dfg.value_type(index), addr_ty);

    // Add the heap base address base
    let base = if isa.flags().enable_pinned_reg() && isa.flags().use_pinned_reg_as_heap_base() {
        let base = pos.ins().get_pinned_reg(isa.pointer_type());
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(base));
        base
    } else {
        let base_gv = pos.func.heaps[heap].base;
        let base = pos.ins().global_value(addr_ty, base_gv);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(base));
        base
    };

    if let Some(SpectreOobComparison { cc, lhs, rhs }) = spectre_oob_comparison {
        let final_base = pos.ins().iadd(base, index);
        // NB: The addition of the offset immediate must happen *before* the
        // `select_spectre_guard`. If it happens after, then we potentially are
        // letting speculative execution read the whole first 4GiB of memory.
        let final_addr = if offset == 0 {
            final_base
        } else {
            let final_addr = pos.ins().iadd_imm(final_base, offset as i64);
            trace!(
                "  inserting: {}",
                pos.func.dfg.display_value_inst(final_addr)
            );
            final_addr
        };
        let zero = pos.ins().iconst(addr_ty, 0);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(zero));

        let cmp = pos.ins().icmp(cc, lhs, rhs);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(cmp));

        let value = pos.ins().select_spectre_guard(cmp, zero, final_addr);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(value));
        value
    } else if offset == 0 {
        let addr = pos.ins().iadd(base, index);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(addr));
        addr
    } else {
        let final_base = pos.ins().iadd(base, index);
        trace!(
            "  inserting: {}",
            pos.func.dfg.display_value_inst(final_base)
        );
        let addr = pos.ins().iadd_imm(final_base, offset as i64);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(addr));
        addr
    }
}

Compare scalar integer to a constant.

This is the same as the icmp instruction, except one operand is a sign extended 64 bit immediate constant.

This instruction can only compare scalars. Use icmp for lane-wise vector comparisons.

Inputs:

  • Cond: An integer comparison condition code.
  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: An integer type with 8 bits. WARNING: arithmetic on 8bit integers is incomplete
Examples found in repository?
src/simple_preopt.rs (line 824)
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
    fn simplify(pos: &mut FuncCursor, inst: Inst, native_word_width: u32) {
        match pos.func.dfg[inst] {
            InstructionData::Binary { opcode, args } => {
                if let Some(mut imm) = resolve_imm64_value(&pos.func.dfg, args[1]) {
                    let new_opcode = match opcode {
                        Opcode::Iadd => Opcode::IaddImm,
                        Opcode::Imul => Opcode::ImulImm,
                        Opcode::Sdiv => Opcode::SdivImm,
                        Opcode::Udiv => Opcode::UdivImm,
                        Opcode::Srem => Opcode::SremImm,
                        Opcode::Urem => Opcode::UremImm,
                        Opcode::Band => Opcode::BandImm,
                        Opcode::Bor => Opcode::BorImm,
                        Opcode::Bxor => Opcode::BxorImm,
                        Opcode::Rotl => Opcode::RotlImm,
                        Opcode::Rotr => Opcode::RotrImm,
                        Opcode::Ishl => Opcode::IshlImm,
                        Opcode::Ushr => Opcode::UshrImm,
                        Opcode::Sshr => Opcode::SshrImm,
                        Opcode::Isub => {
                            imm = imm.wrapping_neg();
                            Opcode::IaddImm
                        }
                        Opcode::Ifcmp => Opcode::IfcmpImm,
                        _ => return,
                    };
                    let ty = pos.func.dfg.ctrl_typevar(inst);
                    if ty.bytes() <= native_word_width {
                        pos.func
                            .dfg
                            .replace(inst)
                            .BinaryImm64(new_opcode, ty, imm, args[0]);

                        // Repeat for BinaryImm simplification.
                        simplify(pos, inst, native_word_width);
                    }
                } else if let Some(imm) = resolve_imm64_value(&pos.func.dfg, args[0]) {
                    let new_opcode = match opcode {
                        Opcode::Iadd => Opcode::IaddImm,
                        Opcode::Imul => Opcode::ImulImm,
                        Opcode::Band => Opcode::BandImm,
                        Opcode::Bor => Opcode::BorImm,
                        Opcode::Bxor => Opcode::BxorImm,
                        Opcode::Isub => Opcode::IrsubImm,
                        _ => return,
                    };
                    let ty = pos.func.dfg.ctrl_typevar(inst);
                    if ty.bytes() <= native_word_width {
                        pos.func
                            .dfg
                            .replace(inst)
                            .BinaryImm64(new_opcode, ty, imm, args[1]);
                    }
                }
            }

            InstructionData::BinaryImm64 { opcode, arg, imm } => {
                let ty = pos.func.dfg.ctrl_typevar(inst);

                let mut arg = arg;
                let mut imm = imm;
                match opcode {
                    Opcode::IaddImm
                    | Opcode::ImulImm
                    | Opcode::BorImm
                    | Opcode::BandImm
                    | Opcode::BxorImm => {
                        // Fold binary_op(C2, binary_op(C1, x)) into binary_op(binary_op(C1, C2), x)
                        if let ValueDef::Result(arg_inst, _) = pos.func.dfg.value_def(arg) {
                            if let InstructionData::BinaryImm64 {
                                opcode: prev_opcode,
                                arg: prev_arg,
                                imm: prev_imm,
                            } = &pos.func.dfg[arg_inst]
                            {
                                if opcode == *prev_opcode
                                    && ty == pos.func.dfg.ctrl_typevar(arg_inst)
                                {
                                    let lhs: i64 = imm.into();
                                    let rhs: i64 = (*prev_imm).into();
                                    let new_imm = match opcode {
                                        Opcode::BorImm => lhs | rhs,
                                        Opcode::BandImm => lhs & rhs,
                                        Opcode::BxorImm => lhs ^ rhs,
                                        Opcode::IaddImm => lhs.wrapping_add(rhs),
                                        Opcode::ImulImm => lhs.wrapping_mul(rhs),
                                        _ => panic!("can't happen"),
                                    };
                                    let new_imm = immediates::Imm64::from(new_imm);
                                    let new_arg = *prev_arg;
                                    pos.func
                                        .dfg
                                        .replace(inst)
                                        .BinaryImm64(opcode, ty, new_imm, new_arg);
                                    imm = new_imm;
                                    arg = new_arg;
                                }
                            }
                        }
                    }

                    Opcode::UshrImm | Opcode::SshrImm => {
                        if pos.func.dfg.ctrl_typevar(inst).bytes() <= native_word_width
                            && try_fold_extended_move(pos, inst, opcode, arg, imm)
                        {
                            return;
                        }
                    }

                    _ => {}
                };

                // Replace operations that are no-ops.
                match (opcode, imm.into(), ty) {
                    (Opcode::IaddImm, 0, _)
                    | (Opcode::ImulImm, 1, _)
                    | (Opcode::SdivImm, 1, _)
                    | (Opcode::UdivImm, 1, _)
                    | (Opcode::BorImm, 0, _)
                    | (Opcode::BandImm, -1, _)
                    | (Opcode::BxorImm, 0, _)
                    | (Opcode::RotlImm, 0, _)
                    | (Opcode::RotrImm, 0, _)
                    | (Opcode::IshlImm, 0, _)
                    | (Opcode::UshrImm, 0, _)
                    | (Opcode::SshrImm, 0, _) => {
                        // Alias the result value with the original argument.
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, arg);
                    }
                    (Opcode::ImulImm, 0, ty) | (Opcode::BandImm, 0, ty) if ty != I128 => {
                        // Replace by zero.
                        pos.func.dfg.replace(inst).iconst(ty, 0);
                    }
                    (Opcode::BorImm, -1, ty) if ty != I128 => {
                        // Replace by minus one.
                        pos.func.dfg.replace(inst).iconst(ty, -1);
                    }
                    _ => {}
                }
            }

            InstructionData::IntCompare { opcode, cond, args } => {
                debug_assert_eq!(opcode, Opcode::Icmp);
                if let Some(imm) = resolve_imm64_value(&pos.func.dfg, args[1]) {
                    if pos.func.dfg.ctrl_typevar(inst).bytes() <= native_word_width {
                        pos.func.dfg.replace(inst).icmp_imm(cond, args[0], imm);
                    }
                }
            }

            _ => {}
        }
    }
More examples
Hide additional examples
src/legalizer/heap.rs (line 373)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
fn bounds_check_and_compute_addr(
    pos: &mut FuncCursor,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
    heap: ir::Heap,
    // Dynamic operand indexing into the heap.
    index: ir::Value,
    // Static immediate added to the index.
    offset: u32,
    // Static size of the heap access.
    access_size: u8,
) -> ir::Value {
    let pointer_type = isa.pointer_type();
    let spectre = isa.flags().enable_heap_access_spectre_mitigation();
    let offset_and_size = offset_plus_size(offset, access_size);

    let ir::HeapData {
        base: _,
        min_size,
        offset_guard_size: guard_size,
        style,
        index_type,
    } = pos.func.heaps[heap].clone();

    let index = cast_index_to_pointer_ty(index, index_type, pointer_type, pos);

    // We need to emit code that will trap (or compute an address that will trap
    // when accessed) if
    //
    //     index + offset + access_size > bound
    //
    // or if the `index + offset + access_size` addition overflows.
    //
    // Note that we ultimately want a 64-bit integer (we only target 64-bit
    // architectures at the moment) and that `offset` is a `u32` and
    // `access_size` is a `u8`. This means that we can add the latter together
    // as `u64`s without fear of overflow, and we only have to be concerned with
    // whether adding in `index` will overflow.
    //
    // Finally, the following right-hand sides of the matches do have a little
    // bit of duplicated code across them, but I think writing it this way is
    // worth it for readability and seeing very clearly each of our cases for
    // different bounds checks and optimizations of those bounds checks. It is
    // intentionally written in a straightforward case-matching style that will
    // hopefully make it easy to port to ISLE one day.
    match style {
        // ====== Dynamic Memories ======
        //
        // 1. First special case for when `offset + access_size == 1`:
        //
        //            index + 1 > bound
        //        ==> index >= bound
        //
        //    1.a. When Spectre mitigations are enabled, avoid duplicating
        //         bounds checks between the mitigations and the regular bounds
        //         checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 && spectre => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThanOrEqual,
                    lhs: index,
                    rhs: bound,
                }),
            )
        }
        //    1.b. Emit explicit `index >= bound` bounds checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 2. Second special case for when `offset + access_size <= min_size`.
        //
        //    We know that `bound >= min_size`, so we can do the following
        //    comparison, without fear of the right-hand side wrapping around:
        //
        //            index + offset + access_size > bound
        //        ==> index > bound - (offset + access_size)
        //
        //    2.a. Dedupe bounds checks with Spectre mitigations.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size <= min_size.into() && spectre => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let adjusted_bound = pos.ins().iadd_imm(bound, -(offset_and_size as i64));
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: index,
                    rhs: adjusted_bound,
                }),
            )
        }
        //    2.b. Emit explicit `index > bound - (offset + access_size)` bounds
        //         checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size <= min_size.into() => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let adjusted_bound = pos.ins().iadd_imm(bound, -(offset_and_size as i64));
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThan, index, adjusted_bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 3. General case for dynamic memories:
        //
        //        index + offset + access_size > bound
        //
        //    And we have to handle the overflow case in the left-hand side.
        //
        //    3.a. Dedupe bounds checks with Spectre mitigations.
        ir::HeapStyle::Dynamic { bound_gv } if spectre => {
            let access_size_val = pos.ins().iconst(pointer_type, offset_and_size as i64);
            let adjusted_index =
                pos.ins()
                    .uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: adjusted_index,
                    rhs: bound,
                }),
            )
        }
        //    3.b. Emit an explicit `index + offset + access_size > bound`
        //         check.
        ir::HeapStyle::Dynamic { bound_gv } => {
            let access_size_val = pos.ins().iconst(pointer_type, offset_and_size as i64);
            let adjusted_index =
                pos.ins()
                    .uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThan, adjusted_index, bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // ====== Static Memories ======
        //
        // With static memories we know the size of the heap bound at compile
        // time.
        //
        // 1. First special case: trap immediately if `offset + access_size >
        //    bound`, since we will end up being out-of-bounds regardless of the
        //    given `index`.
        ir::HeapStyle::Static { bound } if offset_and_size > bound.into() => {
            pos.ins().trap(ir::TrapCode::HeapOutOfBounds);

            // Split the block, as the trap is a terminator instruction.
            let curr_block = pos.current_block().expect("Cursor is not in a block");
            let new_block = pos.func.dfg.make_block();
            pos.insert_block(new_block);
            cfg.recompute_block(pos.func, curr_block);
            cfg.recompute_block(pos.func, new_block);

            let null = pos.ins().iconst(pointer_type, 0);
            return null;
        }

        // 2. Second special case for when we can completely omit explicit
        //    bounds checks for 32-bit static memories.
        //
        //    First, let's rewrite our comparison to move all of the constants
        //    to one side:
        //
        //            index + offset + access_size > bound
        //        ==> index > bound - (offset + access_size)
        //
        //    We know the subtraction on the right-hand side won't wrap because
        //    we didn't hit the first special case.
        //
        //    Additionally, we add our guard pages (if any) to the right-hand
        //    side, since we can rely on the virtual memory subsystem at runtime
        //    to catch out-of-bound accesses within the range `bound .. bound +
        //    guard_size`. So now we are dealing with
        //
        //        index > bound + guard_size - (offset + access_size)
        //
        //    Note that `bound + guard_size` cannot overflow for
        //    correctly-configured heaps, as otherwise the heap wouldn't fit in
        //    a 64-bit memory space.
        //
        //    The complement of our should-this-trap comparison expression is
        //    the should-this-not-trap comparison expression:
        //
        //        index <= bound + guard_size - (offset + access_size)
        //
        //    If we know the right-hand side is greater than or equal to
        //    `u32::MAX`, then
        //
        //        index <= u32::MAX <= bound + guard_size - (offset + access_size)
        //
        //    This expression is always true when the heap is indexed with
        //    32-bit integers because `index` cannot be larger than
        //    `u32::MAX`. This means that `index` is always either in bounds or
        //    within the guard page region, neither of which require emitting an
        //    explicit bounds check.
        ir::HeapStyle::Static { bound }
            if index_type == ir::types::I32
                && u64::from(u32::MAX)
                    <= u64::from(bound) + u64::from(guard_size) - offset_and_size =>
        {
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 3. General case for static memories.
        //
        //    We have to explicitly test whether
        //
        //        index > bound - (offset + access_size)
        //
        //    and trap if so.
        //
        //    Since we have to emit explicit bounds checks, we might as well be
        //    precise, not rely on the virtual memory subsystem at all, and not
        //    factor in the guard pages here.
        //
        //    3.a. Dedupe the Spectre mitigation and the explicit bounds check.
        ir::HeapStyle::Static { bound } if spectre => {
            // NB: this subtraction cannot wrap because we didn't hit the first
            // special case.
            let adjusted_bound = u64::from(bound) - offset_and_size;
            let adjusted_bound = pos.ins().iconst(pointer_type, adjusted_bound as i64);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: index,
                    rhs: adjusted_bound,
                }),
            )
        }
        //    3.b. Emit the explicit `index > bound - (offset + access_size)`
        //         check.
        ir::HeapStyle::Static { bound } => {
            // See comment in 3.a. above.
            let adjusted_bound = u64::from(bound) - offset_and_size;
            let oob = pos
                .ins()
                .icmp_imm(IntCC::UnsignedGreaterThan, index, adjusted_bound as i64);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }
    }
}

Compare scalar integers and return flags.

Compare two scalar integer values and return integer CPU flags representing the result.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • f: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.
Examples found in repository?
src/legalizer/mod.rs (line 234)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Compare scalar integer to a constant and return flags.

Like icmp_imm, but returns integer CPU flags instead of testing a specific condition code.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • f: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Wrapping integer addition: a := x + y \pmod{2^B}.

This instruction does not depend on the signed/unsigned interpretation of the operands.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type
Examples found in repository?
src/legalizer/table.rs (line 94)
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
fn compute_addr(
    inst: ir::Inst,
    table: ir::Table,
    addr_ty: ir::Type,
    mut index: ir::Value,
    index_ty: ir::Type,
    element_offset: Offset32,
    func: &mut ir::Function,
    spectre_oob_cmp: Option<(ir::Value, ir::Value)>,
) {
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Convert `index` to `addr_ty`.
    if index_ty != addr_ty {
        index = pos.ins().uextend(addr_ty, index);
    }

    // Add the table base address base
    let base_gv = pos.func.tables[table].base_gv;
    let base = pos.ins().global_value(addr_ty, base_gv);

    let element_size = pos.func.tables[table].element_size;
    let mut offset;
    let element_size: u64 = element_size.into();
    if element_size == 1 {
        offset = index;
    } else if element_size.is_power_of_two() {
        offset = pos
            .ins()
            .ishl_imm(index, i64::from(element_size.trailing_zeros()));
    } else {
        offset = pos.ins().imul_imm(index, element_size as i64);
    }

    let element_addr = if element_offset == Offset32::new(0) {
        pos.ins().iadd(base, offset)
    } else {
        let imm: i64 = element_offset.into();
        offset = pos.ins().iadd(base, offset);
        pos.ins().iadd_imm(offset, imm)
    };

    let element_addr = if let Some((index, bound)) = spectre_oob_cmp {
        let cond = pos
            .ins()
            .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
        // If out-of-bounds, choose the table base on the misspeculation path.
        pos.ins().select_spectre_guard(cond, base, element_addr)
    } else {
        element_addr
    };
    let new_inst = pos.func.dfg.value_def(element_addr).inst().unwrap();

    pos.func.dfg.replace_with_aliases(inst, new_inst);
    pos.remove_inst();
}
More examples
Hide additional examples
src/legalizer/heap.rs (line 446)
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
fn compute_addr(
    isa: &dyn TargetIsa,
    pos: &mut FuncCursor,
    heap: ir::Heap,
    addr_ty: ir::Type,
    index: ir::Value,
    offset: u32,
    // If we are performing Spectre mitigation with conditional selects, the
    // values to compare and the condition code that indicates an out-of bounds
    // condition; on this condition, the conditional move will choose a
    // speculatively safe address (a zero / null pointer) instead.
    spectre_oob_comparison: Option<SpectreOobComparison>,
) -> ir::Value {
    debug_assert_eq!(pos.func.dfg.value_type(index), addr_ty);

    // Add the heap base address base
    let base = if isa.flags().enable_pinned_reg() && isa.flags().use_pinned_reg_as_heap_base() {
        let base = pos.ins().get_pinned_reg(isa.pointer_type());
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(base));
        base
    } else {
        let base_gv = pos.func.heaps[heap].base;
        let base = pos.ins().global_value(addr_ty, base_gv);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(base));
        base
    };

    if let Some(SpectreOobComparison { cc, lhs, rhs }) = spectre_oob_comparison {
        let final_base = pos.ins().iadd(base, index);
        // NB: The addition of the offset immediate must happen *before* the
        // `select_spectre_guard`. If it happens after, then we potentially are
        // letting speculative execution read the whole first 4GiB of memory.
        let final_addr = if offset == 0 {
            final_base
        } else {
            let final_addr = pos.ins().iadd_imm(final_base, offset as i64);
            trace!(
                "  inserting: {}",
                pos.func.dfg.display_value_inst(final_addr)
            );
            final_addr
        };
        let zero = pos.ins().iconst(addr_ty, 0);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(zero));

        let cmp = pos.ins().icmp(cc, lhs, rhs);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(cmp));

        let value = pos.ins().select_spectre_guard(cmp, zero, final_addr);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(value));
        value
    } else if offset == 0 {
        let addr = pos.ins().iadd(base, index);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(addr));
        addr
    } else {
        let final_base = pos.ins().iadd(base, index);
        trace!(
            "  inserting: {}",
            pos.func.dfg.display_value_inst(final_base)
        );
        let addr = pos.ins().iadd_imm(final_base, offset as i64);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(addr));
        addr
    }
}
src/legalizer/mod.rs (line 211)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}
src/simple_preopt.rs (line 223)
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCursor, inst: Inst) {
    let is_rem = match *divrem_info {
        DivRemByConstInfo::DivU32(_, _)
        | DivRemByConstInfo::DivU64(_, _)
        | DivRemByConstInfo::DivS32(_, _)
        | DivRemByConstInfo::DivS64(_, _) => false,
        DivRemByConstInfo::RemU32(_, _)
        | DivRemByConstInfo::RemU64(_, _)
        | DivRemByConstInfo::RemS32(_, _)
        | DivRemByConstInfo::RemS64(_, _) => true,
    };

    match *divrem_info {
        // -------------------- U32 --------------------

        // U32 div, rem by zero: ignore
        DivRemByConstInfo::DivU32(_n1, 0) | DivRemByConstInfo::RemU32(_n1, 0) => {}

        // U32 div by 1: identity
        // U32 rem by 1: zero
        DivRemByConstInfo::DivU32(n1, 1) | DivRemByConstInfo::RemU32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U32 div, rem by a power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 31);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U32 div, rem by non-power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d) => {
            debug_assert!(d >= 3);
            let MU32 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u32(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I32, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 32);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- U64 --------------------

        // U64 div, rem by zero: ignore
        DivRemByConstInfo::DivU64(_n1, 0) | DivRemByConstInfo::RemU64(_n1, 0) => {}

        // U64 div by 1: identity
        // U64 rem by 1: zero
        DivRemByConstInfo::DivU64(n1, 1) | DivRemByConstInfo::RemU64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U64 div, rem by a power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 63);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U64 div, rem by non-power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d) => {
            debug_assert!(d >= 3);
            let MU64 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u64(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I64, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 64);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- S32 --------------------

        // S32 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS32(_n1, -1)
        | DivRemByConstInfo::RemS32(_n1, -1)
        | DivRemByConstInfo::DivS32(_n1, 0)
        | DivRemByConstInfo::RemS32(_n1, 0) => {}

        // S32 div by 1: identity
        // S32 rem by 1: zero
        DivRemByConstInfo::DivS32(n1, 1) | DivRemByConstInfo::RemS32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS32(n1, d) | DivRemByConstInfo::RemS32(n1, d) => {
            if let Some((is_negative, k)) = i32_is_power_of_two(d) {
                // k can be 31 only in the case that d is -2^31.
                debug_assert!(k >= 1 && k <= 31);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (32 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S32 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i32::wrapping_neg(1 << k) as i64);
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S32 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S32 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS32 { mul_by, shift_by } = magic_s32(d);
                let q0 = pos.ins().iconst(I32, mul_by as i64);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 31);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d as i64);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }

        // -------------------- S64 --------------------

        // S64 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS64(_n1, -1)
        | DivRemByConstInfo::RemS64(_n1, -1)
        | DivRemByConstInfo::DivS64(_n1, 0)
        | DivRemByConstInfo::RemS64(_n1, 0) => {}

        // S64 div by 1: identity
        // S64 rem by 1: zero
        DivRemByConstInfo::DivS64(n1, 1) | DivRemByConstInfo::RemS64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS64(n1, d) | DivRemByConstInfo::RemS64(n1, d) => {
            if let Some((is_negative, k)) = i64_is_power_of_two(d) {
                // k can be 63 only in the case that d is -2^63.
                debug_assert!(k >= 1 && k <= 63);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (64 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S64 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i64::wrapping_neg(1 << k));
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S64 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S64 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS64 { mul_by, shift_by } = magic_s64(d);
                let q0 = pos.ins().iconst(I64, mul_by);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 63);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }
    }
}

Wrapping integer subtraction: a := x - y \pmod{2^B}.

This instruction does not depend on the signed/unsigned interpretation of the operands.

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type
Examples found in repository?
src/legalizer/mod.rs (line 215)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}
More examples
Hide additional examples
src/simple_preopt.rs (line 221)
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCursor, inst: Inst) {
    let is_rem = match *divrem_info {
        DivRemByConstInfo::DivU32(_, _)
        | DivRemByConstInfo::DivU64(_, _)
        | DivRemByConstInfo::DivS32(_, _)
        | DivRemByConstInfo::DivS64(_, _) => false,
        DivRemByConstInfo::RemU32(_, _)
        | DivRemByConstInfo::RemU64(_, _)
        | DivRemByConstInfo::RemS32(_, _)
        | DivRemByConstInfo::RemS64(_, _) => true,
    };

    match *divrem_info {
        // -------------------- U32 --------------------

        // U32 div, rem by zero: ignore
        DivRemByConstInfo::DivU32(_n1, 0) | DivRemByConstInfo::RemU32(_n1, 0) => {}

        // U32 div by 1: identity
        // U32 rem by 1: zero
        DivRemByConstInfo::DivU32(n1, 1) | DivRemByConstInfo::RemU32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U32 div, rem by a power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 31);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U32 div, rem by non-power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d) => {
            debug_assert!(d >= 3);
            let MU32 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u32(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I32, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 32);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- U64 --------------------

        // U64 div, rem by zero: ignore
        DivRemByConstInfo::DivU64(_n1, 0) | DivRemByConstInfo::RemU64(_n1, 0) => {}

        // U64 div by 1: identity
        // U64 rem by 1: zero
        DivRemByConstInfo::DivU64(n1, 1) | DivRemByConstInfo::RemU64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U64 div, rem by a power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 63);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U64 div, rem by non-power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d) => {
            debug_assert!(d >= 3);
            let MU64 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u64(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I64, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 64);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- S32 --------------------

        // S32 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS32(_n1, -1)
        | DivRemByConstInfo::RemS32(_n1, -1)
        | DivRemByConstInfo::DivS32(_n1, 0)
        | DivRemByConstInfo::RemS32(_n1, 0) => {}

        // S32 div by 1: identity
        // S32 rem by 1: zero
        DivRemByConstInfo::DivS32(n1, 1) | DivRemByConstInfo::RemS32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS32(n1, d) | DivRemByConstInfo::RemS32(n1, d) => {
            if let Some((is_negative, k)) = i32_is_power_of_two(d) {
                // k can be 31 only in the case that d is -2^31.
                debug_assert!(k >= 1 && k <= 31);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (32 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S32 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i32::wrapping_neg(1 << k) as i64);
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S32 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S32 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS32 { mul_by, shift_by } = magic_s32(d);
                let q0 = pos.ins().iconst(I32, mul_by as i64);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 31);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d as i64);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }

        // -------------------- S64 --------------------

        // S64 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS64(_n1, -1)
        | DivRemByConstInfo::RemS64(_n1, -1)
        | DivRemByConstInfo::DivS64(_n1, 0)
        | DivRemByConstInfo::RemS64(_n1, 0) => {}

        // S64 div by 1: identity
        // S64 rem by 1: zero
        DivRemByConstInfo::DivS64(n1, 1) | DivRemByConstInfo::RemS64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS64(n1, d) | DivRemByConstInfo::RemS64(n1, d) => {
            if let Some((is_negative, k)) = i64_is_power_of_two(d) {
                // k can be 63 only in the case that d is -2^63.
                debug_assert!(k >= 1 && k <= 63);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (64 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S64 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i64::wrapping_neg(1 << k));
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S64 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S64 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS64 { mul_by, shift_by } = magic_s64(d);
                let q0 = pos.ins().iconst(I64, mul_by);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 63);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }
    }
}

Integer negation: a := -x \pmod{2^B}.

Inputs:

  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Integer absolute value with wrapping: a := |x|.

Inputs:

  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Wrapping integer multiplication: a := x y \pmod{2^B}.

This instruction does not depend on the signed/unsigned interpretation of the operands.

Polymorphic over all integer types (vector and scalar).

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type
Examples found in repository?
src/legalizer/mod.rs (line 218)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Unsigned integer multiplication, producing the high half of a double-length result.

Polymorphic over all integer types (vector and scalar).

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type
Examples found in repository?
src/simple_preopt.rs (line 218)
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCursor, inst: Inst) {
    let is_rem = match *divrem_info {
        DivRemByConstInfo::DivU32(_, _)
        | DivRemByConstInfo::DivU64(_, _)
        | DivRemByConstInfo::DivS32(_, _)
        | DivRemByConstInfo::DivS64(_, _) => false,
        DivRemByConstInfo::RemU32(_, _)
        | DivRemByConstInfo::RemU64(_, _)
        | DivRemByConstInfo::RemS32(_, _)
        | DivRemByConstInfo::RemS64(_, _) => true,
    };

    match *divrem_info {
        // -------------------- U32 --------------------

        // U32 div, rem by zero: ignore
        DivRemByConstInfo::DivU32(_n1, 0) | DivRemByConstInfo::RemU32(_n1, 0) => {}

        // U32 div by 1: identity
        // U32 rem by 1: zero
        DivRemByConstInfo::DivU32(n1, 1) | DivRemByConstInfo::RemU32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U32 div, rem by a power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 31);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U32 div, rem by non-power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d) => {
            debug_assert!(d >= 3);
            let MU32 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u32(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I32, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 32);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- U64 --------------------

        // U64 div, rem by zero: ignore
        DivRemByConstInfo::DivU64(_n1, 0) | DivRemByConstInfo::RemU64(_n1, 0) => {}

        // U64 div by 1: identity
        // U64 rem by 1: zero
        DivRemByConstInfo::DivU64(n1, 1) | DivRemByConstInfo::RemU64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U64 div, rem by a power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 63);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U64 div, rem by non-power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d) => {
            debug_assert!(d >= 3);
            let MU64 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u64(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I64, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 64);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- S32 --------------------

        // S32 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS32(_n1, -1)
        | DivRemByConstInfo::RemS32(_n1, -1)
        | DivRemByConstInfo::DivS32(_n1, 0)
        | DivRemByConstInfo::RemS32(_n1, 0) => {}

        // S32 div by 1: identity
        // S32 rem by 1: zero
        DivRemByConstInfo::DivS32(n1, 1) | DivRemByConstInfo::RemS32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS32(n1, d) | DivRemByConstInfo::RemS32(n1, d) => {
            if let Some((is_negative, k)) = i32_is_power_of_two(d) {
                // k can be 31 only in the case that d is -2^31.
                debug_assert!(k >= 1 && k <= 31);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (32 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S32 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i32::wrapping_neg(1 << k) as i64);
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S32 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S32 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS32 { mul_by, shift_by } = magic_s32(d);
                let q0 = pos.ins().iconst(I32, mul_by as i64);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 31);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d as i64);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }

        // -------------------- S64 --------------------

        // S64 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS64(_n1, -1)
        | DivRemByConstInfo::RemS64(_n1, -1)
        | DivRemByConstInfo::DivS64(_n1, 0)
        | DivRemByConstInfo::RemS64(_n1, 0) => {}

        // S64 div by 1: identity
        // S64 rem by 1: zero
        DivRemByConstInfo::DivS64(n1, 1) | DivRemByConstInfo::RemS64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS64(n1, d) | DivRemByConstInfo::RemS64(n1, d) => {
            if let Some((is_negative, k)) = i64_is_power_of_two(d) {
                // k can be 63 only in the case that d is -2^63.
                debug_assert!(k >= 1 && k <= 63);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (64 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S64 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i64::wrapping_neg(1 << k));
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S64 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S64 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS64 { mul_by, shift_by } = magic_s64(d);
                let q0 = pos.ins().iconst(I64, mul_by);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 63);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }
    }
}

Signed integer multiplication, producing the high half of a double-length result.

Polymorphic over all integer types (vector and scalar).

Inputs:

  • x: A scalar or vector integer type
  • y: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type
Examples found in repository?
src/simple_preopt.rs (line 365)
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCursor, inst: Inst) {
    let is_rem = match *divrem_info {
        DivRemByConstInfo::DivU32(_, _)
        | DivRemByConstInfo::DivU64(_, _)
        | DivRemByConstInfo::DivS32(_, _)
        | DivRemByConstInfo::DivS64(_, _) => false,
        DivRemByConstInfo::RemU32(_, _)
        | DivRemByConstInfo::RemU64(_, _)
        | DivRemByConstInfo::RemS32(_, _)
        | DivRemByConstInfo::RemS64(_, _) => true,
    };

    match *divrem_info {
        // -------------------- U32 --------------------

        // U32 div, rem by zero: ignore
        DivRemByConstInfo::DivU32(_n1, 0) | DivRemByConstInfo::RemU32(_n1, 0) => {}

        // U32 div by 1: identity
        // U32 rem by 1: zero
        DivRemByConstInfo::DivU32(n1, 1) | DivRemByConstInfo::RemU32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U32 div, rem by a power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 31);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U32 div, rem by non-power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d) => {
            debug_assert!(d >= 3);
            let MU32 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u32(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I32, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 32);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- U64 --------------------

        // U64 div, rem by zero: ignore
        DivRemByConstInfo::DivU64(_n1, 0) | DivRemByConstInfo::RemU64(_n1, 0) => {}

        // U64 div by 1: identity
        // U64 rem by 1: zero
        DivRemByConstInfo::DivU64(n1, 1) | DivRemByConstInfo::RemU64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U64 div, rem by a power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 63);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U64 div, rem by non-power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d) => {
            debug_assert!(d >= 3);
            let MU64 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u64(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I64, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 64);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- S32 --------------------

        // S32 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS32(_n1, -1)
        | DivRemByConstInfo::RemS32(_n1, -1)
        | DivRemByConstInfo::DivS32(_n1, 0)
        | DivRemByConstInfo::RemS32(_n1, 0) => {}

        // S32 div by 1: identity
        // S32 rem by 1: zero
        DivRemByConstInfo::DivS32(n1, 1) | DivRemByConstInfo::RemS32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS32(n1, d) | DivRemByConstInfo::RemS32(n1, d) => {
            if let Some((is_negative, k)) = i32_is_power_of_two(d) {
                // k can be 31 only in the case that d is -2^31.
                debug_assert!(k >= 1 && k <= 31);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (32 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S32 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i32::wrapping_neg(1 << k) as i64);
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S32 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S32 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS32 { mul_by, shift_by } = magic_s32(d);
                let q0 = pos.ins().iconst(I32, mul_by as i64);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 31);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d as i64);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }

        // -------------------- S64 --------------------

        // S64 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS64(_n1, -1)
        | DivRemByConstInfo::RemS64(_n1, -1)
        | DivRemByConstInfo::DivS64(_n1, 0)
        | DivRemByConstInfo::RemS64(_n1, 0) => {}

        // S64 div by 1: identity
        // S64 rem by 1: zero
        DivRemByConstInfo::DivS64(n1, 1) | DivRemByConstInfo::RemS64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS64(n1, d) | DivRemByConstInfo::RemS64(n1, d) => {
            if let Some((is_negative, k)) = i64_is_power_of_two(d) {
                // k can be 63 only in the case that d is -2^63.
                debug_assert!(k >= 1 && k <= 63);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (64 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S64 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i64::wrapping_neg(1 << k));
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S64 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S64 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS64 { mul_by, shift_by } = magic_s64(d);
                let q0 = pos.ins().iconst(I64, mul_by);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 63);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }
    }
}

Fixed-point multiplication of numbers in the QN format, where N + 1 is the number bitwidth: a := signed_saturate((x * y + 1 << (Q - 1)) >> Q)

Polymorphic over all integer types (scalar and vector) with 16- or 32-bit numbers.

Inputs:

  • x: A scalar or vector integer type with 16- or 32-bit numbers
  • y: A scalar or vector integer type with 16- or 32-bit numbers

Outputs:

  • a: A scalar or vector integer type with 16- or 32-bit numbers

Unsigned integer division: a := \lfloor {x \over y} \rfloor.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type
Examples found in repository?
src/legalizer/mod.rs (line 227)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Signed integer division rounded toward zero: a := sign(xy) \lfloor {|x| \over |y|}\rfloor.

This operation traps if the divisor is zero, or if the result is not representable in B bits two’s complement. This only happens when x = -2^{B-1}, y = -1.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type
Examples found in repository?
src/legalizer/mod.rs (line 221)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Unsigned integer remainder.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type
Examples found in repository?
src/legalizer/mod.rs (line 230)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Signed integer remainder. The result has the sign of the dividend.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type
Examples found in repository?
src/legalizer/mod.rs (line 224)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Add immediate integer.

Same as iadd, but one operand is a sign extended 64 bit immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type
Examples found in repository?
src/legalizer/globalvalue.rs (line 89)
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
fn iadd_imm_addr(
    inst: ir::Inst,
    func: &mut ir::Function,
    base: ir::GlobalValue,
    offset: i64,
    global_type: ir::Type,
) {
    let mut pos = FuncCursor::new(func).at_inst(inst);

    // Get the value for the lhs. For tidiness, expand VMContext here so that we avoid
    // `vmctx_addr` which creates an otherwise unneeded value alias.
    let lhs = if let ir::GlobalValueData::VMContext = pos.func.global_values[base] {
        pos.func
            .special_param(ir::ArgumentPurpose::VMContext)
            .expect("Missing vmctx parameter")
    } else {
        pos.ins().global_value(global_type, base)
    };

    // Simply replace the `global_value` instruction with an `iadd_imm`, reusing the result value.
    pos.func.dfg.replace(inst).iadd_imm(lhs, offset);
}
More examples
Hide additional examples
src/legalizer/table.rs (line 98)
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
fn compute_addr(
    inst: ir::Inst,
    table: ir::Table,
    addr_ty: ir::Type,
    mut index: ir::Value,
    index_ty: ir::Type,
    element_offset: Offset32,
    func: &mut ir::Function,
    spectre_oob_cmp: Option<(ir::Value, ir::Value)>,
) {
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Convert `index` to `addr_ty`.
    if index_ty != addr_ty {
        index = pos.ins().uextend(addr_ty, index);
    }

    // Add the table base address base
    let base_gv = pos.func.tables[table].base_gv;
    let base = pos.ins().global_value(addr_ty, base_gv);

    let element_size = pos.func.tables[table].element_size;
    let mut offset;
    let element_size: u64 = element_size.into();
    if element_size == 1 {
        offset = index;
    } else if element_size.is_power_of_two() {
        offset = pos
            .ins()
            .ishl_imm(index, i64::from(element_size.trailing_zeros()));
    } else {
        offset = pos.ins().imul_imm(index, element_size as i64);
    }

    let element_addr = if element_offset == Offset32::new(0) {
        pos.ins().iadd(base, offset)
    } else {
        let imm: i64 = element_offset.into();
        offset = pos.ins().iadd(base, offset);
        pos.ins().iadd_imm(offset, imm)
    };

    let element_addr = if let Some((index, bound)) = spectre_oob_cmp {
        let cond = pos
            .ins()
            .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
        // If out-of-bounds, choose the table base on the misspeculation path.
        pos.ins().select_spectre_guard(cond, base, element_addr)
    } else {
        element_addr
    };
    let new_inst = pos.func.dfg.value_def(element_addr).inst().unwrap();

    pos.func.dfg.replace_with_aliases(inst, new_inst);
    pos.remove_inst();
}
src/legalizer/heap.rs (line 197)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
fn bounds_check_and_compute_addr(
    pos: &mut FuncCursor,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
    heap: ir::Heap,
    // Dynamic operand indexing into the heap.
    index: ir::Value,
    // Static immediate added to the index.
    offset: u32,
    // Static size of the heap access.
    access_size: u8,
) -> ir::Value {
    let pointer_type = isa.pointer_type();
    let spectre = isa.flags().enable_heap_access_spectre_mitigation();
    let offset_and_size = offset_plus_size(offset, access_size);

    let ir::HeapData {
        base: _,
        min_size,
        offset_guard_size: guard_size,
        style,
        index_type,
    } = pos.func.heaps[heap].clone();

    let index = cast_index_to_pointer_ty(index, index_type, pointer_type, pos);

    // We need to emit code that will trap (or compute an address that will trap
    // when accessed) if
    //
    //     index + offset + access_size > bound
    //
    // or if the `index + offset + access_size` addition overflows.
    //
    // Note that we ultimately want a 64-bit integer (we only target 64-bit
    // architectures at the moment) and that `offset` is a `u32` and
    // `access_size` is a `u8`. This means that we can add the latter together
    // as `u64`s without fear of overflow, and we only have to be concerned with
    // whether adding in `index` will overflow.
    //
    // Finally, the following right-hand sides of the matches do have a little
    // bit of duplicated code across them, but I think writing it this way is
    // worth it for readability and seeing very clearly each of our cases for
    // different bounds checks and optimizations of those bounds checks. It is
    // intentionally written in a straightforward case-matching style that will
    // hopefully make it easy to port to ISLE one day.
    match style {
        // ====== Dynamic Memories ======
        //
        // 1. First special case for when `offset + access_size == 1`:
        //
        //            index + 1 > bound
        //        ==> index >= bound
        //
        //    1.a. When Spectre mitigations are enabled, avoid duplicating
        //         bounds checks between the mitigations and the regular bounds
        //         checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 && spectre => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThanOrEqual,
                    lhs: index,
                    rhs: bound,
                }),
            )
        }
        //    1.b. Emit explicit `index >= bound` bounds checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 2. Second special case for when `offset + access_size <= min_size`.
        //
        //    We know that `bound >= min_size`, so we can do the following
        //    comparison, without fear of the right-hand side wrapping around:
        //
        //            index + offset + access_size > bound
        //        ==> index > bound - (offset + access_size)
        //
        //    2.a. Dedupe bounds checks with Spectre mitigations.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size <= min_size.into() && spectre => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let adjusted_bound = pos.ins().iadd_imm(bound, -(offset_and_size as i64));
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: index,
                    rhs: adjusted_bound,
                }),
            )
        }
        //    2.b. Emit explicit `index > bound - (offset + access_size)` bounds
        //         checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size <= min_size.into() => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let adjusted_bound = pos.ins().iadd_imm(bound, -(offset_and_size as i64));
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThan, index, adjusted_bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 3. General case for dynamic memories:
        //
        //        index + offset + access_size > bound
        //
        //    And we have to handle the overflow case in the left-hand side.
        //
        //    3.a. Dedupe bounds checks with Spectre mitigations.
        ir::HeapStyle::Dynamic { bound_gv } if spectre => {
            let access_size_val = pos.ins().iconst(pointer_type, offset_and_size as i64);
            let adjusted_index =
                pos.ins()
                    .uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: adjusted_index,
                    rhs: bound,
                }),
            )
        }
        //    3.b. Emit an explicit `index + offset + access_size > bound`
        //         check.
        ir::HeapStyle::Dynamic { bound_gv } => {
            let access_size_val = pos.ins().iconst(pointer_type, offset_and_size as i64);
            let adjusted_index =
                pos.ins()
                    .uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThan, adjusted_index, bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // ====== Static Memories ======
        //
        // With static memories we know the size of the heap bound at compile
        // time.
        //
        // 1. First special case: trap immediately if `offset + access_size >
        //    bound`, since we will end up being out-of-bounds regardless of the
        //    given `index`.
        ir::HeapStyle::Static { bound } if offset_and_size > bound.into() => {
            pos.ins().trap(ir::TrapCode::HeapOutOfBounds);

            // Split the block, as the trap is a terminator instruction.
            let curr_block = pos.current_block().expect("Cursor is not in a block");
            let new_block = pos.func.dfg.make_block();
            pos.insert_block(new_block);
            cfg.recompute_block(pos.func, curr_block);
            cfg.recompute_block(pos.func, new_block);

            let null = pos.ins().iconst(pointer_type, 0);
            return null;
        }

        // 2. Second special case for when we can completely omit explicit
        //    bounds checks for 32-bit static memories.
        //
        //    First, let's rewrite our comparison to move all of the constants
        //    to one side:
        //
        //            index + offset + access_size > bound
        //        ==> index > bound - (offset + access_size)
        //
        //    We know the subtraction on the right-hand side won't wrap because
        //    we didn't hit the first special case.
        //
        //    Additionally, we add our guard pages (if any) to the right-hand
        //    side, since we can rely on the virtual memory subsystem at runtime
        //    to catch out-of-bound accesses within the range `bound .. bound +
        //    guard_size`. So now we are dealing with
        //
        //        index > bound + guard_size - (offset + access_size)
        //
        //    Note that `bound + guard_size` cannot overflow for
        //    correctly-configured heaps, as otherwise the heap wouldn't fit in
        //    a 64-bit memory space.
        //
        //    The complement of our should-this-trap comparison expression is
        //    the should-this-not-trap comparison expression:
        //
        //        index <= bound + guard_size - (offset + access_size)
        //
        //    If we know the right-hand side is greater than or equal to
        //    `u32::MAX`, then
        //
        //        index <= u32::MAX <= bound + guard_size - (offset + access_size)
        //
        //    This expression is always true when the heap is indexed with
        //    32-bit integers because `index` cannot be larger than
        //    `u32::MAX`. This means that `index` is always either in bounds or
        //    within the guard page region, neither of which require emitting an
        //    explicit bounds check.
        ir::HeapStyle::Static { bound }
            if index_type == ir::types::I32
                && u64::from(u32::MAX)
                    <= u64::from(bound) + u64::from(guard_size) - offset_and_size =>
        {
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 3. General case for static memories.
        //
        //    We have to explicitly test whether
        //
        //        index > bound - (offset + access_size)
        //
        //    and trap if so.
        //
        //    Since we have to emit explicit bounds checks, we might as well be
        //    precise, not rely on the virtual memory subsystem at all, and not
        //    factor in the guard pages here.
        //
        //    3.a. Dedupe the Spectre mitigation and the explicit bounds check.
        ir::HeapStyle::Static { bound } if spectre => {
            // NB: this subtraction cannot wrap because we didn't hit the first
            // special case.
            let adjusted_bound = u64::from(bound) - offset_and_size;
            let adjusted_bound = pos.ins().iconst(pointer_type, adjusted_bound as i64);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: index,
                    rhs: adjusted_bound,
                }),
            )
        }
        //    3.b. Emit the explicit `index > bound - (offset + access_size)`
        //         check.
        ir::HeapStyle::Static { bound } => {
            // See comment in 3.a. above.
            let adjusted_bound = u64::from(bound) - offset_and_size;
            let oob = pos
                .ins()
                .icmp_imm(IntCC::UnsignedGreaterThan, index, adjusted_bound as i64);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }
    }
}

fn cast_index_to_pointer_ty(
    index: ir::Value,
    index_ty: ir::Type,
    pointer_ty: ir::Type,
    pos: &mut FuncCursor,
) -> ir::Value {
    if index_ty == pointer_ty {
        return index;
    }
    // Note that using 64-bit heaps on a 32-bit host is not currently supported,
    // would require at least a bounds check here to ensure that the truncation
    // from 64-to-32 bits doesn't lose any upper bits. For now though we're
    // mostly interested in the 32-bit-heaps-on-64-bit-hosts cast.
    assert!(index_ty.bits() < pointer_ty.bits());

    // Convert `index` to `addr_ty`.
    let extended_index = pos.ins().uextend(pointer_ty, index);

    // Add debug value-label alias so that debuginfo can name the extended
    // value as the address
    let loc = pos.srcloc();
    let loc = RelSourceLoc::from_base_offset(pos.func.params.base_srcloc(), loc);
    pos.func
        .stencil
        .dfg
        .add_value_label_alias(extended_index, loc, index);

    extended_index
}

struct SpectreOobComparison {
    cc: IntCC,
    lhs: ir::Value,
    rhs: ir::Value,
}

/// Emit code for the base address computation of a `heap_addr` instruction,
/// without any bounds checks (other than optional Spectre mitigations).
fn compute_addr(
    isa: &dyn TargetIsa,
    pos: &mut FuncCursor,
    heap: ir::Heap,
    addr_ty: ir::Type,
    index: ir::Value,
    offset: u32,
    // If we are performing Spectre mitigation with conditional selects, the
    // values to compare and the condition code that indicates an out-of bounds
    // condition; on this condition, the conditional move will choose a
    // speculatively safe address (a zero / null pointer) instead.
    spectre_oob_comparison: Option<SpectreOobComparison>,
) -> ir::Value {
    debug_assert_eq!(pos.func.dfg.value_type(index), addr_ty);

    // Add the heap base address base
    let base = if isa.flags().enable_pinned_reg() && isa.flags().use_pinned_reg_as_heap_base() {
        let base = pos.ins().get_pinned_reg(isa.pointer_type());
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(base));
        base
    } else {
        let base_gv = pos.func.heaps[heap].base;
        let base = pos.ins().global_value(addr_ty, base_gv);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(base));
        base
    };

    if let Some(SpectreOobComparison { cc, lhs, rhs }) = spectre_oob_comparison {
        let final_base = pos.ins().iadd(base, index);
        // NB: The addition of the offset immediate must happen *before* the
        // `select_spectre_guard`. If it happens after, then we potentially are
        // letting speculative execution read the whole first 4GiB of memory.
        let final_addr = if offset == 0 {
            final_base
        } else {
            let final_addr = pos.ins().iadd_imm(final_base, offset as i64);
            trace!(
                "  inserting: {}",
                pos.func.dfg.display_value_inst(final_addr)
            );
            final_addr
        };
        let zero = pos.ins().iconst(addr_ty, 0);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(zero));

        let cmp = pos.ins().icmp(cc, lhs, rhs);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(cmp));

        let value = pos.ins().select_spectre_guard(cmp, zero, final_addr);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(value));
        value
    } else if offset == 0 {
        let addr = pos.ins().iadd(base, index);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(addr));
        addr
    } else {
        let final_base = pos.ins().iadd(base, index);
        trace!(
            "  inserting: {}",
            pos.func.dfg.display_value_inst(final_base)
        );
        let addr = pos.ins().iadd_imm(final_base, offset as i64);
        trace!("  inserting: {}", pos.func.dfg.display_value_inst(addr));
        addr
    }
}

Integer multiplication by immediate constant.

Same as imul, but one operand is a sign extended 64 bit immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type
Examples found in repository?
src/legalizer/table.rs (line 90)
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
fn compute_addr(
    inst: ir::Inst,
    table: ir::Table,
    addr_ty: ir::Type,
    mut index: ir::Value,
    index_ty: ir::Type,
    element_offset: Offset32,
    func: &mut ir::Function,
    spectre_oob_cmp: Option<(ir::Value, ir::Value)>,
) {
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Convert `index` to `addr_ty`.
    if index_ty != addr_ty {
        index = pos.ins().uextend(addr_ty, index);
    }

    // Add the table base address base
    let base_gv = pos.func.tables[table].base_gv;
    let base = pos.ins().global_value(addr_ty, base_gv);

    let element_size = pos.func.tables[table].element_size;
    let mut offset;
    let element_size: u64 = element_size.into();
    if element_size == 1 {
        offset = index;
    } else if element_size.is_power_of_two() {
        offset = pos
            .ins()
            .ishl_imm(index, i64::from(element_size.trailing_zeros()));
    } else {
        offset = pos.ins().imul_imm(index, element_size as i64);
    }

    let element_addr = if element_offset == Offset32::new(0) {
        pos.ins().iadd(base, offset)
    } else {
        let imm: i64 = element_offset.into();
        offset = pos.ins().iadd(base, offset);
        pos.ins().iadd_imm(offset, imm)
    };

    let element_addr = if let Some((index, bound)) = spectre_oob_cmp {
        let cond = pos
            .ins()
            .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
        // If out-of-bounds, choose the table base on the misspeculation path.
        pos.ins().select_spectre_guard(cond, base, element_addr)
    } else {
        element_addr
    };
    let new_inst = pos.func.dfg.value_def(element_addr).inst().unwrap();

    pos.func.dfg.replace_with_aliases(inst, new_inst);
    pos.remove_inst();
}
More examples
Hide additional examples
src/simple_preopt.rs (line 240)
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCursor, inst: Inst) {
    let is_rem = match *divrem_info {
        DivRemByConstInfo::DivU32(_, _)
        | DivRemByConstInfo::DivU64(_, _)
        | DivRemByConstInfo::DivS32(_, _)
        | DivRemByConstInfo::DivS64(_, _) => false,
        DivRemByConstInfo::RemU32(_, _)
        | DivRemByConstInfo::RemU64(_, _)
        | DivRemByConstInfo::RemS32(_, _)
        | DivRemByConstInfo::RemS64(_, _) => true,
    };

    match *divrem_info {
        // -------------------- U32 --------------------

        // U32 div, rem by zero: ignore
        DivRemByConstInfo::DivU32(_n1, 0) | DivRemByConstInfo::RemU32(_n1, 0) => {}

        // U32 div by 1: identity
        // U32 rem by 1: zero
        DivRemByConstInfo::DivU32(n1, 1) | DivRemByConstInfo::RemU32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U32 div, rem by a power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 31);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U32 div, rem by non-power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d) => {
            debug_assert!(d >= 3);
            let MU32 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u32(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I32, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 32);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- U64 --------------------

        // U64 div, rem by zero: ignore
        DivRemByConstInfo::DivU64(_n1, 0) | DivRemByConstInfo::RemU64(_n1, 0) => {}

        // U64 div by 1: identity
        // U64 rem by 1: zero
        DivRemByConstInfo::DivU64(n1, 1) | DivRemByConstInfo::RemU64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U64 div, rem by a power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 63);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U64 div, rem by non-power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d) => {
            debug_assert!(d >= 3);
            let MU64 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u64(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I64, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 64);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- S32 --------------------

        // S32 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS32(_n1, -1)
        | DivRemByConstInfo::RemS32(_n1, -1)
        | DivRemByConstInfo::DivS32(_n1, 0)
        | DivRemByConstInfo::RemS32(_n1, 0) => {}

        // S32 div by 1: identity
        // S32 rem by 1: zero
        DivRemByConstInfo::DivS32(n1, 1) | DivRemByConstInfo::RemS32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS32(n1, d) | DivRemByConstInfo::RemS32(n1, d) => {
            if let Some((is_negative, k)) = i32_is_power_of_two(d) {
                // k can be 31 only in the case that d is -2^31.
                debug_assert!(k >= 1 && k <= 31);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (32 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S32 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i32::wrapping_neg(1 << k) as i64);
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S32 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S32 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS32 { mul_by, shift_by } = magic_s32(d);
                let q0 = pos.ins().iconst(I32, mul_by as i64);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 31);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d as i64);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }

        // -------------------- S64 --------------------

        // S64 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS64(_n1, -1)
        | DivRemByConstInfo::RemS64(_n1, -1)
        | DivRemByConstInfo::DivS64(_n1, 0)
        | DivRemByConstInfo::RemS64(_n1, 0) => {}

        // S64 div by 1: identity
        // S64 rem by 1: zero
        DivRemByConstInfo::DivS64(n1, 1) | DivRemByConstInfo::RemS64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS64(n1, d) | DivRemByConstInfo::RemS64(n1, d) => {
            if let Some((is_negative, k)) = i64_is_power_of_two(d) {
                // k can be 63 only in the case that d is -2^63.
                debug_assert!(k >= 1 && k <= 63);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (64 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S64 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i64::wrapping_neg(1 << k));
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S64 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S64 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS64 { mul_by, shift_by } = magic_s64(d);
                let q0 = pos.ins().iconst(I64, mul_by);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 63);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }
    }
}

Unsigned integer division by an immediate constant.

Same as udiv, but one operand is a zero extended 64 bit immediate constant.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

Signed integer division by an immediate constant.

Same as sdiv, but one operand is a sign extended 64 bit immediate constant.

This operation traps if the divisor is zero, or if the result is not representable in B bits two’s complement. This only happens when x = -2^{B-1}, Y = -1.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

Unsigned integer remainder with immediate divisor.

Same as urem, but one operand is a zero extended 64 bit immediate constant.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

Signed integer remainder with immediate divisor.

Same as srem, but one operand is a sign extended 64 bit immediate constant.

This operation traps if the divisor is zero.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

Immediate reverse wrapping subtraction: a := Y - x \pmod{2^B}.

The immediate operand is a sign extended 64 bit constant.

Also works as integer negation when Y = 0. Use iadd_imm with a negative immediate operand for the reverse immediate subtraction.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type
Examples found in repository?
src/simple_preopt.rs (line 355)
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCursor, inst: Inst) {
    let is_rem = match *divrem_info {
        DivRemByConstInfo::DivU32(_, _)
        | DivRemByConstInfo::DivU64(_, _)
        | DivRemByConstInfo::DivS32(_, _)
        | DivRemByConstInfo::DivS64(_, _) => false,
        DivRemByConstInfo::RemU32(_, _)
        | DivRemByConstInfo::RemU64(_, _)
        | DivRemByConstInfo::RemS32(_, _)
        | DivRemByConstInfo::RemS64(_, _) => true,
    };

    match *divrem_info {
        // -------------------- U32 --------------------

        // U32 div, rem by zero: ignore
        DivRemByConstInfo::DivU32(_n1, 0) | DivRemByConstInfo::RemU32(_n1, 0) => {}

        // U32 div by 1: identity
        // U32 rem by 1: zero
        DivRemByConstInfo::DivU32(n1, 1) | DivRemByConstInfo::RemU32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U32 div, rem by a power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 31);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U32 div, rem by non-power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d) => {
            debug_assert!(d >= 3);
            let MU32 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u32(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I32, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 32);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- U64 --------------------

        // U64 div, rem by zero: ignore
        DivRemByConstInfo::DivU64(_n1, 0) | DivRemByConstInfo::RemU64(_n1, 0) => {}

        // U64 div by 1: identity
        // U64 rem by 1: zero
        DivRemByConstInfo::DivU64(n1, 1) | DivRemByConstInfo::RemU64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U64 div, rem by a power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 63);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U64 div, rem by non-power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d) => {
            debug_assert!(d >= 3);
            let MU64 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u64(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I64, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 64);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- S32 --------------------

        // S32 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS32(_n1, -1)
        | DivRemByConstInfo::RemS32(_n1, -1)
        | DivRemByConstInfo::DivS32(_n1, 0)
        | DivRemByConstInfo::RemS32(_n1, 0) => {}

        // S32 div by 1: identity
        // S32 rem by 1: zero
        DivRemByConstInfo::DivS32(n1, 1) | DivRemByConstInfo::RemS32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS32(n1, d) | DivRemByConstInfo::RemS32(n1, d) => {
            if let Some((is_negative, k)) = i32_is_power_of_two(d) {
                // k can be 31 only in the case that d is -2^31.
                debug_assert!(k >= 1 && k <= 31);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (32 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S32 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i32::wrapping_neg(1 << k) as i64);
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S32 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S32 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS32 { mul_by, shift_by } = magic_s32(d);
                let q0 = pos.ins().iconst(I32, mul_by as i64);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 31);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d as i64);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }

        // -------------------- S64 --------------------

        // S64 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS64(_n1, -1)
        | DivRemByConstInfo::RemS64(_n1, -1)
        | DivRemByConstInfo::DivS64(_n1, 0)
        | DivRemByConstInfo::RemS64(_n1, 0) => {}

        // S64 div by 1: identity
        // S64 rem by 1: zero
        DivRemByConstInfo::DivS64(n1, 1) | DivRemByConstInfo::RemS64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS64(n1, d) | DivRemByConstInfo::RemS64(n1, d) => {
            if let Some((is_negative, k)) = i64_is_power_of_two(d) {
                // k can be 63 only in the case that d is -2^63.
                debug_assert!(k >= 1 && k <= 63);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (64 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S64 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i64::wrapping_neg(1 << k));
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S64 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S64 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS64 { mul_by, shift_by } = magic_s64(d);
                let q0 = pos.ins().iconst(I64, mul_by);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 63);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }
    }
}

Add integers with carry in.

Same as iadd with an additional carry input. Computes:

    a = x + y + c_{in} \pmod 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • c_in: Input carry flag

Outputs:

  • a: A scalar integer type

Add integers with carry in.

Same as iadd with an additional carry flag input. Computes:

    a = x + y + c_{in} \pmod 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • c_in: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Outputs:

  • a: A scalar integer type

Add integers with carry out.

Same as iadd with an additional carry output.

    a &= x + y \pmod 2^B \\
    c_{out} &= x+y >= 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type
  • c_out: Output carry flag

Add integers with carry out.

Same as iadd with an additional carry flag output.

    a &= x + y \pmod 2^B \\
    c_{out} &= x+y >= 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type
  • c_out: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Add integers with carry in and out.

Same as iadd with an additional carry input and output.

    a &= x + y + c_{in} \pmod 2^B \\
    c_{out} &= x + y + c_{in} >= 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • c_in: Input carry flag

Outputs:

  • a: A scalar integer type
  • c_out: Output carry flag

Add integers with carry in and out.

Same as iadd with an additional carry flag input and output.

    a &= x + y + c_{in} \pmod 2^B \\
    c_{out} &= x + y + c_{in} >= 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • c_in: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Outputs:

  • a: A scalar integer type
  • c_out: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Unsigned addition of x and y, trapping if the result overflows.

Accepts 32 or 64-bit integers, and does not support vector types.

Inputs:

  • x: A 32 or 64-bit scalar integer type
  • y: A 32 or 64-bit scalar integer type
  • code: A trap reason code.

Outputs:

  • a: A 32 or 64-bit scalar integer type
Examples found in repository?
src/legalizer/heap.rs (line 235)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
fn bounds_check_and_compute_addr(
    pos: &mut FuncCursor,
    cfg: &mut ControlFlowGraph,
    isa: &dyn TargetIsa,
    heap: ir::Heap,
    // Dynamic operand indexing into the heap.
    index: ir::Value,
    // Static immediate added to the index.
    offset: u32,
    // Static size of the heap access.
    access_size: u8,
) -> ir::Value {
    let pointer_type = isa.pointer_type();
    let spectre = isa.flags().enable_heap_access_spectre_mitigation();
    let offset_and_size = offset_plus_size(offset, access_size);

    let ir::HeapData {
        base: _,
        min_size,
        offset_guard_size: guard_size,
        style,
        index_type,
    } = pos.func.heaps[heap].clone();

    let index = cast_index_to_pointer_ty(index, index_type, pointer_type, pos);

    // We need to emit code that will trap (or compute an address that will trap
    // when accessed) if
    //
    //     index + offset + access_size > bound
    //
    // or if the `index + offset + access_size` addition overflows.
    //
    // Note that we ultimately want a 64-bit integer (we only target 64-bit
    // architectures at the moment) and that `offset` is a `u32` and
    // `access_size` is a `u8`. This means that we can add the latter together
    // as `u64`s without fear of overflow, and we only have to be concerned with
    // whether adding in `index` will overflow.
    //
    // Finally, the following right-hand sides of the matches do have a little
    // bit of duplicated code across them, but I think writing it this way is
    // worth it for readability and seeing very clearly each of our cases for
    // different bounds checks and optimizations of those bounds checks. It is
    // intentionally written in a straightforward case-matching style that will
    // hopefully make it easy to port to ISLE one day.
    match style {
        // ====== Dynamic Memories ======
        //
        // 1. First special case for when `offset + access_size == 1`:
        //
        //            index + 1 > bound
        //        ==> index >= bound
        //
        //    1.a. When Spectre mitigations are enabled, avoid duplicating
        //         bounds checks between the mitigations and the regular bounds
        //         checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 && spectre => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThanOrEqual,
                    lhs: index,
                    rhs: bound,
                }),
            )
        }
        //    1.b. Emit explicit `index >= bound` bounds checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size == 1 => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 2. Second special case for when `offset + access_size <= min_size`.
        //
        //    We know that `bound >= min_size`, so we can do the following
        //    comparison, without fear of the right-hand side wrapping around:
        //
        //            index + offset + access_size > bound
        //        ==> index > bound - (offset + access_size)
        //
        //    2.a. Dedupe bounds checks with Spectre mitigations.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size <= min_size.into() && spectre => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let adjusted_bound = pos.ins().iadd_imm(bound, -(offset_and_size as i64));
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: index,
                    rhs: adjusted_bound,
                }),
            )
        }
        //    2.b. Emit explicit `index > bound - (offset + access_size)` bounds
        //         checks.
        ir::HeapStyle::Dynamic { bound_gv } if offset_and_size <= min_size.into() => {
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let adjusted_bound = pos.ins().iadd_imm(bound, -(offset_and_size as i64));
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThan, index, adjusted_bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 3. General case for dynamic memories:
        //
        //        index + offset + access_size > bound
        //
        //    And we have to handle the overflow case in the left-hand side.
        //
        //    3.a. Dedupe bounds checks with Spectre mitigations.
        ir::HeapStyle::Dynamic { bound_gv } if spectre => {
            let access_size_val = pos.ins().iconst(pointer_type, offset_and_size as i64);
            let adjusted_index =
                pos.ins()
                    .uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: adjusted_index,
                    rhs: bound,
                }),
            )
        }
        //    3.b. Emit an explicit `index + offset + access_size > bound`
        //         check.
        ir::HeapStyle::Dynamic { bound_gv } => {
            let access_size_val = pos.ins().iconst(pointer_type, offset_and_size as i64);
            let adjusted_index =
                pos.ins()
                    .uadd_overflow_trap(index, access_size_val, ir::TrapCode::HeapOutOfBounds);
            let bound = pos.ins().global_value(pointer_type, bound_gv);
            let oob = pos
                .ins()
                .icmp(IntCC::UnsignedGreaterThan, adjusted_index, bound);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // ====== Static Memories ======
        //
        // With static memories we know the size of the heap bound at compile
        // time.
        //
        // 1. First special case: trap immediately if `offset + access_size >
        //    bound`, since we will end up being out-of-bounds regardless of the
        //    given `index`.
        ir::HeapStyle::Static { bound } if offset_and_size > bound.into() => {
            pos.ins().trap(ir::TrapCode::HeapOutOfBounds);

            // Split the block, as the trap is a terminator instruction.
            let curr_block = pos.current_block().expect("Cursor is not in a block");
            let new_block = pos.func.dfg.make_block();
            pos.insert_block(new_block);
            cfg.recompute_block(pos.func, curr_block);
            cfg.recompute_block(pos.func, new_block);

            let null = pos.ins().iconst(pointer_type, 0);
            return null;
        }

        // 2. Second special case for when we can completely omit explicit
        //    bounds checks for 32-bit static memories.
        //
        //    First, let's rewrite our comparison to move all of the constants
        //    to one side:
        //
        //            index + offset + access_size > bound
        //        ==> index > bound - (offset + access_size)
        //
        //    We know the subtraction on the right-hand side won't wrap because
        //    we didn't hit the first special case.
        //
        //    Additionally, we add our guard pages (if any) to the right-hand
        //    side, since we can rely on the virtual memory subsystem at runtime
        //    to catch out-of-bound accesses within the range `bound .. bound +
        //    guard_size`. So now we are dealing with
        //
        //        index > bound + guard_size - (offset + access_size)
        //
        //    Note that `bound + guard_size` cannot overflow for
        //    correctly-configured heaps, as otherwise the heap wouldn't fit in
        //    a 64-bit memory space.
        //
        //    The complement of our should-this-trap comparison expression is
        //    the should-this-not-trap comparison expression:
        //
        //        index <= bound + guard_size - (offset + access_size)
        //
        //    If we know the right-hand side is greater than or equal to
        //    `u32::MAX`, then
        //
        //        index <= u32::MAX <= bound + guard_size - (offset + access_size)
        //
        //    This expression is always true when the heap is indexed with
        //    32-bit integers because `index` cannot be larger than
        //    `u32::MAX`. This means that `index` is always either in bounds or
        //    within the guard page region, neither of which require emitting an
        //    explicit bounds check.
        ir::HeapStyle::Static { bound }
            if index_type == ir::types::I32
                && u64::from(u32::MAX)
                    <= u64::from(bound) + u64::from(guard_size) - offset_and_size =>
        {
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }

        // 3. General case for static memories.
        //
        //    We have to explicitly test whether
        //
        //        index > bound - (offset + access_size)
        //
        //    and trap if so.
        //
        //    Since we have to emit explicit bounds checks, we might as well be
        //    precise, not rely on the virtual memory subsystem at all, and not
        //    factor in the guard pages here.
        //
        //    3.a. Dedupe the Spectre mitigation and the explicit bounds check.
        ir::HeapStyle::Static { bound } if spectre => {
            // NB: this subtraction cannot wrap because we didn't hit the first
            // special case.
            let adjusted_bound = u64::from(bound) - offset_and_size;
            let adjusted_bound = pos.ins().iconst(pointer_type, adjusted_bound as i64);
            compute_addr(
                isa,
                pos,
                heap,
                pointer_type,
                index,
                offset,
                Some(SpectreOobComparison {
                    cc: IntCC::UnsignedGreaterThan,
                    lhs: index,
                    rhs: adjusted_bound,
                }),
            )
        }
        //    3.b. Emit the explicit `index > bound - (offset + access_size)`
        //         check.
        ir::HeapStyle::Static { bound } => {
            // See comment in 3.a. above.
            let adjusted_bound = u64::from(bound) - offset_and_size;
            let oob = pos
                .ins()
                .icmp_imm(IntCC::UnsignedGreaterThan, index, adjusted_bound as i64);
            pos.ins().trapnz(oob, ir::TrapCode::HeapOutOfBounds);
            compute_addr(isa, pos, heap, pointer_type, index, offset, None)
        }
    }
}

Subtract integers with borrow in.

Same as isub with an additional borrow flag input. Computes:

    a = x - (y + b_{in}) \pmod 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • b_in: Input borrow flag

Outputs:

  • a: A scalar integer type

Subtract integers with borrow in.

Same as isub with an additional borrow flag input. Computes:

    a = x - (y + b_{in}) \pmod 2^B

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • b_in: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Outputs:

  • a: A scalar integer type

Subtract integers with borrow out.

Same as isub with an additional borrow flag output.

    a &= x - y \pmod 2^B \\
    b_{out} &= x < y

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type
  • b_out: Output borrow flag

Subtract integers with borrow out.

Same as isub with an additional borrow flag output.

    a &= x - y \pmod 2^B \\
    b_{out} &= x < y

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type

Outputs:

  • a: A scalar integer type
  • b_out: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Subtract integers with borrow in and out.

Same as isub with an additional borrow flag input and output.

    a &= x - (y + b_{in}) \pmod 2^B \\
    b_{out} &= x < y + b_{in}

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • b_in: Input borrow flag

Outputs:

  • a: A scalar integer type
  • b_out: Output borrow flag

Subtract integers with borrow in and out.

Same as isub with an additional borrow flag input and output.

    a &= x - (y + b_{in}) \pmod 2^B \\
    b_{out} &= x < y + b_{in}

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • y: A scalar integer type
  • b_in: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Outputs:

  • a: A scalar integer type
  • b_out: CPU flags representing the result of an integer comparison. These flags can be tested with an :type:intcc condition code.

Bitwise and.

Inputs:

  • x: Any integer, float, or vector type
  • y: Any integer, float, or vector type

Outputs:

  • a: Any integer, float, or vector type
Examples found in repository?
src/legalizer/mod.rs (line 185)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Bitwise or.

Inputs:

  • x: Any integer, float, or vector type
  • y: Any integer, float, or vector type

Outputs:

  • a: Any integer, float, or vector type
Examples found in repository?
src/legalizer/mod.rs (line 188)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Bitwise xor.

Inputs:

  • x: Any integer, float, or vector type
  • y: Any integer, float, or vector type

Outputs:

  • a: Any integer, float, or vector type
Examples found in repository?
src/legalizer/mod.rs (line 191)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Bitwise not.

Inputs:

  • x: Any integer, float, or vector type

Outputs:

  • a: Any integer, float, or vector type

Bitwise and not.

Computes x & ~y.

Inputs:

  • x: Any integer, float, or vector type
  • y: Any integer, float, or vector type

Outputs:

  • a: Any integer, float, or vector type

Bitwise or not.

Computes x | ~y.

Inputs:

  • x: Any integer, float, or vector type
  • y: Any integer, float, or vector type

Outputs:

  • a: Any integer, float, or vector type

Bitwise xor not.

Computes x ^ ~y.

Inputs:

  • x: Any integer, float, or vector type
  • y: Any integer, float, or vector type

Outputs:

  • a: Any integer, float, or vector type

Bitwise and with immediate.

Same as band, but one operand is a zero extended 64 bit immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type
Examples found in repository?
src/simple_preopt.rs (line 202)
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCursor, inst: Inst) {
    let is_rem = match *divrem_info {
        DivRemByConstInfo::DivU32(_, _)
        | DivRemByConstInfo::DivU64(_, _)
        | DivRemByConstInfo::DivS32(_, _)
        | DivRemByConstInfo::DivS64(_, _) => false,
        DivRemByConstInfo::RemU32(_, _)
        | DivRemByConstInfo::RemU64(_, _)
        | DivRemByConstInfo::RemS32(_, _)
        | DivRemByConstInfo::RemS64(_, _) => true,
    };

    match *divrem_info {
        // -------------------- U32 --------------------

        // U32 div, rem by zero: ignore
        DivRemByConstInfo::DivU32(_n1, 0) | DivRemByConstInfo::RemU32(_n1, 0) => {}

        // U32 div by 1: identity
        // U32 rem by 1: zero
        DivRemByConstInfo::DivU32(n1, 1) | DivRemByConstInfo::RemU32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U32 div, rem by a power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 31);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U32 div, rem by non-power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d) => {
            debug_assert!(d >= 3);
            let MU32 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u32(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I32, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 32);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- U64 --------------------

        // U64 div, rem by zero: ignore
        DivRemByConstInfo::DivU64(_n1, 0) | DivRemByConstInfo::RemU64(_n1, 0) => {}

        // U64 div by 1: identity
        // U64 rem by 1: zero
        DivRemByConstInfo::DivU64(n1, 1) | DivRemByConstInfo::RemU64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U64 div, rem by a power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 63);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U64 div, rem by non-power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d) => {
            debug_assert!(d >= 3);
            let MU64 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u64(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I64, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 64);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- S32 --------------------

        // S32 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS32(_n1, -1)
        | DivRemByConstInfo::RemS32(_n1, -1)
        | DivRemByConstInfo::DivS32(_n1, 0)
        | DivRemByConstInfo::RemS32(_n1, 0) => {}

        // S32 div by 1: identity
        // S32 rem by 1: zero
        DivRemByConstInfo::DivS32(n1, 1) | DivRemByConstInfo::RemS32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS32(n1, d) | DivRemByConstInfo::RemS32(n1, d) => {
            if let Some((is_negative, k)) = i32_is_power_of_two(d) {
                // k can be 31 only in the case that d is -2^31.
                debug_assert!(k >= 1 && k <= 31);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (32 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S32 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i32::wrapping_neg(1 << k) as i64);
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S32 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S32 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS32 { mul_by, shift_by } = magic_s32(d);
                let q0 = pos.ins().iconst(I32, mul_by as i64);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 31);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d as i64);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }

        // -------------------- S64 --------------------

        // S64 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS64(_n1, -1)
        | DivRemByConstInfo::RemS64(_n1, -1)
        | DivRemByConstInfo::DivS64(_n1, 0)
        | DivRemByConstInfo::RemS64(_n1, 0) => {}

        // S64 div by 1: identity
        // S64 rem by 1: zero
        DivRemByConstInfo::DivS64(n1, 1) | DivRemByConstInfo::RemS64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS64(n1, d) | DivRemByConstInfo::RemS64(n1, d) => {
            if let Some((is_negative, k)) = i64_is_power_of_two(d) {
                // k can be 63 only in the case that d is -2^63.
                debug_assert!(k >= 1 && k <= 63);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (64 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S64 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i64::wrapping_neg(1 << k));
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S64 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S64 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS64 { mul_by, shift_by } = magic_s64(d);
                let q0 = pos.ins().iconst(I64, mul_by);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 63);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }
    }
}

Bitwise or with immediate.

Same as bor, but one operand is a zero extended 64 bit immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

Bitwise xor with immediate.

Same as bxor, but one operand is a zero extended 64 bit immediate constant.

Polymorphic over all scalar integer types, but does not support vector types.

Inputs:

  • x: A scalar integer type
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar integer type

Rotate left.

Rotate the bits in x by y places.

Inputs:

  • x: Scalar or vector value to shift
  • y: Number of bits to shift

Outputs:

  • a: A scalar or vector integer type
Examples found in repository?
src/legalizer/mod.rs (line 198)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Rotate right.

Rotate the bits in x by y places.

Inputs:

  • x: Scalar or vector value to shift
  • y: Number of bits to shift

Outputs:

  • a: A scalar or vector integer type
Examples found in repository?
src/legalizer/mod.rs (line 201)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Rotate left by immediate.

Same as rotl, but one operand is a zero extended 64 bit immediate constant.

Inputs:

  • x: Scalar or vector value to shift
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar or vector integer type

Rotate right by immediate.

Same as rotr, but one operand is a zero extended 64 bit immediate constant.

Inputs:

  • x: Scalar or vector value to shift
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar or vector integer type

Integer shift left. Shift the bits in x towards the MSB by y places. Shift in zero bits to the LSB.

The shift amount is masked to the size of x.

When shifting a B-bits integer type, this instruction computes:

    s &:= y \pmod B,
    a &:= x \cdot 2^s \pmod{2^B}.

Inputs:

  • x: Scalar or vector value to shift
  • y: Number of bits to shift

Outputs:

  • a: A scalar or vector integer type
Examples found in repository?
src/legalizer/mod.rs (line 195)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Unsigned shift right. Shift bits in x towards the LSB by y places, shifting in zero bits to the MSB. Also called a logical shift.

The shift amount is masked to the size of the register.

When shifting a B-bits integer type, this instruction computes:

    s &:= y \pmod B,
    a &:= \lfloor x \cdot 2^{-s} \rfloor.

Inputs:

  • x: Scalar or vector value to shift
  • y: Number of bits to shift

Outputs:

  • a: A scalar or vector integer type
Examples found in repository?
src/legalizer/mod.rs (line 207)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Signed shift right. Shift bits in x towards the LSB by y places, shifting in sign bits to the MSB. Also called an arithmetic shift.

The shift amount is masked to the size of the register.

Inputs:

  • x: Scalar or vector value to shift
  • y: Number of bits to shift

Outputs:

  • a: A scalar or vector integer type
Examples found in repository?
src/legalizer/mod.rs (line 204)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Integer shift left by immediate.

The shift amount is masked to the size of x.

Inputs:

  • x: Scalar or vector value to shift
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar or vector integer type
Examples found in repository?
src/legalizer/table.rs (line 88)
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
fn compute_addr(
    inst: ir::Inst,
    table: ir::Table,
    addr_ty: ir::Type,
    mut index: ir::Value,
    index_ty: ir::Type,
    element_offset: Offset32,
    func: &mut ir::Function,
    spectre_oob_cmp: Option<(ir::Value, ir::Value)>,
) {
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Convert `index` to `addr_ty`.
    if index_ty != addr_ty {
        index = pos.ins().uextend(addr_ty, index);
    }

    // Add the table base address base
    let base_gv = pos.func.tables[table].base_gv;
    let base = pos.ins().global_value(addr_ty, base_gv);

    let element_size = pos.func.tables[table].element_size;
    let mut offset;
    let element_size: u64 = element_size.into();
    if element_size == 1 {
        offset = index;
    } else if element_size.is_power_of_two() {
        offset = pos
            .ins()
            .ishl_imm(index, i64::from(element_size.trailing_zeros()));
    } else {
        offset = pos.ins().imul_imm(index, element_size as i64);
    }

    let element_addr = if element_offset == Offset32::new(0) {
        pos.ins().iadd(base, offset)
    } else {
        let imm: i64 = element_offset.into();
        offset = pos.ins().iadd(base, offset);
        pos.ins().iadd_imm(offset, imm)
    };

    let element_addr = if let Some((index, bound)) = spectre_oob_cmp {
        let cond = pos
            .ins()
            .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
        // If out-of-bounds, choose the table base on the misspeculation path.
        pos.ins().select_spectre_guard(cond, base, element_addr)
    } else {
        element_addr
    };
    let new_inst = pos.func.dfg.value_def(element_addr).inst().unwrap();

    pos.func.dfg.replace_with_aliases(inst, new_inst);
    pos.remove_inst();
}

Unsigned shift right by immediate.

The shift amount is masked to the size of the register.

Inputs:

  • x: Scalar or vector value to shift
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar or vector integer type
Examples found in repository?
src/simple_preopt.rs (line 204)
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCursor, inst: Inst) {
    let is_rem = match *divrem_info {
        DivRemByConstInfo::DivU32(_, _)
        | DivRemByConstInfo::DivU64(_, _)
        | DivRemByConstInfo::DivS32(_, _)
        | DivRemByConstInfo::DivS64(_, _) => false,
        DivRemByConstInfo::RemU32(_, _)
        | DivRemByConstInfo::RemU64(_, _)
        | DivRemByConstInfo::RemS32(_, _)
        | DivRemByConstInfo::RemS64(_, _) => true,
    };

    match *divrem_info {
        // -------------------- U32 --------------------

        // U32 div, rem by zero: ignore
        DivRemByConstInfo::DivU32(_n1, 0) | DivRemByConstInfo::RemU32(_n1, 0) => {}

        // U32 div by 1: identity
        // U32 rem by 1: zero
        DivRemByConstInfo::DivU32(n1, 1) | DivRemByConstInfo::RemU32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U32 div, rem by a power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 31);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U32 div, rem by non-power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d) => {
            debug_assert!(d >= 3);
            let MU32 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u32(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I32, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 32);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- U64 --------------------

        // U64 div, rem by zero: ignore
        DivRemByConstInfo::DivU64(_n1, 0) | DivRemByConstInfo::RemU64(_n1, 0) => {}

        // U64 div by 1: identity
        // U64 rem by 1: zero
        DivRemByConstInfo::DivU64(n1, 1) | DivRemByConstInfo::RemU64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U64 div, rem by a power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 63);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U64 div, rem by non-power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d) => {
            debug_assert!(d >= 3);
            let MU64 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u64(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I64, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 64);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- S32 --------------------

        // S32 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS32(_n1, -1)
        | DivRemByConstInfo::RemS32(_n1, -1)
        | DivRemByConstInfo::DivS32(_n1, 0)
        | DivRemByConstInfo::RemS32(_n1, 0) => {}

        // S32 div by 1: identity
        // S32 rem by 1: zero
        DivRemByConstInfo::DivS32(n1, 1) | DivRemByConstInfo::RemS32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS32(n1, d) | DivRemByConstInfo::RemS32(n1, d) => {
            if let Some((is_negative, k)) = i32_is_power_of_two(d) {
                // k can be 31 only in the case that d is -2^31.
                debug_assert!(k >= 1 && k <= 31);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (32 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S32 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i32::wrapping_neg(1 << k) as i64);
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S32 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S32 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS32 { mul_by, shift_by } = magic_s32(d);
                let q0 = pos.ins().iconst(I32, mul_by as i64);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 31);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d as i64);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }

        // -------------------- S64 --------------------

        // S64 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS64(_n1, -1)
        | DivRemByConstInfo::RemS64(_n1, -1)
        | DivRemByConstInfo::DivS64(_n1, 0)
        | DivRemByConstInfo::RemS64(_n1, 0) => {}

        // S64 div by 1: identity
        // S64 rem by 1: zero
        DivRemByConstInfo::DivS64(n1, 1) | DivRemByConstInfo::RemS64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS64(n1, d) | DivRemByConstInfo::RemS64(n1, d) => {
            if let Some((is_negative, k)) = i64_is_power_of_two(d) {
                // k can be 63 only in the case that d is -2^63.
                debug_assert!(k >= 1 && k <= 63);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (64 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S64 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i64::wrapping_neg(1 << k));
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S64 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S64 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS64 { mul_by, shift_by } = magic_s64(d);
                let q0 = pos.ins().iconst(I64, mul_by);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 63);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }
    }
}

Signed shift right by immediate.

The shift amount is masked to the size of the register.

Inputs:

  • x: Scalar or vector value to shift
  • Y: A 64-bit immediate integer.

Outputs:

  • a: A scalar or vector integer type
Examples found in repository?
src/simple_preopt.rs (line 342)
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
fn do_divrem_transformation(divrem_info: &DivRemByConstInfo, pos: &mut FuncCursor, inst: Inst) {
    let is_rem = match *divrem_info {
        DivRemByConstInfo::DivU32(_, _)
        | DivRemByConstInfo::DivU64(_, _)
        | DivRemByConstInfo::DivS32(_, _)
        | DivRemByConstInfo::DivS64(_, _) => false,
        DivRemByConstInfo::RemU32(_, _)
        | DivRemByConstInfo::RemU64(_, _)
        | DivRemByConstInfo::RemS32(_, _)
        | DivRemByConstInfo::RemS64(_, _) => true,
    };

    match *divrem_info {
        // -------------------- U32 --------------------

        // U32 div, rem by zero: ignore
        DivRemByConstInfo::DivU32(_n1, 0) | DivRemByConstInfo::RemU32(_n1, 0) => {}

        // U32 div by 1: identity
        // U32 rem by 1: zero
        DivRemByConstInfo::DivU32(n1, 1) | DivRemByConstInfo::RemU32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U32 div, rem by a power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 31);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U32 div, rem by non-power-of-2
        DivRemByConstInfo::DivU32(n1, d) | DivRemByConstInfo::RemU32(n1, d) => {
            debug_assert!(d >= 3);
            let MU32 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u32(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I32, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 32);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- U64 --------------------

        // U64 div, rem by zero: ignore
        DivRemByConstInfo::DivU64(_n1, 0) | DivRemByConstInfo::RemU64(_n1, 0) => {}

        // U64 div by 1: identity
        // U64 rem by 1: zero
        DivRemByConstInfo::DivU64(n1, 1) | DivRemByConstInfo::RemU64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        // U64 div, rem by a power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d)
            if d.is_power_of_two() =>
        {
            debug_assert!(d >= 2);
            // compute k where d == 2^k
            let k = d.trailing_zeros();
            debug_assert!(k >= 1 && k <= 63);
            if is_rem {
                let mask = (1u64 << k) - 1;
                pos.func.dfg.replace(inst).band_imm(n1, mask as i64);
            } else {
                pos.func.dfg.replace(inst).ushr_imm(n1, k as i64);
            }
        }

        // U64 div, rem by non-power-of-2
        DivRemByConstInfo::DivU64(n1, d) | DivRemByConstInfo::RemU64(n1, d) => {
            debug_assert!(d >= 3);
            let MU64 {
                mul_by,
                do_add,
                shift_by,
            } = magic_u64(d);
            let qf; // final quotient
            let q0 = pos.ins().iconst(I64, mul_by as i64);
            let q1 = pos.ins().umulhi(n1, q0);
            if do_add {
                debug_assert!(shift_by >= 1 && shift_by <= 64);
                let t1 = pos.ins().isub(n1, q1);
                let t2 = pos.ins().ushr_imm(t1, 1);
                let t3 = pos.ins().iadd(t2, q1);
                // I never found any case where shift_by == 1 here.
                // So there's no attempt to fold out a zero shift.
                debug_assert_ne!(shift_by, 1);
                qf = pos.ins().ushr_imm(t3, (shift_by - 1) as i64);
            } else {
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                // Whereas there are known cases here for shift_by == 0.
                if shift_by > 0 {
                    qf = pos.ins().ushr_imm(q1, shift_by as i64);
                } else {
                    qf = q1;
                }
            }
            // Now qf holds the final quotient. If necessary calculate the
            // remainder instead.
            if is_rem {
                let tt = pos.ins().imul_imm(qf, d as i64);
                pos.func.dfg.replace(inst).isub(n1, tt);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
            }
        }

        // -------------------- S32 --------------------

        // S32 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS32(_n1, -1)
        | DivRemByConstInfo::RemS32(_n1, -1)
        | DivRemByConstInfo::DivS32(_n1, 0)
        | DivRemByConstInfo::RemS32(_n1, 0) => {}

        // S32 div by 1: identity
        // S32 rem by 1: zero
        DivRemByConstInfo::DivS32(n1, 1) | DivRemByConstInfo::RemS32(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I32, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS32(n1, d) | DivRemByConstInfo::RemS32(n1, d) => {
            if let Some((is_negative, k)) = i32_is_power_of_two(d) {
                // k can be 31 only in the case that d is -2^31.
                debug_assert!(k >= 1 && k <= 31);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (32 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S32 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i32::wrapping_neg(1 << k) as i64);
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S32 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S32 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS32 { mul_by, shift_by } = magic_s32(d);
                let q0 = pos.ins().iconst(I32, mul_by as i64);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 31);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 31);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d as i64);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }

        // -------------------- S64 --------------------

        // S64 div, rem by zero or -1: ignore
        DivRemByConstInfo::DivS64(_n1, -1)
        | DivRemByConstInfo::RemS64(_n1, -1)
        | DivRemByConstInfo::DivS64(_n1, 0)
        | DivRemByConstInfo::RemS64(_n1, 0) => {}

        // S64 div by 1: identity
        // S64 rem by 1: zero
        DivRemByConstInfo::DivS64(n1, 1) | DivRemByConstInfo::RemS64(n1, 1) => {
            if is_rem {
                pos.func.dfg.replace(inst).iconst(I64, 0);
            } else {
                replace_single_result_with_alias(&mut pos.func.dfg, inst, n1);
            }
        }

        DivRemByConstInfo::DivS64(n1, d) | DivRemByConstInfo::RemS64(n1, d) => {
            if let Some((is_negative, k)) = i64_is_power_of_two(d) {
                // k can be 63 only in the case that d is -2^63.
                debug_assert!(k >= 1 && k <= 63);
                let t1 = if k - 1 == 0 {
                    n1
                } else {
                    pos.ins().sshr_imm(n1, (k - 1) as i64)
                };
                let t2 = pos.ins().ushr_imm(t1, (64 - k) as i64);
                let t3 = pos.ins().iadd(n1, t2);
                if is_rem {
                    // S64 rem by a power-of-2
                    let t4 = pos.ins().band_imm(t3, i64::wrapping_neg(1 << k));
                    // Curiously, we don't care here what the sign of d is.
                    pos.func.dfg.replace(inst).isub(n1, t4);
                } else {
                    // S64 div by a power-of-2
                    let t4 = pos.ins().sshr_imm(t3, k as i64);
                    if is_negative {
                        pos.func.dfg.replace(inst).irsub_imm(t4, 0);
                    } else {
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, t4);
                    }
                }
            } else {
                // S64 div, rem by a non-power-of-2
                debug_assert!(d < -2 || d > 2);
                let MS64 { mul_by, shift_by } = magic_s64(d);
                let q0 = pos.ins().iconst(I64, mul_by);
                let q1 = pos.ins().smulhi(n1, q0);
                let q2 = if d > 0 && mul_by < 0 {
                    pos.ins().iadd(q1, n1)
                } else if d < 0 && mul_by > 0 {
                    pos.ins().isub(q1, n1)
                } else {
                    q1
                };
                debug_assert!(shift_by >= 0 && shift_by <= 63);
                let q3 = if shift_by == 0 {
                    q2
                } else {
                    pos.ins().sshr_imm(q2, shift_by as i64)
                };
                let t1 = pos.ins().ushr_imm(q3, 63);
                let qf = pos.ins().iadd(q3, t1);
                // Now qf holds the final quotient. If necessary calculate
                // the remainder instead.
                if is_rem {
                    let tt = pos.ins().imul_imm(qf, d);
                    pos.func.dfg.replace(inst).isub(n1, tt);
                } else {
                    replace_single_result_with_alias(&mut pos.func.dfg, inst, qf);
                }
            }
        }
    }
}

Reverse the bits of a integer.

Reverses the bits in x.

Inputs:

  • x: A scalar integer type

Outputs:

  • a: A scalar integer type

Count leading zero bits.

Starting from the MSB in x, count the number of zero bits before reaching the first one bit. When x is zero, returns the size of x in bits.

Inputs:

  • x: A scalar integer type

Outputs:

  • a: A scalar integer type

Count leading sign bits.

Starting from the MSB after the sign bit in x, count the number of consecutive bits identical to the sign bit. When x is 0 or -1, returns one less than the size of x in bits.

Inputs:

  • x: A scalar integer type

Outputs:

  • a: A scalar integer type

Count trailing zeros.

Starting from the LSB in x, count the number of zero bits before reaching the first one bit. When x is zero, returns the size of x in bits.

Inputs:

  • x: A scalar integer type

Outputs:

  • a: A scalar integer type

Reverse the byte order of an integer.

Reverses the bytes in x.

Inputs:

  • x: A multi byte scalar integer type

Outputs:

  • a: A multi byte scalar integer type

Population count

Count the number of one bits in x.

Inputs:

  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector integer type

Floating point comparison.

Two IEEE 754-2008 floating point numbers, x and y, relate to each other in exactly one of four ways:

== ==========================================
UN Unordered when one or both numbers is NaN.
EQ When `x = y`. (And `0.0 = -0.0`).
LT When `x < y`.
GT When `x > y`.
== ==========================================

The 14 floatcc condition codes each correspond to a subset of the four relations, except for the empty set which would always be false, and the full set which would always be true.

The condition codes are divided into 7 ‘ordered’ conditions which don’t include UN, and 7 unordered conditions which all include UN.

+-------+------------+---------+------------+-------------------------+
|Ordered             |Unordered             |Condition                |
+=======+============+=========+============+=========================+
|ord    |EQ | LT | GT|uno      |UN          |NaNs absent / present.   |
+-------+------------+---------+------------+-------------------------+
|eq     |EQ          |ueq      |UN | EQ     |Equal                    |
+-------+------------+---------+------------+-------------------------+
|one    |LT | GT     |ne       |UN | LT | GT|Not equal                |
+-------+------------+---------+------------+-------------------------+
|lt     |LT          |ult      |UN | LT     |Less than                |
+-------+------------+---------+------------+-------------------------+
|le     |LT | EQ     |ule      |UN | LT | EQ|Less than or equal       |
+-------+------------+---------+------------+-------------------------+
|gt     |GT          |ugt      |UN | GT     |Greater than             |
+-------+------------+---------+------------+-------------------------+
|ge     |GT | EQ     |uge      |UN | GT | EQ|Greater than or equal    |
+-------+------------+---------+------------+-------------------------+

The standard C comparison operators, <, <=, >, >=, are all ordered, so they are false if either operand is NaN. The C equality operator, ==, is ordered, and since inequality is defined as the logical inverse it is unordered. They map to the floatcc condition codes as follows:

==== ====== ============
C    `Cond` Subset
==== ====== ============
`==` eq     EQ
`!=` ne     UN | LT | GT
`<`  lt     LT
`<=` le     LT | EQ
`>`  gt     GT
`>=` ge     GT | EQ
==== ====== ============

This subset of condition codes also corresponds to the WebAssembly floating point comparisons of the same name.

When this instruction compares floating point vectors, it returns a vector with the results of lane-wise comparisons.

Inputs:

  • Cond: A floating point comparison condition code
  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a:
Examples found in repository?
src/nan_canonicalization.rs (line 65)
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
fn add_nan_canon_seq(pos: &mut FuncCursor, inst: Inst) {
    // Select the instruction result, result type. Replace the instruction
    // result and step forward before inserting the canonicalization sequence.
    let val = pos.func.dfg.first_result(inst);
    let val_type = pos.func.dfg.value_type(val);
    let new_res = pos.func.dfg.replace_result(val, val_type);
    let _next_inst = pos.next_inst().expect("block missing terminator!");

    // Insert a comparison instruction, to check if `inst_res` is NaN. Select
    // the canonical NaN value if `val` is NaN, assign the result to `inst`.
    let is_nan = pos.ins().fcmp(FloatCC::NotEqual, new_res, new_res);

    let scalar_select = |pos: &mut FuncCursor, canon_nan: Value| {
        pos.ins()
            .with_result(val)
            .select(is_nan, canon_nan, new_res);
    };
    let vector_select = |pos: &mut FuncCursor, canon_nan: Value| {
        pos.ins()
            .with_result(val)
            .vselect(is_nan, canon_nan, new_res);
    };

    match val_type {
        types::F32 => {
            let canon_nan = pos.ins().f32const(Ieee32::with_bits(CANON_32BIT_NAN));
            scalar_select(pos, canon_nan);
        }
        types::F64 => {
            let canon_nan = pos.ins().f64const(Ieee64::with_bits(CANON_64BIT_NAN));
            scalar_select(pos, canon_nan);
        }
        types::F32X4 => {
            let canon_nan = pos.ins().f32const(Ieee32::with_bits(CANON_32BIT_NAN));
            let canon_nan = pos.ins().splat(types::F32X4, canon_nan);
            vector_select(pos, canon_nan);
        }
        types::F64X2 => {
            let canon_nan = pos.ins().f64const(Ieee64::with_bits(CANON_64BIT_NAN));
            let canon_nan = pos.ins().splat(types::F64X2, canon_nan);
            vector_select(pos, canon_nan);
        }
        _ => {
            // Panic if the type given was not an IEEE floating point type.
            panic!("Could not canonicalize NaN: Unexpected result type found.");
        }
    }

    pos.prev_inst(); // Step backwards so the pass does not skip instructions.
}

Floating point comparison returning flags.

Compares two numbers like fcmp, but returns floating point CPU flags instead of testing a specific condition.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • f: CPU flags representing the result of a floating point comparison. These flags can be tested with a :type:floatcc condition code.

Floating point addition.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

Floating point subtraction.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

Floating point multiplication.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

Floating point division.

Unlike the integer division instructions andudiv`, this can’t trap. Division by zero is infinity or NaN, depending on the dividend.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

Floating point square root.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

Floating point fused multiply-and-add.

Computes a := xy+z without any intermediate rounding of the product.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number
  • z: A scalar or vector floating point number

Outputs:

  • a: Result of applying operator to each lane

Floating point negation.

Note that this is a pure bitwise operation.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x with its sign bit inverted

Floating point absolute value.

Note that this is a pure bitwise operation.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x with its sign bit cleared

Floating point copy sign.

Note that this is a pure bitwise operation. The sign bit from y is copied to the sign bit of x.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: x with its sign bit changed to that of y

Floating point minimum, propagating NaNs using the WebAssembly rules.

If either operand is NaN, this returns NaN with an unspecified sign. Furthermore, if each input NaN consists of a mantissa whose most significant bit is 1 and the rest is 0, then the output has the same form. Otherwise, the output mantissa’s most significant bit is 1 and the rest is unspecified.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: The smaller of x and y

Floating point pseudo-minimum, propagating NaNs. This behaves differently from fmin. See https://github.com/WebAssembly/simd/pull/122 for background.

The behaviour is defined as fmin_pseudo(a, b) = (b < a) ? b : a, and the behaviour for zero or NaN inputs follows from the behaviour of < with such inputs.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: The smaller of x and y

Floating point maximum, propagating NaNs using the WebAssembly rules.

If either operand is NaN, this returns NaN with an unspecified sign. Furthermore, if each input NaN consists of a mantissa whose most significant bit is 1 and the rest is 0, then the output has the same form. Otherwise, the output mantissa’s most significant bit is 1 and the rest is unspecified.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: The larger of x and y

Floating point pseudo-maximum, propagating NaNs. This behaves differently from fmax. See https://github.com/WebAssembly/simd/pull/122 for background.

The behaviour is defined as fmax_pseudo(a, b) = (a < b) ? b : a, and the behaviour for zero or NaN inputs follows from the behaviour of < with such inputs.

Inputs:

  • x: A scalar or vector floating point number
  • y: A scalar or vector floating point number

Outputs:

  • a: The larger of x and y

Round floating point round to integral, towards positive infinity.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x rounded to integral value

Round floating point round to integral, towards negative infinity.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x rounded to integral value

Round floating point round to integral, towards zero.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x rounded to integral value

Round floating point round to integral, towards nearest with ties to even.

Inputs:

  • x: A scalar or vector floating point number

Outputs:

  • a: x rounded to integral value

Reference verification.

The condition code determines if the reference type in question is null or not.

Inputs:

  • x: A scalar reference type

Outputs:

  • a: An integer type with 8 bits. WARNING: arithmetic on 8bit integers is incomplete

Reference verification.

The condition code determines if the reference type in question is invalid or not.

Inputs:

  • x: A scalar reference type

Outputs:

  • a: An integer type with 8 bits. WARNING: arithmetic on 8bit integers is incomplete

Reinterpret the bits in x as a different type.

The input and output types must be storable to memory and of the same size. A bitcast is equivalent to storing one type and loading the other type from the same address, both using the specified MemFlags.

Note that this operation only supports the big or little MemFlags. The specified byte order only affects the result in the case where input and output types differ in lane count/size. In this case, the operation is only valid if a byte order specifier is provided.

Inputs:

  • MemTo (controlling type variable):
  • MemFlags: Memory operation flags
  • x: Any type that can be stored in memory

Outputs:

  • a: Bits of x reinterpreted

Copies a scalar value to a vector value. The scalar is copied into the least significant lane of the vector, and all other lanes will be zero.

Inputs:

  • TxN (controlling type variable): A SIMD vector type
  • s: A scalar value

Outputs:

  • a: A vector value

Convert x to an integer mask.

True maps to all 1s and false maps to all 0s. The result type must have the same number of vector lanes as the input.

Inputs:

  • IntTo (controlling type variable): An integer type with the same number of lanes
  • x: A scalar or vector whose values are truthy

Outputs:

  • a: An integer type with the same number of lanes

Convert x to a smaller integer type by discarding the most significant bits.

This is the same as reducing modulo 2^n.

Inputs:

  • IntTo (controlling type variable): A smaller integer type
  • x: A scalar integer type

Outputs:

  • a: A smaller integer type
Examples found in repository?
src/simple_preopt.rs (line 657)
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
    fn try_fold_extended_move(
        pos: &mut FuncCursor,
        inst: Inst,
        opcode: Opcode,
        arg: Value,
        imm: immediates::Imm64,
    ) -> bool {
        if let ValueDef::Result(arg_inst, _) = pos.func.dfg.value_def(arg) {
            if let InstructionData::BinaryImm64 {
                opcode: Opcode::IshlImm,
                arg: prev_arg,
                imm: prev_imm,
            } = &pos.func.dfg[arg_inst]
            {
                if imm != *prev_imm {
                    return false;
                }

                let dest_ty = pos.func.dfg.ctrl_typevar(inst);
                if dest_ty != pos.func.dfg.ctrl_typevar(arg_inst) || !dest_ty.is_int() {
                    return false;
                }

                let imm_bits: i64 = imm.into();
                let ireduce_ty = match (dest_ty.lane_bits() as i64).wrapping_sub(imm_bits) {
                    8 => I8,
                    16 => I16,
                    32 => I32,
                    _ => return false,
                };
                let ireduce_ty = ireduce_ty.by(dest_ty.lane_count()).unwrap();

                // This becomes a no-op, since ireduce_ty has a smaller lane width than
                // the argument type (also the destination type).
                let arg = *prev_arg;
                let narrower_arg = pos.ins().ireduce(ireduce_ty, arg);

                if opcode == Opcode::UshrImm {
                    pos.func.dfg.replace(inst).uextend(dest_ty, narrower_arg);
                } else {
                    pos.func.dfg.replace(inst).sextend(dest_ty, narrower_arg);
                }
                return true;
            }
        }
        false
    }

Combine x and y into a vector with twice the lanes but half the integer width while saturating overflowing values to the signed maximum and minimum.

The lanes will be concatenated after narrowing. For example, when x and y are i32x4 and x = [x3, x2, x1, x0] and y = [y3, y2, y1, y0], then after narrowing the value returned is an i16x8: a = [y3', y2', y1', y0', x3', x2', x1', x0'].

Inputs:

  • x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
  • y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide

Outputs:

  • a:

Combine x and y into a vector with twice the lanes but half the integer width while saturating overflowing values to the unsigned maximum and minimum.

Note that all input lanes are considered signed: any negative lanes will overflow and be replaced with the unsigned minimum, 0x00.

The lanes will be concatenated after narrowing. For example, when x and y are i32x4 and x = [x3, x2, x1, x0] and y = [y3, y2, y1, y0], then after narrowing the value returned is an i16x8: a = [y3', y2', y1', y0', x3', x2', x1', x0'].

Inputs:

  • x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
  • y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide

Outputs:

  • a:

Combine x and y into a vector with twice the lanes but half the integer width while saturating overflowing values to the unsigned maximum and minimum.

Note that all input lanes are considered unsigned: any negative values will be interpreted as unsigned, overflowing and being replaced with the unsigned maximum.

The lanes will be concatenated after narrowing. For example, when x and y are i32x4 and x = [x3, x2, x1, x0] and y = [y3, y2, y1, y0], then after narrowing the value returned is an i16x8: a = [y3', y2', y1', y0', x3', x2', x1', x0'].

Inputs:

  • x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
  • y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide

Outputs:

  • a:

Widen the low lanes of x using signed extension.

This will double the lane width and halve the number of lanes.

Inputs:

  • x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Outputs:

  • a:

Widen the high lanes of x using signed extension.

This will double the lane width and halve the number of lanes.

Inputs:

  • x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Outputs:

  • a:

Widen the low lanes of x using unsigned extension.

This will double the lane width and halve the number of lanes.

Inputs:

  • x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Outputs:

  • a:

Widen the high lanes of x using unsigned extension.

This will double the lane width and halve the number of lanes.

Inputs:

  • x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Outputs:

  • a:

Does lane-wise integer pairwise addition on two operands, putting the combined results into a single vector result. Here a pair refers to adjacent lanes in a vector, i.e. i2 + (i2+1) for i == num_lanes/2. The first operand pairwise add results will make up the low half of the resulting vector while the second operand pairwise add results will make up the upper half of the resulting vector.

Inputs:

  • x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
  • y: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Outputs:

  • a: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.

Takes corresponding elements in x and y, performs a sign-extending length-doubling multiplication on them, then adds adjacent pairs of elements to form the result. For example, if the input vectors are [x3, x2, x1, x0] and [y3, y2, y1, y0], it produces the vector [r1, r0], where r1 = sx(x3) * sx(y3) + sx(x2) * sx(y2) and r0 = sx(x1) * sx(y1) + sx(x0) * sx(y0), and sx(n) sign-extends n to twice its width.

This will double the lane width and halve the number of lanes. So the resulting vector has the same number of bits as x and y do (individually).

See https://github.com/WebAssembly/simd/pull/127 for background info.

Inputs:

  • x: A SIMD vector type containing 8 integer lanes each 16 bits wide.
  • y: A SIMD vector type containing 8 integer lanes each 16 bits wide.

Outputs:

  • a:

Convert x to a larger integer type by zero-extending.

Each lane in x is converted to a larger integer type by adding zeroes. The result has the same numerical value as x when both are interpreted as unsigned integers.

The result type must have the same number of vector lanes as the input, and each lane must not have fewer bits that the input lanes. If the input and output types are the same, this is a no-op.

Inputs:

  • IntTo (controlling type variable): A larger integer type with the same number of lanes
  • x: A scalar integer type

Outputs:

  • a: A larger integer type with the same number of lanes
Examples found in repository?
src/legalizer/mod.rs (line 41)
32
33
34
35
36
37
38
39
40
41
42
43
44
45
fn imm_const(pos: &mut FuncCursor, arg: Value, imm: Imm64, is_signed: bool) -> Value {
    let ty = pos.func.dfg.value_type(arg);
    match (ty, is_signed) {
        (I128, true) => {
            let imm = pos.ins().iconst(I64, imm);
            pos.ins().sextend(I128, imm)
        }
        (I128, false) => {
            let imm = pos.ins().iconst(I64, imm);
            pos.ins().uextend(I128, imm)
        }
        _ => pos.ins().iconst(ty.lane_type(), imm),
    }
}
More examples
Hide additional examples
src/legalizer/heap.rs (line 396)
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
fn cast_index_to_pointer_ty(
    index: ir::Value,
    index_ty: ir::Type,
    pointer_ty: ir::Type,
    pos: &mut FuncCursor,
) -> ir::Value {
    if index_ty == pointer_ty {
        return index;
    }
    // Note that using 64-bit heaps on a 32-bit host is not currently supported,
    // would require at least a bounds check here to ensure that the truncation
    // from 64-to-32 bits doesn't lose any upper bits. For now though we're
    // mostly interested in the 32-bit-heaps-on-64-bit-hosts cast.
    assert!(index_ty.bits() < pointer_ty.bits());

    // Convert `index` to `addr_ty`.
    let extended_index = pos.ins().uextend(pointer_ty, index);

    // Add debug value-label alias so that debuginfo can name the extended
    // value as the address
    let loc = pos.srcloc();
    let loc = RelSourceLoc::from_base_offset(pos.func.params.base_srcloc(), loc);
    pos.func
        .stencil
        .dfg
        .add_value_label_alias(extended_index, loc, index);

    extended_index
}
src/simple_preopt.rs (line 660)
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
    fn try_fold_extended_move(
        pos: &mut FuncCursor,
        inst: Inst,
        opcode: Opcode,
        arg: Value,
        imm: immediates::Imm64,
    ) -> bool {
        if let ValueDef::Result(arg_inst, _) = pos.func.dfg.value_def(arg) {
            if let InstructionData::BinaryImm64 {
                opcode: Opcode::IshlImm,
                arg: prev_arg,
                imm: prev_imm,
            } = &pos.func.dfg[arg_inst]
            {
                if imm != *prev_imm {
                    return false;
                }

                let dest_ty = pos.func.dfg.ctrl_typevar(inst);
                if dest_ty != pos.func.dfg.ctrl_typevar(arg_inst) || !dest_ty.is_int() {
                    return false;
                }

                let imm_bits: i64 = imm.into();
                let ireduce_ty = match (dest_ty.lane_bits() as i64).wrapping_sub(imm_bits) {
                    8 => I8,
                    16 => I16,
                    32 => I32,
                    _ => return false,
                };
                let ireduce_ty = ireduce_ty.by(dest_ty.lane_count()).unwrap();

                // This becomes a no-op, since ireduce_ty has a smaller lane width than
                // the argument type (also the destination type).
                let arg = *prev_arg;
                let narrower_arg = pos.ins().ireduce(ireduce_ty, arg);

                if opcode == Opcode::UshrImm {
                    pos.func.dfg.replace(inst).uextend(dest_ty, narrower_arg);
                } else {
                    pos.func.dfg.replace(inst).sextend(dest_ty, narrower_arg);
                }
                return true;
            }
        }
        false
    }
src/legalizer/table.rs (line 73)
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
fn compute_addr(
    inst: ir::Inst,
    table: ir::Table,
    addr_ty: ir::Type,
    mut index: ir::Value,
    index_ty: ir::Type,
    element_offset: Offset32,
    func: &mut ir::Function,
    spectre_oob_cmp: Option<(ir::Value, ir::Value)>,
) {
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Convert `index` to `addr_ty`.
    if index_ty != addr_ty {
        index = pos.ins().uextend(addr_ty, index);
    }

    // Add the table base address base
    let base_gv = pos.func.tables[table].base_gv;
    let base = pos.ins().global_value(addr_ty, base_gv);

    let element_size = pos.func.tables[table].element_size;
    let mut offset;
    let element_size: u64 = element_size.into();
    if element_size == 1 {
        offset = index;
    } else if element_size.is_power_of_two() {
        offset = pos
            .ins()
            .ishl_imm(index, i64::from(element_size.trailing_zeros()));
    } else {
        offset = pos.ins().imul_imm(index, element_size as i64);
    }

    let element_addr = if element_offset == Offset32::new(0) {
        pos.ins().iadd(base, offset)
    } else {
        let imm: i64 = element_offset.into();
        offset = pos.ins().iadd(base, offset);
        pos.ins().iadd_imm(offset, imm)
    };

    let element_addr = if let Some((index, bound)) = spectre_oob_cmp {
        let cond = pos
            .ins()
            .icmp(IntCC::UnsignedGreaterThanOrEqual, index, bound);
        // If out-of-bounds, choose the table base on the misspeculation path.
        pos.ins().select_spectre_guard(cond, base, element_addr)
    } else {
        element_addr
    };
    let new_inst = pos.func.dfg.value_def(element_addr).inst().unwrap();

    pos.func.dfg.replace_with_aliases(inst, new_inst);
    pos.remove_inst();
}

Convert x to a larger integer type by sign-extending.

Each lane in x is converted to a larger integer type by replicating the sign bit. The result has the same numerical value as x when both are interpreted as signed integers.

The result type must have the same number of vector lanes as the input, and each lane must not have fewer bits that the input lanes. If the input and output types are the same, this is a no-op.

Inputs:

  • IntTo (controlling type variable): A larger integer type with the same number of lanes
  • x: A scalar integer type

Outputs:

  • a: A larger integer type with the same number of lanes
Examples found in repository?
src/legalizer/mod.rs (line 37)
32
33
34
35
36
37
38
39
40
41
42
43
44
45
fn imm_const(pos: &mut FuncCursor, arg: Value, imm: Imm64, is_signed: bool) -> Value {
    let ty = pos.func.dfg.value_type(arg);
    match (ty, is_signed) {
        (I128, true) => {
            let imm = pos.ins().iconst(I64, imm);
            pos.ins().sextend(I128, imm)
        }
        (I128, false) => {
            let imm = pos.ins().iconst(I64, imm);
            pos.ins().uextend(I128, imm)
        }
        _ => pos.ins().iconst(ty.lane_type(), imm),
    }
}
More examples
Hide additional examples
src/simple_preopt.rs (line 662)
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
    fn try_fold_extended_move(
        pos: &mut FuncCursor,
        inst: Inst,
        opcode: Opcode,
        arg: Value,
        imm: immediates::Imm64,
    ) -> bool {
        if let ValueDef::Result(arg_inst, _) = pos.func.dfg.value_def(arg) {
            if let InstructionData::BinaryImm64 {
                opcode: Opcode::IshlImm,
                arg: prev_arg,
                imm: prev_imm,
            } = &pos.func.dfg[arg_inst]
            {
                if imm != *prev_imm {
                    return false;
                }

                let dest_ty = pos.func.dfg.ctrl_typevar(inst);
                if dest_ty != pos.func.dfg.ctrl_typevar(arg_inst) || !dest_ty.is_int() {
                    return false;
                }

                let imm_bits: i64 = imm.into();
                let ireduce_ty = match (dest_ty.lane_bits() as i64).wrapping_sub(imm_bits) {
                    8 => I8,
                    16 => I16,
                    32 => I32,
                    _ => return false,
                };
                let ireduce_ty = ireduce_ty.by(dest_ty.lane_count()).unwrap();

                // This becomes a no-op, since ireduce_ty has a smaller lane width than
                // the argument type (also the destination type).
                let arg = *prev_arg;
                let narrower_arg = pos.ins().ireduce(ireduce_ty, arg);

                if opcode == Opcode::UshrImm {
                    pos.func.dfg.replace(inst).uextend(dest_ty, narrower_arg);
                } else {
                    pos.func.dfg.replace(inst).sextend(dest_ty, narrower_arg);
                }
                return true;
            }
        }
        false
    }

Convert x to a larger floating point format.

Each lane in x is converted to the destination floating point format. This is an exact operation.

Cranelift currently only supports two floating point formats

  • f32 and f64. This may change in the future.

The result type must have the same number of vector lanes as the input, and the result lanes must not have fewer bits than the input lanes.

Inputs:

  • FloatTo (controlling type variable): A scalar or vector floating point number
  • x: A scalar or vector floating point number

Outputs:

  • a: A scalar or vector floating point number

Convert x to a smaller floating point format.

Each lane in x is converted to the destination floating point format by rounding to nearest, ties to even.

Cranelift currently only supports two floating point formats

  • f32 and f64. This may change in the future.

The result type must have the same number of vector lanes as the input, and the result lanes must not have more bits than the input lanes.

Inputs:

  • FloatTo (controlling type variable): A scalar or vector floating point number
  • x: A scalar or vector floating point number

Outputs:

  • a: A scalar or vector floating point number

Convert x to a smaller floating point format.

Each lane in x is converted to the destination floating point format by rounding to nearest, ties to even.

Cranelift currently only supports two floating point formats

  • f32 and f64. This may change in the future.

Fvdemote differs from fdemote in that with fvdemote it targets vectors. Fvdemote is constrained to having the input type being F64x2 and the result type being F32x4. The result lane that was the upper half of the input lane is initialized to zero.

Inputs:

  • x: A SIMD vector type consisting of 2 lanes of 64-bit floats

Outputs:

  • a: A SIMD vector type consisting of 4 lanes of 32-bit floats

Converts packed single precision floating point to packed double precision floating point.

Considering only the lower half of the register, the low lanes in x are interpreted as single precision floats that are then converted to a double precision floats.

The result type will have half the number of vector lanes as the input. Fvpromote_low is constrained to input F32x4 with a result type of F64x2.

Inputs:

  • a: A SIMD vector type consisting of 4 lanes of 32-bit floats

Outputs:

  • x: A SIMD vector type consisting of 2 lanes of 64-bit floats

Converts floating point scalars to unsigned integer.

Only operates on x if it is a scalar. If x is NaN or if the unsigned integral value cannot be represented in the result type, this instruction traps.

Inputs:

  • IntTo (controlling type variable): A larger integer type with the same number of lanes
  • x: A scalar only floating point number

Outputs:

  • a: A larger integer type with the same number of lanes

Converts floating point scalars to signed integer.

Only operates on x if it is a scalar. If x is NaN or if the unsigned integral value cannot be represented in the result type, this instruction traps.

Inputs:

  • IntTo (controlling type variable): A larger integer type with the same number of lanes
  • x: A scalar only floating point number

Outputs:

  • a: A larger integer type with the same number of lanes

Convert floating point to unsigned integer as fcvt_to_uint does, but saturates the input instead of trapping. NaN and negative values are converted to 0.

Inputs:

  • IntTo (controlling type variable): A larger integer type with the same number of lanes
  • x: A scalar or vector floating point number

Outputs:

  • a: A larger integer type with the same number of lanes

Convert floating point to signed integer as fcvt_to_sint does, but saturates the input instead of trapping. NaN values are converted to 0.

Inputs:

  • IntTo (controlling type variable): A larger integer type with the same number of lanes
  • x: A scalar or vector floating point number

Outputs:

  • a: A larger integer type with the same number of lanes

Convert unsigned integer to floating point.

Each lane in x is interpreted as an unsigned integer and converted to floating point using round to nearest, ties to even.

The result type must have the same number of vector lanes as the input.

Inputs:

  • FloatTo (controlling type variable): A scalar or vector floating point number
  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector floating point number

Convert signed integer to floating point.

Each lane in x is interpreted as a signed integer and converted to floating point using round to nearest, ties to even.

The result type must have the same number of vector lanes as the input.

Inputs:

  • FloatTo (controlling type variable): A scalar or vector floating point number
  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector floating point number

Converts packed signed 32-bit integers to packed double precision floating point.

Considering only the low half of the register, each lane in x is interpreted as a signed 32-bit integer that is then converted to a double precision float. This instruction differs from fcvt_from_sint in that it converts half the number of lanes which are converted to occupy twice the number of bits. No rounding should be needed for the resulting float.

The result type will have half the number of vector lanes as the input.

Inputs:

  • FloatTo (controlling type variable): A scalar or vector floating point number
  • x: A scalar or vector integer type

Outputs:

  • a: A scalar or vector floating point number

Split an integer into low and high parts.

Vectors of integers are split lane-wise, so the results have the same number of lanes as the input, but the lanes are half the size.

Returns the low half of x and the high half of x as two independent values.

Inputs:

  • x: An integer type with lanes from i16 upwards

Outputs:

  • lo: The low bits of x
  • hi: The high bits of x

Concatenate low and high bits to form a larger integer type.

Vectors of integers are concatenated lane-wise such that the result has the same number of lanes as the inputs, but the lanes are twice the size.

Inputs:

  • lo: An integer type with lanes type to i64
  • hi: An integer type with lanes type to i64

Outputs:

  • a: The concatenation of lo and hi

Atomically read-modify-write memory at p, with second operand x. The old value is returned. p has the type of the target word size, and x may be an integer type of 8, 16, 32 or 64 bits, even on a 32-bit target. The type of the returned value is the same as the type of x. This operation is sequentially consistent and creates happens-before edges that order normal (non-atomic) loads and stores.

Inputs:

  • AtomicMem (controlling type variable): Any type that can be stored in memory, which can be used in an atomic operation
  • MemFlags: Memory operation flags
  • AtomicRmwOp: Atomic Read-Modify-Write Ops
  • p: An integer address type
  • x: Value to be atomically stored

Outputs:

  • a: Value atomically loaded

Perform an atomic compare-and-swap operation on memory at p, with expected value e, storing x if the value at p equals e. The old value at p is returned, regardless of whether the operation succeeds or fails. p has the type of the target word size, and x and e must have the same type and the same size, which may be an integer type of 8, 16, 32 or 64 bits, even on a 32-bit target. The type of the returned value is the same as the type of x and e. This operation is sequentially consistent and creates happens-before edges that order normal (non-atomic) loads and stores.

Inputs:

  • MemFlags: Memory operation flags
  • p: An integer address type
  • e: Expected value in CAS
  • x: Value to be atomically stored

Outputs:

  • a: Value atomically loaded

Atomically load from memory at p.

This is a polymorphic instruction that can load any value type which has a memory representation. It should only be used for integer types with 8, 16, 32 or 64 bits. This operation is sequentially consistent and creates happens-before edges that order normal (non-atomic) loads and stores.

Inputs:

  • AtomicMem (controlling type variable): Any type that can be stored in memory, which can be used in an atomic operation
  • MemFlags: Memory operation flags
  • p: An integer address type

Outputs:

  • a: Value atomically loaded

Atomically store x to memory at p.

This is a polymorphic instruction that can store any value type with a memory representation. It should only be used for integer types with 8, 16, 32 or 64 bits. This operation is sequentially consistent and creates happens-before edges that order normal (non-atomic) loads and stores.

Inputs:

  • MemFlags: Memory operation flags
  • x: Value to be atomically stored
  • p: An integer address type

A memory fence. This must provide ordering to ensure that, at a minimum, neither loads nor stores of any kind may move forwards or backwards across the fence. This operation is sequentially consistent.

Return a fixed length sub vector, extracted from a dynamic vector.

Inputs:

  • x: The dynamic vector to extract from
  • y: 128-bit vector index

Outputs:

  • a: New fixed vector

AtomicCas(imms=(flags: ir::MemFlags), vals=3)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 4064)
4061
4062
4063
4064
4065
4066
    fn atomic_cas<T1: Into<ir::MemFlags>>(self, MemFlags: T1, p: ir::Value, e: ir::Value, x: ir::Value) -> Value {
        let MemFlags = MemFlags.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.AtomicCas(Opcode::AtomicCas, ctrl_typevar, MemFlags, p, e, x);
        dfg.first_result(inst)
    }

AtomicRmw(imms=(flags: ir::MemFlags, op: ir::AtomicRmwOp), vals=2)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 4037)
4034
4035
4036
4037
4038
4039
    fn atomic_rmw<T1: Into<ir::MemFlags>, T2: Into<ir::AtomicRmwOp>>(self, AtomicMem: crate::ir::Type, MemFlags: T1, AtomicRmwOp: T2, p: ir::Value, x: ir::Value) -> Value {
        let MemFlags = MemFlags.into();
        let AtomicRmwOp = AtomicRmwOp.into();
        let (inst, dfg) = self.AtomicRmw(Opcode::AtomicRmw, AtomicMem, MemFlags, AtomicRmwOp, p, x);
        dfg.first_result(inst)
    }

Binary(imms=(), vals=2)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 308)
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
    fn swizzle(self, TxN: crate::ir::Type, x: ir::Value, y: ir::Value) -> Value {
        let (inst, dfg) = self.Binary(Opcode::Swizzle, TxN, x, y);
        dfg.first_result(inst)
    }

    /// Insert ``y`` as lane ``Idx`` in x.
    ///
    /// The lane index, ``Idx``, is an immediate value, not an SSA value. It
    /// must indicate a valid lane index for the type of ``x``.
    ///
    /// Inputs:
    ///
    /// - x: The vector to modify
    /// - y: New lane value
    /// - Idx: Lane index
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type
    #[allow(non_snake_case)]
    fn insertlane<T1: Into<ir::immediates::Uimm8>>(self, x: ir::Value, y: ir::Value, Idx: T1) -> Value {
        let Idx = Idx.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.TernaryImm8(Opcode::Insertlane, ctrl_typevar, Idx, x, y);
        dfg.first_result(inst)
    }

    /// Extract lane ``Idx`` from ``x``.
    ///
    /// The lane index, ``Idx``, is an immediate value, not an SSA value. It
    /// must indicate a valid lane index for the type of ``x``. Note that the upper bits of ``a``
    /// may or may not be zeroed depending on the ISA but the type system should prevent using
    /// ``a`` as anything other than the extracted value.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type
    /// - Idx: Lane index
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn extractlane<T1: Into<ir::immediates::Uimm8>>(self, x: ir::Value, Idx: T1) -> Value {
        let Idx = Idx.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm8(Opcode::Extractlane, ctrl_typevar, Idx, x);
        dfg.first_result(inst)
    }

    /// Signed integer minimum.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn smin(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Smin, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer minimum.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn umin(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Umin, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer maximum.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn smax(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Smax, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer maximum.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn umax(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Umax, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned average with rounding: `a := (x + y + 1) // 2`
    ///
    /// The addition does not lose any information (such as from overflow).
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn avg_round(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::AvgRound, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Add with unsigned saturation.
    ///
    /// This is similar to `iadd` but the operands are interpreted as unsigned integers and their
    /// summed result, instead of wrapping, will be saturated to the highest unsigned integer for
    /// the controlling type (e.g. `0xFF` for i8).
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn uadd_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::UaddSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Add with signed saturation.
    ///
    /// This is similar to `iadd` but the operands are interpreted as signed integers and their
    /// summed result, instead of wrapping, will be saturated to the lowest or highest
    /// signed integer for the controlling type (e.g. `0x80` or `0x7F` for i8). For example,
    /// since an `sadd_sat.i8` of `0x70` and `0x70` is greater than `0x7F`, the result will be
    /// clamped to `0x7F`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn sadd_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::SaddSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Subtract with unsigned saturation.
    ///
    /// This is similar to `isub` but the operands are interpreted as unsigned integers and their
    /// difference, instead of wrapping, will be saturated to the lowest unsigned integer for
    /// the controlling type (e.g. `0x00` for i8).
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn usub_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::UsubSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Subtract with signed saturation.
    ///
    /// This is similar to `isub` but the operands are interpreted as signed integers and their
    /// difference, instead of wrapping, will be saturated to the lowest or highest
    /// signed integer for the controlling type (e.g. `0x80` or `0x7F` for i8).
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn ssub_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::SsubSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Load from memory at ``p + Offset``.
    ///
    /// This is a polymorphic instruction that can load any value type which
    /// has a memory representation.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn load<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, Mem: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Load, Mem, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store ``x`` to memory at ``p + Offset``.
    ///
    /// This is a polymorphic instruction that can store any value type with a
    /// memory representation.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: Value to be stored
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn store<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Store, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 8 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i8`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - iExt8 (controlling type variable): An integer type with more than 8 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 8 bits
    #[allow(non_snake_case)]
    fn uload8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt8: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Uload8, iExt8, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 8 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i8`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - iExt8 (controlling type variable): An integer type with more than 8 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 8 bits
    #[allow(non_snake_case)]
    fn sload8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt8: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Sload8, iExt8, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 8 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i8`` followed by ``store.i8``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 8 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore8, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 16 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i16`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - iExt16 (controlling type variable): An integer type with more than 16 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 16 bits
    #[allow(non_snake_case)]
    fn uload16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt16: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Uload16, iExt16, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 16 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i16`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - iExt16 (controlling type variable): An integer type with more than 16 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 16 bits
    #[allow(non_snake_case)]
    fn sload16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt16: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Sload16, iExt16, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 16 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i16`` followed by ``store.i16``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 16 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore16, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 32 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i32`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 32 bits
    #[allow(non_snake_case)]
    fn uload32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload32, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 32 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i32`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 32 bits
    #[allow(non_snake_case)]
    fn sload32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload32, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 32 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i32`` followed by ``store.i32``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 32 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore32, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load an 8x8 vector (64 bits) from memory at ``p + Offset`` and zero-extend into an i16x8
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn uload8x8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload8x8, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load an 8x8 vector (64 bits) from memory at ``p + Offset`` and sign-extend into an i16x8
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn sload8x8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload8x8, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a 16x4 vector (64 bits) from memory at ``p + Offset`` and zero-extend into an i32x4
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn uload16x4<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload16x4, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a 16x4 vector (64 bits) from memory at ``p + Offset`` and sign-extend into an i32x4
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn sload16x4<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload16x4, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load an 32x2 vector (64 bits) from memory at ``p + Offset`` and zero-extend into an i64x2
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn uload32x2<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload32x2, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a 32x2 vector (64 bits) from memory at ``p + Offset`` and sign-extend into an i64x2
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn sload32x2<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload32x2, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a value from a stack slot at the constant offset.
    ///
    /// This is a polymorphic instruction that can load any value type which
    /// has a memory representation.
    ///
    /// The offset is an immediate constant, not an SSA value. The memory
    /// access cannot go out of bounds, i.e.
    /// `sizeof(a) + Offset <= sizeof(SS)`.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - SS: A stack slot
    /// - Offset: In-bounds offset into stack slot
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn stack_load<T1: Into<ir::immediates::Offset32>>(self, Mem: crate::ir::Type, SS: ir::StackSlot, Offset: T1) -> Value {
        let Offset = Offset.into();
        let (inst, dfg) = self.StackLoad(Opcode::StackLoad, Mem, SS, Offset);
        dfg.first_result(inst)
    }

    /// Store a value to a stack slot at a constant offset.
    ///
    /// This is a polymorphic instruction that can store any value type with a
    /// memory representation.
    ///
    /// The offset is an immediate constant, not an SSA value. The memory
    /// access cannot go out of bounds, i.e.
    /// `sizeof(a) + Offset <= sizeof(SS)`.
    ///
    /// Inputs:
    ///
    /// - x: Value to be stored
    /// - SS: A stack slot
    /// - Offset: In-bounds offset into stack slot
    #[allow(non_snake_case)]
    fn stack_store<T1: Into<ir::immediates::Offset32>>(self, x: ir::Value, SS: ir::StackSlot, Offset: T1) -> Inst {
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.StackStore(Opcode::StackStore, ctrl_typevar, SS, Offset, x).0
    }

    /// Get the address of a stack slot.
    ///
    /// Compute the absolute address of a byte in a stack slot. The offset must
    /// refer to a byte inside the stack slot:
    /// `0 <= Offset < sizeof(SS)`.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - SS: A stack slot
    /// - Offset: In-bounds offset into stack slot
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn stack_addr<T1: Into<ir::immediates::Offset32>>(self, iAddr: crate::ir::Type, SS: ir::StackSlot, Offset: T1) -> Value {
        let Offset = Offset.into();
        let (inst, dfg) = self.StackLoad(Opcode::StackAddr, iAddr, SS, Offset);
        dfg.first_result(inst)
    }

    /// Load a value from a dynamic stack slot.
    ///
    /// This is a polymorphic instruction that can load any value type which
    /// has a memory representation.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - DSS: A dynamic stack slot
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn dynamic_stack_load(self, Mem: crate::ir::Type, DSS: ir::DynamicStackSlot) -> Value {
        let (inst, dfg) = self.DynamicStackLoad(Opcode::DynamicStackLoad, Mem, DSS);
        dfg.first_result(inst)
    }

    /// Store a value to a dynamic stack slot.
    ///
    /// This is a polymorphic instruction that can store any dynamic value type with a
    /// memory representation.
    ///
    /// Inputs:
    ///
    /// - x: Value to be stored
    /// - DSS: A dynamic stack slot
    #[allow(non_snake_case)]
    fn dynamic_stack_store(self, x: ir::Value, DSS: ir::DynamicStackSlot) -> Inst {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.DynamicStackStore(Opcode::DynamicStackStore, ctrl_typevar, DSS, x).0
    }

    /// Get the address of a dynamic stack slot.
    ///
    /// Compute the absolute address of the first byte of a dynamic stack slot.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - DSS: A dynamic stack slot
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn dynamic_stack_addr(self, iAddr: crate::ir::Type, DSS: ir::DynamicStackSlot) -> Value {
        let (inst, dfg) = self.DynamicStackLoad(Opcode::DynamicStackAddr, iAddr, DSS);
        dfg.first_result(inst)
    }

    /// Compute the value of global GV.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - GV: A global value.
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn global_value(self, Mem: crate::ir::Type, GV: ir::GlobalValue) -> Value {
        let (inst, dfg) = self.UnaryGlobalValue(Opcode::GlobalValue, Mem, GV);
        dfg.first_result(inst)
    }

    /// Compute the value of global GV, which is a symbolic value.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - GV: A global value.
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn symbol_value(self, Mem: crate::ir::Type, GV: ir::GlobalValue) -> Value {
        let (inst, dfg) = self.UnaryGlobalValue(Opcode::SymbolValue, Mem, GV);
        dfg.first_result(inst)
    }

    /// Compute the value of global GV, which is a TLS (thread local storage) value.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - GV: A global value.
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn tls_value(self, Mem: crate::ir::Type, GV: ir::GlobalValue) -> Value {
        let (inst, dfg) = self.UnaryGlobalValue(Opcode::TlsValue, Mem, GV);
        dfg.first_result(inst)
    }

    /// Bounds check and compute absolute address of ``index + Offset`` in heap memory.
    ///
    /// Verify that the range ``index .. index + Offset + Size`` is in bounds for the
    /// heap ``H``, and generate an absolute address that is safe to dereference.
    ///
    /// 1. If ``index + Offset + Size`` is less than or equal ot the heap bound, return an
    ///    absolute address corresponding to a byte offset of ``index + Offset`` from the
    ///    heap's base address.
    ///
    /// 2. If ``index + Offset + Size`` is greater than the heap bound, return the
    ///    ``NULL`` pointer or any other address that is guaranteed to generate a trap
    ///    when accessed.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - H: A heap.
    /// - index: An unsigned heap offset
    /// - Offset: Static offset immediate in bytes
    /// - Size: Static size immediate in bytes
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn heap_addr<T1: Into<ir::immediates::Uimm32>, T2: Into<ir::immediates::Uimm8>>(self, iAddr: crate::ir::Type, H: ir::Heap, index: ir::Value, Offset: T1, Size: T2) -> Value {
        let Offset = Offset.into();
        let Size = Size.into();
        let (inst, dfg) = self.HeapAddr(Opcode::HeapAddr, iAddr, H, Offset, Size, index);
        dfg.first_result(inst)
    }

    /// Load a value from the given heap at address ``index + offset``,
    /// trapping on out-of-bounds accesses.
    ///
    /// Checks that ``index + offset .. index + offset + sizeof(a)`` is
    /// within the heap's bounds, trapping if it is not. Otherwise, when
    /// that range is in bounds, loads the value from the heap.
    ///
    /// Traps on ``index + offset + sizeof(a)`` overflow.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - heap_imm: Reference to out-of-line heap access immediates
    /// - index: Dynamic index (in bytes) into the heap
    ///
    /// Outputs:
    ///
    /// - a: The value loaded from the heap
    #[allow(non_snake_case)]
    fn heap_load<T1: Into<ir::HeapImm>>(self, Mem: crate::ir::Type, heap_imm: T1, index: ir::Value) -> Value {
        let heap_imm = heap_imm.into();
        let (inst, dfg) = self.HeapLoad(Opcode::HeapLoad, Mem, heap_imm, index);
        dfg.first_result(inst)
    }

    /// Store ``a`` into the given heap at address ``index + offset``,
    /// trapping on out-of-bounds accesses.
    ///
    /// Checks that ``index + offset .. index + offset + sizeof(a)`` is
    /// within the heap's bounds, trapping if it is not. Otherwise, when
    /// that range is in bounds, stores the value into the heap.
    ///
    /// Traps on ``index + offset + sizeof(a)`` overflow.
    ///
    /// Inputs:
    ///
    /// - heap_imm: Reference to out-of-line heap access immediates
    /// - index: Dynamic index (in bytes) into the heap
    /// - a: The value stored into the heap
    #[allow(non_snake_case)]
    fn heap_store<T1: Into<ir::HeapImm>>(self, heap_imm: T1, index: ir::Value, a: ir::Value) -> Inst {
        let heap_imm = heap_imm.into();
        let ctrl_typevar = self.data_flow_graph().value_type(index);
        self.HeapStore(Opcode::HeapStore, ctrl_typevar, heap_imm, index, a).0
    }

    /// Gets the content of the pinned register, when it's enabled.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn get_pinned_reg(self, iAddr: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::GetPinnedReg, iAddr);
        dfg.first_result(inst)
    }

    /// Sets the content of the pinned register, when it's enabled.
    ///
    /// Inputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn set_pinned_reg(self, addr: ir::Value) -> Inst {
        let ctrl_typevar = self.data_flow_graph().value_type(addr);
        self.Unary(Opcode::SetPinnedReg, ctrl_typevar, addr).0
    }

    /// Get the address in the frame pointer register.
    ///
    /// Usage of this instruction requires setting `preserve_frame_pointers` to `true`.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn get_frame_pointer(self, iAddr: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::GetFramePointer, iAddr);
        dfg.first_result(inst)
    }

    /// Get the address in the stack pointer register.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn get_stack_pointer(self, iAddr: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::GetStackPointer, iAddr);
        dfg.first_result(inst)
    }

    /// Get the PC where this function will transfer control to when it returns.
    ///
    /// Usage of this instruction requires setting `preserve_frame_pointers` to `true`.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn get_return_address(self, iAddr: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::GetReturnAddress, iAddr);
        dfg.first_result(inst)
    }

    /// Bounds check and compute absolute address of a table entry.
    ///
    /// Verify that the offset ``p`` is in bounds for the table T, and generate
    /// an absolute address that is safe to dereference.
    ///
    /// ``Offset`` must be less than the size of a table element.
    ///
    /// 1. If ``p`` is not greater than the table bound, return an absolute
    ///    address corresponding to a byte offset of ``p`` from the table's
    ///    base address.
    /// 2. If ``p`` is greater than the table bound, generate a trap.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - T: A table.
    /// - p: An unsigned table offset
    /// - Offset: Byte offset from element address
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn table_addr<T1: Into<ir::immediates::Offset32>>(self, iAddr: crate::ir::Type, T: ir::Table, p: ir::Value, Offset: T1) -> Value {
        let Offset = Offset.into();
        let (inst, dfg) = self.TableAddr(Opcode::TableAddr, iAddr, T, Offset, p);
        dfg.first_result(inst)
    }

    /// Integer constant.
    ///
    /// Create a scalar integer SSA value with an immediate constant value, or
    /// an integer vector where all the lanes have the same value.
    ///
    /// Inputs:
    ///
    /// - NarrowInt (controlling type variable): An integer type with lanes type to `i64`
    /// - N: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A constant integer scalar or vector value
    #[allow(non_snake_case)]
    fn iconst<T1: Into<ir::immediates::Imm64>>(self, NarrowInt: crate::ir::Type, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryImm(Opcode::Iconst, NarrowInt, N);
        dfg.first_result(inst)
    }

    /// Floating point constant.
    ///
    /// Create a `f32` SSA value with an immediate constant value.
    ///
    /// Inputs:
    ///
    /// - N: A 32-bit immediate floating point number.
    ///
    /// Outputs:
    ///
    /// - a: A constant f32 scalar value
    #[allow(non_snake_case)]
    fn f32const<T1: Into<ir::immediates::Ieee32>>(self, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryIeee32(Opcode::F32const, types::INVALID, N);
        dfg.first_result(inst)
    }

    /// Floating point constant.
    ///
    /// Create a `f64` SSA value with an immediate constant value.
    ///
    /// Inputs:
    ///
    /// - N: A 64-bit immediate floating point number.
    ///
    /// Outputs:
    ///
    /// - a: A constant f64 scalar value
    #[allow(non_snake_case)]
    fn f64const<T1: Into<ir::immediates::Ieee64>>(self, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryIeee64(Opcode::F64const, types::INVALID, N);
        dfg.first_result(inst)
    }

    /// SIMD vector constant.
    ///
    /// Construct a vector with the given immediate bytes.
    ///
    /// Inputs:
    ///
    /// - TxN (controlling type variable): A SIMD vector type
    /// - N: The 16 immediate bytes of a 128-bit vector
    ///
    /// Outputs:
    ///
    /// - a: A constant vector value
    #[allow(non_snake_case)]
    fn vconst<T1: Into<ir::Constant>>(self, TxN: crate::ir::Type, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryConst(Opcode::Vconst, TxN, N);
        dfg.first_result(inst)
    }

    /// SIMD vector shuffle.
    ///
    /// Shuffle two vectors using the given immediate bytes. For each of the 16 bytes of the
    /// immediate, a value i of 0-15 selects the i-th element of the first vector and a value i of
    /// 16-31 selects the (i-16)th element of the second vector. Immediate values outside of the
    /// 0-31 range place a 0 in the resulting vector lane.
    ///
    /// Inputs:
    ///
    /// - a: A vector value
    /// - b: A vector value
    /// - mask: The 16 immediate bytes used for selecting the elements to shuffle
    ///
    /// Outputs:
    ///
    /// - a: A vector value
    #[allow(non_snake_case)]
    fn shuffle<T1: Into<ir::Immediate>>(self, a: ir::Value, b: ir::Value, mask: T1) -> Value {
        let mask = mask.into();
        let (inst, dfg) = self.Shuffle(Opcode::Shuffle, types::INVALID, mask, a, b);
        dfg.first_result(inst)
    }

    /// Null constant value for reference types.
    ///
    /// Create a scalar reference SSA value with a constant null value.
    ///
    /// Inputs:
    ///
    /// - Ref (controlling type variable): A scalar reference type
    ///
    /// Outputs:
    ///
    /// - a: A constant reference null value
    #[allow(non_snake_case)]
    fn null(self, Ref: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::Null, Ref);
        dfg.first_result(inst)
    }

    /// Just a dummy instruction.
    ///
    /// Note: this doesn't compile to a machine code nop.
    #[allow(non_snake_case)]
    fn nop(self) -> Inst {
        self.NullAry(Opcode::Nop, types::INVALID).0
    }

    /// Conditional select.
    ///
    /// This instruction selects whole values. Use `vselect` for
    /// lane-wise selection.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - x: Value to use when `c` is true
    /// - y: Value to use when `c` is false
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or reference scalar or vector type
    #[allow(non_snake_case)]
    fn select(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::Select, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Conditional select intended for Spectre guards.
    ///
    /// This operation is semantically equivalent to a select instruction.
    /// However, it is guaranteed to not be removed or otherwise altered by any
    /// optimization pass, and is guaranteed to result in a conditional-move
    /// instruction, not a branch-based lowering.  As such, it is suitable
    /// for use when producing Spectre guards. For example, a bounds-check
    /// may guard against unsafe speculation past a bounds-check conditional
    /// branch by passing the address or index to be accessed through a
    /// conditional move, also gated on the same condition. Because no
    /// Spectre-vulnerable processors are known to perform speculation on
    /// conditional move instructions, this is guaranteed to pick the
    /// correct input. If the selected input in case of overflow is a "safe"
    /// value, for example a null pointer that causes an exception in the
    /// speculative path, this ensures that no Spectre vulnerability will
    /// exist.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - x: Value to use when `c` is true
    /// - y: Value to use when `c` is false
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or reference scalar or vector type
    #[allow(non_snake_case)]
    fn select_spectre_guard(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::SelectSpectreGuard, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Conditional select of bits.
    ///
    /// For each bit in `c`, this instruction selects the corresponding bit from `x` if the bit
    /// in `c` is 1 and the corresponding bit from `y` if the bit in `c` is 0. See also:
    /// `select`, `vselect`.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - x: Value to use when `c` is true
    /// - y: Value to use when `c` is false
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or reference scalar or vector type
    #[allow(non_snake_case)]
    fn bitselect(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::Bitselect, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Split a vector into two halves.
    ///
    /// Split the vector `x` into two separate values, each containing half of
    /// the lanes from ``x``. The result may be two scalars if ``x`` only had
    /// two lanes.
    ///
    /// Inputs:
    ///
    /// - x: Vector to split
    ///
    /// Outputs:
    ///
    /// - lo: Low-numbered lanes of `x`
    /// - hi: High-numbered lanes of `x`
    #[allow(non_snake_case)]
    fn vsplit(self, x: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Vsplit, ctrl_typevar, x);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Vector concatenation.
    ///
    /// Return a vector formed by concatenating ``x`` and ``y``. The resulting
    /// vector type has twice as many lanes as each of the inputs. The lanes of
    /// ``x`` appear as the low-numbered lanes, and the lanes of ``y`` become
    /// the high-numbered lanes of ``a``.
    ///
    /// It is possible to form a vector by concatenating two scalars.
    ///
    /// Inputs:
    ///
    /// - x: Low-numbered lanes
    /// - y: High-numbered lanes
    ///
    /// Outputs:
    ///
    /// - a: Concatenation of `x` and `y`
    #[allow(non_snake_case)]
    fn vconcat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Vconcat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Vector lane select.
    ///
    /// Select lanes from ``x`` or ``y`` controlled by the lanes of the truthy
    /// vector ``c``.
    ///
    /// Inputs:
    ///
    /// - c: Controlling vector
    /// - x: Value to use where `c` is true
    /// - y: Value to use where `c` is false
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type
    #[allow(non_snake_case)]
    fn vselect(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::Vselect, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Reduce a vector to a scalar boolean.
    ///
    /// Return a scalar boolean true if any lane in ``a`` is non-zero, false otherwise.
    ///
    /// Inputs:
    ///
    /// - a: A SIMD vector type
    ///
    /// Outputs:
    ///
    /// - s: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn vany_true(self, a: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(a);
        let (inst, dfg) = self.Unary(Opcode::VanyTrue, ctrl_typevar, a);
        dfg.first_result(inst)
    }

    /// Reduce a vector to a scalar boolean.
    ///
    /// Return a scalar boolean true if all lanes in ``i`` are non-zero, false otherwise.
    ///
    /// Inputs:
    ///
    /// - a: A SIMD vector type
    ///
    /// Outputs:
    ///
    /// - s: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn vall_true(self, a: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(a);
        let (inst, dfg) = self.Unary(Opcode::VallTrue, ctrl_typevar, a);
        dfg.first_result(inst)
    }

    /// Reduce a vector to a scalar integer.
    ///
    /// Return a scalar integer, consisting of the concatenation of the most significant bit
    /// of each lane of ``a``.
    ///
    /// Inputs:
    ///
    /// - Int (controlling type variable): A scalar or vector integer type
    /// - a: A SIMD vector type
    ///
    /// Outputs:
    ///
    /// - x: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn vhigh_bits(self, Int: crate::ir::Type, a: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::VhighBits, Int, a);
        dfg.first_result(inst)
    }

    /// Integer comparison.
    ///
    /// The condition code determines if the operands are interpreted as signed
    /// or unsigned integers.
    ///
    /// | Signed | Unsigned | Condition             |
    /// |--------|----------|-----------------------|
    /// | eq     | eq       | Equal                 |
    /// | ne     | ne       | Not equal             |
    /// | slt    | ult      | Less than             |
    /// | sge    | uge      | Greater than or equal |
    /// | sgt    | ugt      | Greater than          |
    /// | sle    | ule      | Less than or equal    |
    ///
    /// When this instruction compares integer vectors, it returns a vector of
    /// lane-wise comparisons.
    ///
    /// Inputs:
    ///
    /// - Cond: An integer comparison condition code.
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn icmp<T1: Into<ir::condcodes::IntCC>>(self, Cond: T1, x: ir::Value, y: ir::Value) -> Value {
        let Cond = Cond.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntCompare(Opcode::Icmp, ctrl_typevar, Cond, x, y);
        dfg.first_result(inst)
    }

    /// Compare scalar integer to a constant.
    ///
    /// This is the same as the `icmp` instruction, except one operand is
    /// a sign extended 64 bit immediate constant.
    ///
    /// This instruction can only compare scalars. Use `icmp` for
    /// lane-wise vector comparisons.
    ///
    /// Inputs:
    ///
    /// - Cond: An integer comparison condition code.
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn icmp_imm<T1: Into<ir::condcodes::IntCC>, T2: Into<ir::immediates::Imm64>>(self, Cond: T1, x: ir::Value, Y: T2) -> Value {
        let Cond = Cond.into();
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntCompareImm(Opcode::IcmpImm, ctrl_typevar, Cond, Y, x);
        dfg.first_result(inst)
    }

    /// Compare scalar integers and return flags.
    ///
    /// Compare two scalar integer values and return integer CPU flags
    /// representing the result.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - f: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn ifcmp(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ifcmp, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Compare scalar integer to a constant and return flags.
    ///
    /// Like `icmp_imm`, but returns integer CPU flags instead of testing
    /// a specific condition code.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - f: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn ifcmp_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IfcmpImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Wrapping integer addition: `a := x + y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn iadd(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Iadd, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Wrapping integer subtraction: `a := x - y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn isub(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Isub, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Integer negation: `a := -x \pmod{2^B}`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ineg(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Ineg, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Integer absolute value with wrapping: `a := |x|`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn iabs(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Iabs, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Wrapping integer multiplication: `a := x y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn imul(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Imul, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer multiplication, producing the high half of a
    /// double-length result.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn umulhi(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Umulhi, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer multiplication, producing the high half of a
    /// double-length result.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn smulhi(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Smulhi, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Fixed-point multiplication of numbers in the QN format, where N + 1
    /// is the number bitwidth:
    /// `a := signed_saturate((x * y + 1 << (Q - 1)) >> Q)`
    ///
    /// Polymorphic over all integer types (scalar and vector) with 16- or
    /// 32-bit numbers.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type with 16- or 32-bit numbers
    /// - y: A scalar or vector integer type with 16- or 32-bit numbers
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type with 16- or 32-bit numbers
    #[allow(non_snake_case)]
    fn sqmul_round_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::SqmulRoundSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer division: `a := \lfloor {x \over y} \rfloor`.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn udiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Udiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer division rounded toward zero: `a := sign(xy)
    /// \lfloor {|x| \over |y|}\rfloor`.
    ///
    /// This operation traps if the divisor is zero, or if the result is not
    /// representable in `B` bits two's complement. This only happens
    /// when `x = -2^{B-1}, y = -1`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn sdiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Sdiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer remainder.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn urem(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Urem, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer remainder. The result has the sign of the dividend.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn srem(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Srem, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Add immediate integer.
    ///
    /// Same as `iadd`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IaddImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Integer multiplication by immediate constant.
    ///
    /// Same as `imul`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn imul_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::ImulImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned integer division by an immediate constant.
    ///
    /// Same as `udiv`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn udiv_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UdivImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed integer division by an immediate constant.
    ///
    /// Same as `sdiv`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero, or if the result is not
    /// representable in `B` bits two's complement. This only happens
    /// when `x = -2^{B-1}, Y = -1`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn sdiv_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SdivImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned integer remainder with immediate divisor.
    ///
    /// Same as `urem`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn urem_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UremImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed integer remainder with immediate divisor.
    ///
    /// Same as `srem`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn srem_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SremImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Immediate reverse wrapping subtraction: `a := Y - x \pmod{2^B}`.
    ///
    /// The immediate operand is a sign extended 64 bit constant.
    ///
    /// Also works as integer negation when `Y = 0`. Use `iadd_imm`
    /// with a negative immediate operand for the reverse immediate
    /// subtraction.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn irsub_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IrsubImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Add integers with carry in.
    ///
    /// Same as `iadd` with an additional carry input. Computes:
    ///
    /// ```text
    ///     a = x + y + c_{in} \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: Input carry flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_cin(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddCin, ctrl_typevar, x, y, c_in);
        dfg.first_result(inst)
    }

    /// Add integers with carry in.
    ///
    /// Same as `iadd` with an additional carry flag input. Computes:
    ///
    /// ```text
    ///     a = x + y + c_{in} \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_ifcin(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddIfcin, ctrl_typevar, x, y, c_in);
        dfg.first_result(inst)
    }

    /// Add integers with carry out.
    ///
    /// Same as `iadd` with an additional carry output.
    ///
    /// ```text
    ///     a &= x + y \pmod 2^B \\
    ///     c_{out} &= x+y >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: Output carry flag
    #[allow(non_snake_case)]
    fn iadd_cout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddCout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry out.
    ///
    /// Same as `iadd` with an additional carry flag output.
    ///
    /// ```text
    ///     a &= x + y \pmod 2^B \\
    ///     c_{out} &= x+y >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn iadd_ifcout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddIfcout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry in and out.
    ///
    /// Same as `iadd` with an additional carry input and output.
    ///
    /// ```text
    ///     a &= x + y + c_{in} \pmod 2^B \\
    ///     c_{out} &= x + y + c_{in} >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: Input carry flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: Output carry flag
    #[allow(non_snake_case)]
    fn iadd_carry(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddCarry, ctrl_typevar, x, y, c_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry in and out.
    ///
    /// Same as `iadd` with an additional carry flag input and output.
    ///
    /// ```text
    ///     a &= x + y + c_{in} \pmod 2^B \\
    ///     c_{out} &= x + y + c_{in} >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn iadd_ifcarry(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddIfcarry, ctrl_typevar, x, y, c_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Unsigned addition of x and y, trapping if the result overflows.
    ///
    /// Accepts 32 or 64-bit integers, and does not support vector types.
    ///
    /// Inputs:
    ///
    /// - x: A 32 or 64-bit scalar integer type
    /// - y: A 32 or 64-bit scalar integer type
    /// - code: A trap reason code.
    ///
    /// Outputs:
    ///
    /// - a: A 32 or 64-bit scalar integer type
    #[allow(non_snake_case)]
    fn uadd_overflow_trap<T1: Into<ir::TrapCode>>(self, x: ir::Value, y: ir::Value, code: T1) -> Value {
        let code = code.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntAddTrap(Opcode::UaddOverflowTrap, ctrl_typevar, code, x, y);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow in.
    ///
    /// Same as `isub` with an additional borrow flag input. Computes:
    ///
    /// ```text
    ///     a = x - (y + b_{in}) \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: Input borrow flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn isub_bin(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubBin, ctrl_typevar, x, y, b_in);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow in.
    ///
    /// Same as `isub` with an additional borrow flag input. Computes:
    ///
    /// ```text
    ///     a = x - (y + b_{in}) \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn isub_ifbin(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubIfbin, ctrl_typevar, x, y, b_in);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow out.
    ///
    /// Same as `isub` with an additional borrow flag output.
    ///
    /// ```text
    ///     a &= x - y \pmod 2^B \\
    ///     b_{out} &= x < y
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: Output borrow flag
    #[allow(non_snake_case)]
    fn isub_bout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IsubBout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow out.
    ///
    /// Same as `isub` with an additional borrow flag output.
    ///
    /// ```text
    ///     a &= x - y \pmod 2^B \\
    ///     b_{out} &= x < y
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn isub_ifbout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IsubIfbout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow in and out.
    ///
    /// Same as `isub` with an additional borrow flag input and output.
    ///
    /// ```text
    ///     a &= x - (y + b_{in}) \pmod 2^B \\
    ///     b_{out} &= x < y + b_{in}
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: Input borrow flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: Output borrow flag
    #[allow(non_snake_case)]
    fn isub_borrow(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubBorrow, ctrl_typevar, x, y, b_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow in and out.
    ///
    /// Same as `isub` with an additional borrow flag input and output.
    ///
    /// ```text
    ///     a &= x - (y + b_{in}) \pmod 2^B \\
    ///     b_{out} &= x < y + b_{in}
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn isub_ifborrow(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubIfborrow, ctrl_typevar, x, y, b_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Bitwise and.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn band(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Band, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise or.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bor(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Bor, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise xor.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bxor(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Bxor, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise not.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bnot(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Bnot, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Bitwise and not.
    ///
    /// Computes `x & ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn band_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BandNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise or not.
    ///
    /// Computes `x | ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bor_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BorNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise xor not.
    ///
    /// Computes `x ^ ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bxor_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BxorNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise and with immediate.
    ///
    /// Same as `band`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn band_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BandImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Bitwise or with immediate.
    ///
    /// Same as `bor`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bor_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BorImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Bitwise xor with immediate.
    ///
    /// Same as `bxor`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bxor_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BxorImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Rotate left.
    ///
    /// Rotate the bits in ``x`` by ``y`` places.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotl(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Rotl, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Rotate right.
    ///
    /// Rotate the bits in ``x`` by ``y`` places.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Rotr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Rotate left by immediate.
    ///
    /// Same as `rotl`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotl_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::RotlImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Rotate right by immediate.
    ///
    /// Same as `rotr`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::RotrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Integer shift left. Shift the bits in ``x`` towards the MSB by ``y``
    /// places. Shift in zero bits to the LSB.
    ///
    /// The shift amount is masked to the size of ``x``.
    ///
    /// When shifting a B-bits integer type, this instruction computes:
    ///
    /// ```text
    ///     s &:= y \pmod B,
    ///     a &:= x \cdot 2^s \pmod{2^B}.
    /// ```
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ishl(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ishl, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned shift right. Shift bits in ``x`` towards the LSB by ``y``
    /// places, shifting in zero bits to the MSB. Also called a *logical
    /// shift*.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// When shifting a B-bits integer type, this instruction computes:
    ///
    /// ```text
    ///     s &:= y \pmod B,
    ///     a &:= \lfloor x \cdot 2^{-s} \rfloor.
    /// ```
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ushr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ushr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed shift right. Shift bits in ``x`` towards the LSB by ``y``
    /// places, shifting in sign bits to the MSB. Also called an *arithmetic
    /// shift*.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn sshr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Sshr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Integer shift left by immediate.
    ///
    /// The shift amount is masked to the size of ``x``.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ishl_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IshlImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned shift right by immediate.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ushr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UshrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed shift right by immediate.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn sshr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SshrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Reverse the bits of a integer.
    ///
    /// Reverses the bits in ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bitrev(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Bitrev, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Count leading zero bits.
    ///
    /// Starting from the MSB in ``x``, count the number of zero bits before
    /// reaching the first one bit. When ``x`` is zero, returns the size of x
    /// in bits.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn clz(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Clz, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Count leading sign bits.
    ///
    /// Starting from the MSB after the sign bit in ``x``, count the number of
    /// consecutive bits identical to the sign bit. When ``x`` is 0 or -1,
    /// returns one less than the size of x in bits.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn cls(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Cls, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Count trailing zeros.
    ///
    /// Starting from the LSB in ``x``, count the number of zero bits before
    /// reaching the first one bit. When ``x`` is zero, returns the size of x
    /// in bits.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn ctz(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Ctz, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reverse the byte order of an integer.
    ///
    /// Reverses the bytes in ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A multi byte scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A multi byte scalar integer type
    #[allow(non_snake_case)]
    fn bswap(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Bswap, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Population count
    ///
    /// Count the number of one bits in ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn popcnt(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Popcnt, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point comparison.
    ///
    /// Two IEEE 754-2008 floating point numbers, `x` and `y`, relate to each
    /// other in exactly one of four ways:
    ///
    /// ```text
    /// == ==========================================
    /// UN Unordered when one or both numbers is NaN.
    /// EQ When `x = y`. (And `0.0 = -0.0`).
    /// LT When `x < y`.
    /// GT When `x > y`.
    /// == ==========================================
    /// ```
    ///
    /// The 14 `floatcc` condition codes each correspond to a subset of
    /// the four relations, except for the empty set which would always be
    /// false, and the full set which would always be true.
    ///
    /// The condition codes are divided into 7 'ordered' conditions which don't
    /// include UN, and 7 unordered conditions which all include UN.
    ///
    /// ```text
    /// +-------+------------+---------+------------+-------------------------+
    /// |Ordered             |Unordered             |Condition                |
    /// +=======+============+=========+============+=========================+
    /// |ord    |EQ | LT | GT|uno      |UN          |NaNs absent / present.   |
    /// +-------+------------+---------+------------+-------------------------+
    /// |eq     |EQ          |ueq      |UN | EQ     |Equal                    |
    /// +-------+------------+---------+------------+-------------------------+
    /// |one    |LT | GT     |ne       |UN | LT | GT|Not equal                |
    /// +-------+------------+---------+------------+-------------------------+
    /// |lt     |LT          |ult      |UN | LT     |Less than                |
    /// +-------+------------+---------+------------+-------------------------+
    /// |le     |LT | EQ     |ule      |UN | LT | EQ|Less than or equal       |
    /// +-------+------------+---------+------------+-------------------------+
    /// |gt     |GT          |ugt      |UN | GT     |Greater than             |
    /// +-------+------------+---------+------------+-------------------------+
    /// |ge     |GT | EQ     |uge      |UN | GT | EQ|Greater than or equal    |
    /// +-------+------------+---------+------------+-------------------------+
    /// ```
    ///
    /// The standard C comparison operators, `<, <=, >, >=`, are all ordered,
    /// so they are false if either operand is NaN. The C equality operator,
    /// `==`, is ordered, and since inequality is defined as the logical
    /// inverse it is *unordered*. They map to the `floatcc` condition
    /// codes as follows:
    ///
    /// ```text
    /// ==== ====== ============
    /// C    `Cond` Subset
    /// ==== ====== ============
    /// `==` eq     EQ
    /// `!=` ne     UN | LT | GT
    /// `<`  lt     LT
    /// `<=` le     LT | EQ
    /// `>`  gt     GT
    /// `>=` ge     GT | EQ
    /// ==== ====== ============
    /// ```
    ///
    /// This subset of condition codes also corresponds to the WebAssembly
    /// floating point comparisons of the same name.
    ///
    /// When this instruction compares floating point vectors, it returns a
    /// vector with the results of lane-wise comparisons.
    ///
    /// Inputs:
    ///
    /// - Cond: A floating point comparison condition code
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn fcmp<T1: Into<ir::condcodes::FloatCC>>(self, Cond: T1, x: ir::Value, y: ir::Value) -> Value {
        let Cond = Cond.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.FloatCompare(Opcode::Fcmp, ctrl_typevar, Cond, x, y);
        dfg.first_result(inst)
    }

    /// Floating point comparison returning flags.
    ///
    /// Compares two numbers like `fcmp`, but returns floating point CPU
    /// flags instead of testing a specific condition.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - f: CPU flags representing the result of a floating point comparison. These
    /// flags can be tested with a :type:`floatcc` condition code.
    #[allow(non_snake_case)]
    fn ffcmp(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ffcmp, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point addition.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fadd(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fadd, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point subtraction.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fsub(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fsub, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point multiplication.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fmul(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fmul, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point division.
    ///
    /// Unlike the integer division instructions ` and
    /// `udiv`, this can't trap. Division by zero is infinity or
    /// NaN, depending on the dividend.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fdiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fdiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point square root.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn sqrt(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Sqrt, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point fused multiply-and-add.
    ///
    /// Computes `a := xy+z` without any intermediate rounding of the
    /// product.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    /// - z: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fma(self, x: ir::Value, y: ir::Value, z: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::Fma, ctrl_typevar, x, y, z);
        dfg.first_result(inst)
    }

    /// Floating point negation.
    ///
    /// Note that this is a pure bitwise operation.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` with its sign bit inverted
    #[allow(non_snake_case)]
    fn fneg(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Fneg, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point absolute value.
    ///
    /// Note that this is a pure bitwise operation.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` with its sign bit cleared
    #[allow(non_snake_case)]
    fn fabs(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Fabs, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point copy sign.
    ///
    /// Note that this is a pure bitwise operation. The sign bit from ``y`` is
    /// copied to the sign bit of ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` with its sign bit changed to that of ``y``
    #[allow(non_snake_case)]
    fn fcopysign(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fcopysign, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point minimum, propagating NaNs using the WebAssembly rules.
    ///
    /// If either operand is NaN, this returns NaN with an unspecified sign. Furthermore, if
    /// each input NaN consists of a mantissa whose most significant bit is 1 and the rest is
    /// 0, then the output has the same form. Otherwise, the output mantissa's most significant
    /// bit is 1 and the rest is unspecified.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: The smaller of ``x`` and ``y``
    #[allow(non_snake_case)]
    fn fmin(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fmin, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point pseudo-minimum, propagating NaNs.  This behaves differently from ``fmin``.
    /// See <https://github.com/WebAssembly/simd/pull/122> for background.
    ///
    /// The behaviour is defined as ``fmin_pseudo(a, b) = (b < a) ? b : a``, and the behaviour
    /// for zero or NaN inputs follows from the behaviour of ``<`` with such inputs.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: The smaller of ``x`` and ``y``
    #[allow(non_snake_case)]
    fn fmin_pseudo(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::FminPseudo, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point maximum, propagating NaNs using the WebAssembly rules.
    ///
    /// If either operand is NaN, this returns NaN with an unspecified sign. Furthermore, if
    /// each input NaN consists of a mantissa whose most significant bit is 1 and the rest is
    /// 0, then the output has the same form. Otherwise, the output mantissa's most significant
    /// bit is 1 and the rest is unspecified.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: The larger of ``x`` and ``y``
    #[allow(non_snake_case)]
    fn fmax(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fmax, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point pseudo-maximum, propagating NaNs.  This behaves differently from ``fmax``.
    /// See <https://github.com/WebAssembly/simd/pull/122> for background.
    ///
    /// The behaviour is defined as ``fmax_pseudo(a, b) = (a < b) ? b : a``, and the behaviour
    /// for zero or NaN inputs follows from the behaviour of ``<`` with such inputs.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: The larger of ``x`` and ``y``
    #[allow(non_snake_case)]
    fn fmax_pseudo(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::FmaxPseudo, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Round floating point round to integral, towards positive infinity.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` rounded to integral value
    #[allow(non_snake_case)]
    fn ceil(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Ceil, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Round floating point round to integral, towards negative infinity.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` rounded to integral value
    #[allow(non_snake_case)]
    fn floor(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Floor, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Round floating point round to integral, towards zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` rounded to integral value
    #[allow(non_snake_case)]
    fn trunc(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Trunc, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Round floating point round to integral, towards nearest with ties to
    /// even.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` rounded to integral value
    #[allow(non_snake_case)]
    fn nearest(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Nearest, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reference verification.
    ///
    /// The condition code determines if the reference type in question is
    /// null or not.
    ///
    /// Inputs:
    ///
    /// - x: A scalar reference type
    ///
    /// Outputs:
    ///
    /// - a: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn is_null(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::IsNull, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reference verification.
    ///
    /// The condition code determines if the reference type in question is
    /// invalid or not.
    ///
    /// Inputs:
    ///
    /// - x: A scalar reference type
    ///
    /// Outputs:
    ///
    /// - a: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn is_invalid(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::IsInvalid, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reinterpret the bits in `x` as a different type.
    ///
    /// The input and output types must be storable to memory and of the same
    /// size. A bitcast is equivalent to storing one type and loading the other
    /// type from the same address, both using the specified MemFlags.
    ///
    /// Note that this operation only supports the `big` or `little` MemFlags.
    /// The specified byte order only affects the result in the case where
    /// input and output types differ in lane count/size.  In this case, the
    /// operation is only valid if a byte order specifier is provided.
    ///
    /// Inputs:
    ///
    /// - MemTo (controlling type variable):
    /// - MemFlags: Memory operation flags
    /// - x: Any type that can be stored in memory
    ///
    /// Outputs:
    ///
    /// - a: Bits of `x` reinterpreted
    #[allow(non_snake_case)]
    fn bitcast<T1: Into<ir::MemFlags>>(self, MemTo: crate::ir::Type, MemFlags: T1, x: ir::Value) -> Value {
        let MemFlags = MemFlags.into();
        let (inst, dfg) = self.LoadNoOffset(Opcode::Bitcast, MemTo, MemFlags, x);
        dfg.first_result(inst)
    }

    /// Copies a scalar value to a vector value.  The scalar is copied into the
    /// least significant lane of the vector, and all other lanes will be zero.
    ///
    /// Inputs:
    ///
    /// - TxN (controlling type variable): A SIMD vector type
    /// - s: A scalar value
    ///
    /// Outputs:
    ///
    /// - a: A vector value
    #[allow(non_snake_case)]
    fn scalar_to_vector(self, TxN: crate::ir::Type, s: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::ScalarToVector, TxN, s);
        dfg.first_result(inst)
    }

    /// Convert `x` to an integer mask.
    ///
    /// True maps to all 1s and false maps to all 0s. The result type must have
    /// the same number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): An integer type with the same number of lanes
    /// - x: A scalar or vector whose values are truthy
    ///
    /// Outputs:
    ///
    /// - a: An integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn bmask(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Bmask, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a smaller integer type by discarding
    /// the most significant bits.
    ///
    /// This is the same as reducing modulo `2^n`.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A smaller integer type
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A smaller integer type
    #[allow(non_snake_case)]
    fn ireduce(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Ireduce, IntTo, x);
        dfg.first_result(inst)
    }

    /// Combine `x` and `y` into a vector with twice the lanes but half the integer width while
    /// saturating overflowing values to the signed maximum and minimum.
    ///
    /// The lanes will be concatenated after narrowing. For example, when `x` and `y` are `i32x4`
    /// and `x = [x3, x2, x1, x0]` and `y = [y3, y2, y1, y0]`, then after narrowing the value
    /// returned is an `i16x8`: `a = [y3', y2', y1', y0', x3', x2', x1', x0']`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    /// - y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn snarrow(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Snarrow, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Combine `x` and `y` into a vector with twice the lanes but half the integer width while
    /// saturating overflowing values to the unsigned maximum and minimum.
    ///
    /// Note that all input lanes are considered signed: any negative lanes will overflow and be
    /// replaced with the unsigned minimum, `0x00`.
    ///
    /// The lanes will be concatenated after narrowing. For example, when `x` and `y` are `i32x4`
    /// and `x = [x3, x2, x1, x0]` and `y = [y3, y2, y1, y0]`, then after narrowing the value
    /// returned is an `i16x8`: `a = [y3', y2', y1', y0', x3', x2', x1', x0']`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    /// - y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn unarrow(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Unarrow, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Combine `x` and `y` into a vector with twice the lanes but half the integer width while
    /// saturating overflowing values to the unsigned maximum and minimum.
    ///
    /// Note that all input lanes are considered unsigned: any negative values will be interpreted as unsigned, overflowing and being replaced with the unsigned maximum.
    ///
    /// The lanes will be concatenated after narrowing. For example, when `x` and `y` are `i32x4`
    /// and `x = [x3, x2, x1, x0]` and `y = [y3, y2, y1, y0]`, then after narrowing the value
    /// returned is an `i16x8`: `a = [y3', y2', y1', y0', x3', x2', x1', x0']`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    /// - y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn uunarrow(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Uunarrow, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Widen the low lanes of `x` using signed extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn swiden_low(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::SwidenLow, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Widen the high lanes of `x` using signed extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn swiden_high(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::SwidenHigh, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Widen the low lanes of `x` using unsigned extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn uwiden_low(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::UwidenLow, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Widen the high lanes of `x` using unsigned extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn uwiden_high(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::UwidenHigh, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Does lane-wise integer pairwise addition on two operands, putting the
    /// combined results into a single vector result. Here a pair refers to adjacent
    /// lanes in a vector, i.e. i*2 + (i*2+1) for i == num_lanes/2. The first operand
    /// pairwise add results will make up the low half of the resulting vector while
    /// the second operand pairwise add results will make up the upper half of the
    /// resulting vector.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    /// - y: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    #[allow(non_snake_case)]
    fn iadd_pairwise(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddPairwise, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Takes corresponding elements in `x` and `y`, performs a sign-extending length-doubling
    /// multiplication on them, then adds adjacent pairs of elements to form the result.  For
    /// example, if the input vectors are `[x3, x2, x1, x0]` and `[y3, y2, y1, y0]`, it produces
    /// the vector `[r1, r0]`, where `r1 = sx(x3) * sx(y3) + sx(x2) * sx(y2)` and
    /// `r0 = sx(x1) * sx(y1) + sx(x0) * sx(y0)`, and `sx(n)` sign-extends `n` to twice its width.
    ///
    /// This will double the lane width and halve the number of lanes.  So the resulting
    /// vector has the same number of bits as `x` and `y` do (individually).
    ///
    /// See <https://github.com/WebAssembly/simd/pull/127> for background info.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing 8 integer lanes each 16 bits wide.
    /// - y: A SIMD vector type containing 8 integer lanes each 16 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn widening_pairwise_dot_product_s(self, x: ir::Value, y: ir::Value) -> Value {
        let (inst, dfg) = self.Binary(Opcode::WideningPairwiseDotProductS, types::INVALID, x, y);
        dfg.first_result(inst)
    }

    /// Convert `x` to a larger integer type by zero-extending.
    ///
    /// Each lane in `x` is converted to a larger integer type by adding
    /// zeroes. The result has the same numerical value as `x` when both are
    /// interpreted as unsigned integers.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and each lane must not have fewer bits that the input lanes. If the
    /// input and output types are the same, this is a no-op.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn uextend(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Uextend, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a larger integer type by sign-extending.
    ///
    /// Each lane in `x` is converted to a larger integer type by replicating
    /// the sign bit. The result has the same numerical value as `x` when both
    /// are interpreted as signed integers.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and each lane must not have fewer bits that the input lanes. If the
    /// input and output types are the same, this is a no-op.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn sextend(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Sextend, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a larger floating point format.
    ///
    /// Each lane in `x` is converted to the destination floating point format.
    /// This is an exact operation.
    ///
    /// Cranelift currently only supports two floating point formats
    /// - `f32` and `f64`. This may change in the future.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and the result lanes must not have fewer bits than the input lanes.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fpromote(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Fpromote, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a smaller floating point format.
    ///
    /// Each lane in `x` is converted to the destination floating point format
    /// by rounding to nearest, ties to even.
    ///
    /// Cranelift currently only supports two floating point formats
    /// - `f32` and `f64`. This may change in the future.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and the result lanes must not have more bits than the input lanes.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fdemote(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Fdemote, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a smaller floating point format.
    ///
    /// Each lane in `x` is converted to the destination floating point format
    /// by rounding to nearest, ties to even.
    ///
    /// Cranelift currently only supports two floating point formats
    /// - `f32` and `f64`. This may change in the future.
    ///
    /// Fvdemote differs from fdemote in that with fvdemote it targets vectors.
    /// Fvdemote is constrained to having the input type being F64x2 and the result
    /// type being F32x4. The result lane that was the upper half of the input lane
    /// is initialized to zero.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type consisting of 2 lanes of 64-bit floats
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type consisting of 4 lanes of 32-bit floats
    #[allow(non_snake_case)]
    fn fvdemote(self, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Fvdemote, types::INVALID, x);
        dfg.first_result(inst)
    }

    /// Converts packed single precision floating point to packed double precision floating point.
    ///
    /// Considering only the lower half of the register, the low lanes in `x` are interpreted as
    /// single precision floats that are then converted to a double precision floats.
    ///
    /// The result type will have half the number of vector lanes as the input. Fvpromote_low is
    /// constrained to input F32x4 with a result type of F64x2.
    ///
    /// Inputs:
    ///
    /// - a: A SIMD vector type consisting of 4 lanes of 32-bit floats
    ///
    /// Outputs:
    ///
    /// - x: A SIMD vector type consisting of 2 lanes of 64-bit floats
    #[allow(non_snake_case)]
    fn fvpromote_low(self, a: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FvpromoteLow, types::INVALID, a);
        dfg.first_result(inst)
    }

    /// Converts floating point scalars to unsigned integer.
    ///
    /// Only operates on `x` if it is a scalar. If `x` is NaN or if
    /// the unsigned integral value cannot be represented in the result
    /// type, this instruction traps.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar only floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_uint(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToUint, IntTo, x);
        dfg.first_result(inst)
    }

    /// Converts floating point scalars to signed integer.
    ///
    /// Only operates on `x` if it is a scalar. If `x` is NaN or if
    /// the unsigned integral value cannot be represented in the result
    /// type, this instruction traps.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar only floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_sint(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToSint, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert floating point to unsigned integer as fcvt_to_uint does, but
    /// saturates the input instead of trapping. NaN and negative values are
    /// converted to 0.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_uint_sat(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToUintSat, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert floating point to signed integer as fcvt_to_sint does, but
    /// saturates the input instead of trapping. NaN values are converted to 0.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_sint_sat(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToSintSat, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert unsigned integer to floating point.
    ///
    /// Each lane in `x` is interpreted as an unsigned integer and converted to
    /// floating point using round to nearest, ties to even.
    ///
    /// The result type must have the same number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fcvt_from_uint(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtFromUint, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Convert signed integer to floating point.
    ///
    /// Each lane in `x` is interpreted as a signed integer and converted to
    /// floating point using round to nearest, ties to even.
    ///
    /// The result type must have the same number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fcvt_from_sint(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtFromSint, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Converts packed signed 32-bit integers to packed double precision floating point.
    ///
    /// Considering only the low half of the register, each lane in `x` is interpreted as a
    /// signed 32-bit integer that is then converted to a double precision float. This
    /// instruction differs from fcvt_from_sint in that it converts half the number of lanes
    /// which are converted to occupy twice the number of bits. No rounding should be needed
    /// for the resulting float.
    ///
    /// The result type will have half the number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fcvt_low_from_sint(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtLowFromSint, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Split an integer into low and high parts.
    ///
    /// Vectors of integers are split lane-wise, so the results have the same
    /// number of lanes as the input, but the lanes are half the size.
    ///
    /// Returns the low half of `x` and the high half of `x` as two independent
    /// values.
    ///
    /// Inputs:
    ///
    /// - x: An integer type with lanes from `i16` upwards
    ///
    /// Outputs:
    ///
    /// - lo: The low bits of `x`
    /// - hi: The high bits of `x`
    #[allow(non_snake_case)]
    fn isplit(self, x: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Isplit, ctrl_typevar, x);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Concatenate low and high bits to form a larger integer type.
    ///
    /// Vectors of integers are concatenated lane-wise such that the result has
    /// the same number of lanes as the inputs, but the lanes are twice the
    /// size.
    ///
    /// Inputs:
    ///
    /// - lo: An integer type with lanes type to `i64`
    /// - hi: An integer type with lanes type to `i64`
    ///
    /// Outputs:
    ///
    /// - a: The concatenation of `lo` and `hi`
    #[allow(non_snake_case)]
    fn iconcat(self, lo: ir::Value, hi: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(lo);
        let (inst, dfg) = self.Binary(Opcode::Iconcat, ctrl_typevar, lo, hi);
        dfg.first_result(inst)
    }

BinaryImm64(imms=(imm: ir::immediates::Imm64), vals=1)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 1657)
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
    fn ifcmp_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IfcmpImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Wrapping integer addition: `a := x + y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn iadd(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Iadd, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Wrapping integer subtraction: `a := x - y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn isub(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Isub, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Integer negation: `a := -x \pmod{2^B}`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ineg(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Ineg, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Integer absolute value with wrapping: `a := |x|`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn iabs(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Iabs, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Wrapping integer multiplication: `a := x y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn imul(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Imul, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer multiplication, producing the high half of a
    /// double-length result.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn umulhi(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Umulhi, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer multiplication, producing the high half of a
    /// double-length result.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn smulhi(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Smulhi, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Fixed-point multiplication of numbers in the QN format, where N + 1
    /// is the number bitwidth:
    /// `a := signed_saturate((x * y + 1 << (Q - 1)) >> Q)`
    ///
    /// Polymorphic over all integer types (scalar and vector) with 16- or
    /// 32-bit numbers.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type with 16- or 32-bit numbers
    /// - y: A scalar or vector integer type with 16- or 32-bit numbers
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type with 16- or 32-bit numbers
    #[allow(non_snake_case)]
    fn sqmul_round_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::SqmulRoundSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer division: `a := \lfloor {x \over y} \rfloor`.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn udiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Udiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer division rounded toward zero: `a := sign(xy)
    /// \lfloor {|x| \over |y|}\rfloor`.
    ///
    /// This operation traps if the divisor is zero, or if the result is not
    /// representable in `B` bits two's complement. This only happens
    /// when `x = -2^{B-1}, y = -1`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn sdiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Sdiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer remainder.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn urem(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Urem, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer remainder. The result has the sign of the dividend.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn srem(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Srem, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Add immediate integer.
    ///
    /// Same as `iadd`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IaddImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Integer multiplication by immediate constant.
    ///
    /// Same as `imul`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn imul_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::ImulImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned integer division by an immediate constant.
    ///
    /// Same as `udiv`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn udiv_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UdivImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed integer division by an immediate constant.
    ///
    /// Same as `sdiv`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero, or if the result is not
    /// representable in `B` bits two's complement. This only happens
    /// when `x = -2^{B-1}, Y = -1`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn sdiv_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SdivImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned integer remainder with immediate divisor.
    ///
    /// Same as `urem`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn urem_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UremImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed integer remainder with immediate divisor.
    ///
    /// Same as `srem`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn srem_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SremImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Immediate reverse wrapping subtraction: `a := Y - x \pmod{2^B}`.
    ///
    /// The immediate operand is a sign extended 64 bit constant.
    ///
    /// Also works as integer negation when `Y = 0`. Use `iadd_imm`
    /// with a negative immediate operand for the reverse immediate
    /// subtraction.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn irsub_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IrsubImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Add integers with carry in.
    ///
    /// Same as `iadd` with an additional carry input. Computes:
    ///
    /// ```text
    ///     a = x + y + c_{in} \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: Input carry flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_cin(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddCin, ctrl_typevar, x, y, c_in);
        dfg.first_result(inst)
    }

    /// Add integers with carry in.
    ///
    /// Same as `iadd` with an additional carry flag input. Computes:
    ///
    /// ```text
    ///     a = x + y + c_{in} \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_ifcin(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddIfcin, ctrl_typevar, x, y, c_in);
        dfg.first_result(inst)
    }

    /// Add integers with carry out.
    ///
    /// Same as `iadd` with an additional carry output.
    ///
    /// ```text
    ///     a &= x + y \pmod 2^B \\
    ///     c_{out} &= x+y >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: Output carry flag
    #[allow(non_snake_case)]
    fn iadd_cout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddCout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry out.
    ///
    /// Same as `iadd` with an additional carry flag output.
    ///
    /// ```text
    ///     a &= x + y \pmod 2^B \\
    ///     c_{out} &= x+y >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn iadd_ifcout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddIfcout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry in and out.
    ///
    /// Same as `iadd` with an additional carry input and output.
    ///
    /// ```text
    ///     a &= x + y + c_{in} \pmod 2^B \\
    ///     c_{out} &= x + y + c_{in} >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: Input carry flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: Output carry flag
    #[allow(non_snake_case)]
    fn iadd_carry(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddCarry, ctrl_typevar, x, y, c_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry in and out.
    ///
    /// Same as `iadd` with an additional carry flag input and output.
    ///
    /// ```text
    ///     a &= x + y + c_{in} \pmod 2^B \\
    ///     c_{out} &= x + y + c_{in} >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn iadd_ifcarry(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddIfcarry, ctrl_typevar, x, y, c_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Unsigned addition of x and y, trapping if the result overflows.
    ///
    /// Accepts 32 or 64-bit integers, and does not support vector types.
    ///
    /// Inputs:
    ///
    /// - x: A 32 or 64-bit scalar integer type
    /// - y: A 32 or 64-bit scalar integer type
    /// - code: A trap reason code.
    ///
    /// Outputs:
    ///
    /// - a: A 32 or 64-bit scalar integer type
    #[allow(non_snake_case)]
    fn uadd_overflow_trap<T1: Into<ir::TrapCode>>(self, x: ir::Value, y: ir::Value, code: T1) -> Value {
        let code = code.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntAddTrap(Opcode::UaddOverflowTrap, ctrl_typevar, code, x, y);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow in.
    ///
    /// Same as `isub` with an additional borrow flag input. Computes:
    ///
    /// ```text
    ///     a = x - (y + b_{in}) \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: Input borrow flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn isub_bin(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubBin, ctrl_typevar, x, y, b_in);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow in.
    ///
    /// Same as `isub` with an additional borrow flag input. Computes:
    ///
    /// ```text
    ///     a = x - (y + b_{in}) \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn isub_ifbin(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubIfbin, ctrl_typevar, x, y, b_in);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow out.
    ///
    /// Same as `isub` with an additional borrow flag output.
    ///
    /// ```text
    ///     a &= x - y \pmod 2^B \\
    ///     b_{out} &= x < y
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: Output borrow flag
    #[allow(non_snake_case)]
    fn isub_bout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IsubBout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow out.
    ///
    /// Same as `isub` with an additional borrow flag output.
    ///
    /// ```text
    ///     a &= x - y \pmod 2^B \\
    ///     b_{out} &= x < y
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn isub_ifbout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IsubIfbout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow in and out.
    ///
    /// Same as `isub` with an additional borrow flag input and output.
    ///
    /// ```text
    ///     a &= x - (y + b_{in}) \pmod 2^B \\
    ///     b_{out} &= x < y + b_{in}
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: Input borrow flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: Output borrow flag
    #[allow(non_snake_case)]
    fn isub_borrow(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubBorrow, ctrl_typevar, x, y, b_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow in and out.
    ///
    /// Same as `isub` with an additional borrow flag input and output.
    ///
    /// ```text
    ///     a &= x - (y + b_{in}) \pmod 2^B \\
    ///     b_{out} &= x < y + b_{in}
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn isub_ifborrow(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubIfborrow, ctrl_typevar, x, y, b_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Bitwise and.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn band(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Band, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise or.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bor(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Bor, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise xor.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bxor(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Bxor, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise not.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bnot(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Bnot, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Bitwise and not.
    ///
    /// Computes `x & ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn band_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BandNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise or not.
    ///
    /// Computes `x | ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bor_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BorNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise xor not.
    ///
    /// Computes `x ^ ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bxor_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BxorNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise and with immediate.
    ///
    /// Same as `band`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn band_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BandImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Bitwise or with immediate.
    ///
    /// Same as `bor`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bor_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BorImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Bitwise xor with immediate.
    ///
    /// Same as `bxor`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bxor_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BxorImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Rotate left.
    ///
    /// Rotate the bits in ``x`` by ``y`` places.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotl(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Rotl, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Rotate right.
    ///
    /// Rotate the bits in ``x`` by ``y`` places.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Rotr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Rotate left by immediate.
    ///
    /// Same as `rotl`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotl_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::RotlImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Rotate right by immediate.
    ///
    /// Same as `rotr`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::RotrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Integer shift left. Shift the bits in ``x`` towards the MSB by ``y``
    /// places. Shift in zero bits to the LSB.
    ///
    /// The shift amount is masked to the size of ``x``.
    ///
    /// When shifting a B-bits integer type, this instruction computes:
    ///
    /// ```text
    ///     s &:= y \pmod B,
    ///     a &:= x \cdot 2^s \pmod{2^B}.
    /// ```
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ishl(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ishl, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned shift right. Shift bits in ``x`` towards the LSB by ``y``
    /// places, shifting in zero bits to the MSB. Also called a *logical
    /// shift*.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// When shifting a B-bits integer type, this instruction computes:
    ///
    /// ```text
    ///     s &:= y \pmod B,
    ///     a &:= \lfloor x \cdot 2^{-s} \rfloor.
    /// ```
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ushr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ushr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed shift right. Shift bits in ``x`` towards the LSB by ``y``
    /// places, shifting in sign bits to the MSB. Also called an *arithmetic
    /// shift*.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn sshr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Sshr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Integer shift left by immediate.
    ///
    /// The shift amount is masked to the size of ``x``.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ishl_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IshlImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned shift right by immediate.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ushr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UshrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed shift right by immediate.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn sshr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SshrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }
More examples
Hide additional examples
src/simple_preopt.rs (line 710)
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
    fn simplify(pos: &mut FuncCursor, inst: Inst, native_word_width: u32) {
        match pos.func.dfg[inst] {
            InstructionData::Binary { opcode, args } => {
                if let Some(mut imm) = resolve_imm64_value(&pos.func.dfg, args[1]) {
                    let new_opcode = match opcode {
                        Opcode::Iadd => Opcode::IaddImm,
                        Opcode::Imul => Opcode::ImulImm,
                        Opcode::Sdiv => Opcode::SdivImm,
                        Opcode::Udiv => Opcode::UdivImm,
                        Opcode::Srem => Opcode::SremImm,
                        Opcode::Urem => Opcode::UremImm,
                        Opcode::Band => Opcode::BandImm,
                        Opcode::Bor => Opcode::BorImm,
                        Opcode::Bxor => Opcode::BxorImm,
                        Opcode::Rotl => Opcode::RotlImm,
                        Opcode::Rotr => Opcode::RotrImm,
                        Opcode::Ishl => Opcode::IshlImm,
                        Opcode::Ushr => Opcode::UshrImm,
                        Opcode::Sshr => Opcode::SshrImm,
                        Opcode::Isub => {
                            imm = imm.wrapping_neg();
                            Opcode::IaddImm
                        }
                        Opcode::Ifcmp => Opcode::IfcmpImm,
                        _ => return,
                    };
                    let ty = pos.func.dfg.ctrl_typevar(inst);
                    if ty.bytes() <= native_word_width {
                        pos.func
                            .dfg
                            .replace(inst)
                            .BinaryImm64(new_opcode, ty, imm, args[0]);

                        // Repeat for BinaryImm simplification.
                        simplify(pos, inst, native_word_width);
                    }
                } else if let Some(imm) = resolve_imm64_value(&pos.func.dfg, args[0]) {
                    let new_opcode = match opcode {
                        Opcode::Iadd => Opcode::IaddImm,
                        Opcode::Imul => Opcode::ImulImm,
                        Opcode::Band => Opcode::BandImm,
                        Opcode::Bor => Opcode::BorImm,
                        Opcode::Bxor => Opcode::BxorImm,
                        Opcode::Isub => Opcode::IrsubImm,
                        _ => return,
                    };
                    let ty = pos.func.dfg.ctrl_typevar(inst);
                    if ty.bytes() <= native_word_width {
                        pos.func
                            .dfg
                            .replace(inst)
                            .BinaryImm64(new_opcode, ty, imm, args[1]);
                    }
                }
            }

            InstructionData::BinaryImm64 { opcode, arg, imm } => {
                let ty = pos.func.dfg.ctrl_typevar(inst);

                let mut arg = arg;
                let mut imm = imm;
                match opcode {
                    Opcode::IaddImm
                    | Opcode::ImulImm
                    | Opcode::BorImm
                    | Opcode::BandImm
                    | Opcode::BxorImm => {
                        // Fold binary_op(C2, binary_op(C1, x)) into binary_op(binary_op(C1, C2), x)
                        if let ValueDef::Result(arg_inst, _) = pos.func.dfg.value_def(arg) {
                            if let InstructionData::BinaryImm64 {
                                opcode: prev_opcode,
                                arg: prev_arg,
                                imm: prev_imm,
                            } = &pos.func.dfg[arg_inst]
                            {
                                if opcode == *prev_opcode
                                    && ty == pos.func.dfg.ctrl_typevar(arg_inst)
                                {
                                    let lhs: i64 = imm.into();
                                    let rhs: i64 = (*prev_imm).into();
                                    let new_imm = match opcode {
                                        Opcode::BorImm => lhs | rhs,
                                        Opcode::BandImm => lhs & rhs,
                                        Opcode::BxorImm => lhs ^ rhs,
                                        Opcode::IaddImm => lhs.wrapping_add(rhs),
                                        Opcode::ImulImm => lhs.wrapping_mul(rhs),
                                        _ => panic!("can't happen"),
                                    };
                                    let new_imm = immediates::Imm64::from(new_imm);
                                    let new_arg = *prev_arg;
                                    pos.func
                                        .dfg
                                        .replace(inst)
                                        .BinaryImm64(opcode, ty, new_imm, new_arg);
                                    imm = new_imm;
                                    arg = new_arg;
                                }
                            }
                        }
                    }

                    Opcode::UshrImm | Opcode::SshrImm => {
                        if pos.func.dfg.ctrl_typevar(inst).bytes() <= native_word_width
                            && try_fold_extended_move(pos, inst, opcode, arg, imm)
                        {
                            return;
                        }
                    }

                    _ => {}
                };

                // Replace operations that are no-ops.
                match (opcode, imm.into(), ty) {
                    (Opcode::IaddImm, 0, _)
                    | (Opcode::ImulImm, 1, _)
                    | (Opcode::SdivImm, 1, _)
                    | (Opcode::UdivImm, 1, _)
                    | (Opcode::BorImm, 0, _)
                    | (Opcode::BandImm, -1, _)
                    | (Opcode::BxorImm, 0, _)
                    | (Opcode::RotlImm, 0, _)
                    | (Opcode::RotrImm, 0, _)
                    | (Opcode::IshlImm, 0, _)
                    | (Opcode::UshrImm, 0, _)
                    | (Opcode::SshrImm, 0, _) => {
                        // Alias the result value with the original argument.
                        replace_single_result_with_alias(&mut pos.func.dfg, inst, arg);
                    }
                    (Opcode::ImulImm, 0, ty) | (Opcode::BandImm, 0, ty) if ty != I128 => {
                        // Replace by zero.
                        pos.func.dfg.replace(inst).iconst(ty, 0);
                    }
                    (Opcode::BorImm, -1, ty) if ty != I128 => {
                        // Replace by minus one.
                        pos.func.dfg.replace(inst).iconst(ty, -1);
                    }
                    _ => {}
                }
            }

            InstructionData::IntCompare { opcode, cond, args } => {
                debug_assert_eq!(opcode, Opcode::Icmp);
                if let Some(imm) = resolve_imm64_value(&pos.func.dfg, args[1]) {
                    if pos.func.dfg.ctrl_typevar(inst).bytes() <= native_word_width {
                        pos.func.dfg.replace(inst).icmp_imm(cond, args[0], imm);
                    }
                }
            }

            _ => {}
        }
    }

BinaryImm8(imms=(imm: ir::immediates::Uimm8), vals=1)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 353)
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
    fn extractlane<T1: Into<ir::immediates::Uimm8>>(self, x: ir::Value, Idx: T1) -> Value {
        let Idx = Idx.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm8(Opcode::Extractlane, ctrl_typevar, Idx, x);
        dfg.first_result(inst)
    }

    /// Signed integer minimum.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn smin(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Smin, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer minimum.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn umin(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Umin, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer maximum.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn smax(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Smax, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer maximum.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn umax(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Umax, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned average with rounding: `a := (x + y + 1) // 2`
    ///
    /// The addition does not lose any information (such as from overflow).
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn avg_round(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::AvgRound, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Add with unsigned saturation.
    ///
    /// This is similar to `iadd` but the operands are interpreted as unsigned integers and their
    /// summed result, instead of wrapping, will be saturated to the highest unsigned integer for
    /// the controlling type (e.g. `0xFF` for i8).
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn uadd_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::UaddSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Add with signed saturation.
    ///
    /// This is similar to `iadd` but the operands are interpreted as signed integers and their
    /// summed result, instead of wrapping, will be saturated to the lowest or highest
    /// signed integer for the controlling type (e.g. `0x80` or `0x7F` for i8). For example,
    /// since an `sadd_sat.i8` of `0x70` and `0x70` is greater than `0x7F`, the result will be
    /// clamped to `0x7F`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn sadd_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::SaddSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Subtract with unsigned saturation.
    ///
    /// This is similar to `isub` but the operands are interpreted as unsigned integers and their
    /// difference, instead of wrapping, will be saturated to the lowest unsigned integer for
    /// the controlling type (e.g. `0x00` for i8).
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn usub_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::UsubSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Subtract with signed saturation.
    ///
    /// This is similar to `isub` but the operands are interpreted as signed integers and their
    /// difference, instead of wrapping, will be saturated to the lowest or highest
    /// signed integer for the controlling type (e.g. `0x80` or `0x7F` for i8).
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn ssub_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::SsubSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Load from memory at ``p + Offset``.
    ///
    /// This is a polymorphic instruction that can load any value type which
    /// has a memory representation.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn load<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, Mem: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Load, Mem, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store ``x`` to memory at ``p + Offset``.
    ///
    /// This is a polymorphic instruction that can store any value type with a
    /// memory representation.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: Value to be stored
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn store<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Store, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 8 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i8`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - iExt8 (controlling type variable): An integer type with more than 8 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 8 bits
    #[allow(non_snake_case)]
    fn uload8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt8: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Uload8, iExt8, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 8 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i8`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - iExt8 (controlling type variable): An integer type with more than 8 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 8 bits
    #[allow(non_snake_case)]
    fn sload8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt8: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Sload8, iExt8, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 8 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i8`` followed by ``store.i8``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 8 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore8, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 16 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i16`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - iExt16 (controlling type variable): An integer type with more than 16 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 16 bits
    #[allow(non_snake_case)]
    fn uload16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt16: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Uload16, iExt16, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 16 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i16`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - iExt16 (controlling type variable): An integer type with more than 16 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 16 bits
    #[allow(non_snake_case)]
    fn sload16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt16: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Sload16, iExt16, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 16 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i16`` followed by ``store.i16``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 16 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore16, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 32 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i32`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 32 bits
    #[allow(non_snake_case)]
    fn uload32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload32, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 32 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i32`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 32 bits
    #[allow(non_snake_case)]
    fn sload32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload32, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 32 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i32`` followed by ``store.i32``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 32 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore32, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load an 8x8 vector (64 bits) from memory at ``p + Offset`` and zero-extend into an i16x8
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn uload8x8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload8x8, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load an 8x8 vector (64 bits) from memory at ``p + Offset`` and sign-extend into an i16x8
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn sload8x8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload8x8, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a 16x4 vector (64 bits) from memory at ``p + Offset`` and zero-extend into an i32x4
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn uload16x4<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload16x4, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a 16x4 vector (64 bits) from memory at ``p + Offset`` and sign-extend into an i32x4
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn sload16x4<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload16x4, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load an 32x2 vector (64 bits) from memory at ``p + Offset`` and zero-extend into an i64x2
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn uload32x2<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload32x2, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a 32x2 vector (64 bits) from memory at ``p + Offset`` and sign-extend into an i64x2
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn sload32x2<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload32x2, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a value from a stack slot at the constant offset.
    ///
    /// This is a polymorphic instruction that can load any value type which
    /// has a memory representation.
    ///
    /// The offset is an immediate constant, not an SSA value. The memory
    /// access cannot go out of bounds, i.e.
    /// `sizeof(a) + Offset <= sizeof(SS)`.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - SS: A stack slot
    /// - Offset: In-bounds offset into stack slot
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn stack_load<T1: Into<ir::immediates::Offset32>>(self, Mem: crate::ir::Type, SS: ir::StackSlot, Offset: T1) -> Value {
        let Offset = Offset.into();
        let (inst, dfg) = self.StackLoad(Opcode::StackLoad, Mem, SS, Offset);
        dfg.first_result(inst)
    }

    /// Store a value to a stack slot at a constant offset.
    ///
    /// This is a polymorphic instruction that can store any value type with a
    /// memory representation.
    ///
    /// The offset is an immediate constant, not an SSA value. The memory
    /// access cannot go out of bounds, i.e.
    /// `sizeof(a) + Offset <= sizeof(SS)`.
    ///
    /// Inputs:
    ///
    /// - x: Value to be stored
    /// - SS: A stack slot
    /// - Offset: In-bounds offset into stack slot
    #[allow(non_snake_case)]
    fn stack_store<T1: Into<ir::immediates::Offset32>>(self, x: ir::Value, SS: ir::StackSlot, Offset: T1) -> Inst {
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.StackStore(Opcode::StackStore, ctrl_typevar, SS, Offset, x).0
    }

    /// Get the address of a stack slot.
    ///
    /// Compute the absolute address of a byte in a stack slot. The offset must
    /// refer to a byte inside the stack slot:
    /// `0 <= Offset < sizeof(SS)`.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - SS: A stack slot
    /// - Offset: In-bounds offset into stack slot
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn stack_addr<T1: Into<ir::immediates::Offset32>>(self, iAddr: crate::ir::Type, SS: ir::StackSlot, Offset: T1) -> Value {
        let Offset = Offset.into();
        let (inst, dfg) = self.StackLoad(Opcode::StackAddr, iAddr, SS, Offset);
        dfg.first_result(inst)
    }

    /// Load a value from a dynamic stack slot.
    ///
    /// This is a polymorphic instruction that can load any value type which
    /// has a memory representation.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - DSS: A dynamic stack slot
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn dynamic_stack_load(self, Mem: crate::ir::Type, DSS: ir::DynamicStackSlot) -> Value {
        let (inst, dfg) = self.DynamicStackLoad(Opcode::DynamicStackLoad, Mem, DSS);
        dfg.first_result(inst)
    }

    /// Store a value to a dynamic stack slot.
    ///
    /// This is a polymorphic instruction that can store any dynamic value type with a
    /// memory representation.
    ///
    /// Inputs:
    ///
    /// - x: Value to be stored
    /// - DSS: A dynamic stack slot
    #[allow(non_snake_case)]
    fn dynamic_stack_store(self, x: ir::Value, DSS: ir::DynamicStackSlot) -> Inst {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.DynamicStackStore(Opcode::DynamicStackStore, ctrl_typevar, DSS, x).0
    }

    /// Get the address of a dynamic stack slot.
    ///
    /// Compute the absolute address of the first byte of a dynamic stack slot.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - DSS: A dynamic stack slot
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn dynamic_stack_addr(self, iAddr: crate::ir::Type, DSS: ir::DynamicStackSlot) -> Value {
        let (inst, dfg) = self.DynamicStackLoad(Opcode::DynamicStackAddr, iAddr, DSS);
        dfg.first_result(inst)
    }

    /// Compute the value of global GV.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - GV: A global value.
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn global_value(self, Mem: crate::ir::Type, GV: ir::GlobalValue) -> Value {
        let (inst, dfg) = self.UnaryGlobalValue(Opcode::GlobalValue, Mem, GV);
        dfg.first_result(inst)
    }

    /// Compute the value of global GV, which is a symbolic value.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - GV: A global value.
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn symbol_value(self, Mem: crate::ir::Type, GV: ir::GlobalValue) -> Value {
        let (inst, dfg) = self.UnaryGlobalValue(Opcode::SymbolValue, Mem, GV);
        dfg.first_result(inst)
    }

    /// Compute the value of global GV, which is a TLS (thread local storage) value.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - GV: A global value.
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn tls_value(self, Mem: crate::ir::Type, GV: ir::GlobalValue) -> Value {
        let (inst, dfg) = self.UnaryGlobalValue(Opcode::TlsValue, Mem, GV);
        dfg.first_result(inst)
    }

    /// Bounds check and compute absolute address of ``index + Offset`` in heap memory.
    ///
    /// Verify that the range ``index .. index + Offset + Size`` is in bounds for the
    /// heap ``H``, and generate an absolute address that is safe to dereference.
    ///
    /// 1. If ``index + Offset + Size`` is less than or equal ot the heap bound, return an
    ///    absolute address corresponding to a byte offset of ``index + Offset`` from the
    ///    heap's base address.
    ///
    /// 2. If ``index + Offset + Size`` is greater than the heap bound, return the
    ///    ``NULL`` pointer or any other address that is guaranteed to generate a trap
    ///    when accessed.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - H: A heap.
    /// - index: An unsigned heap offset
    /// - Offset: Static offset immediate in bytes
    /// - Size: Static size immediate in bytes
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn heap_addr<T1: Into<ir::immediates::Uimm32>, T2: Into<ir::immediates::Uimm8>>(self, iAddr: crate::ir::Type, H: ir::Heap, index: ir::Value, Offset: T1, Size: T2) -> Value {
        let Offset = Offset.into();
        let Size = Size.into();
        let (inst, dfg) = self.HeapAddr(Opcode::HeapAddr, iAddr, H, Offset, Size, index);
        dfg.first_result(inst)
    }

    /// Load a value from the given heap at address ``index + offset``,
    /// trapping on out-of-bounds accesses.
    ///
    /// Checks that ``index + offset .. index + offset + sizeof(a)`` is
    /// within the heap's bounds, trapping if it is not. Otherwise, when
    /// that range is in bounds, loads the value from the heap.
    ///
    /// Traps on ``index + offset + sizeof(a)`` overflow.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - heap_imm: Reference to out-of-line heap access immediates
    /// - index: Dynamic index (in bytes) into the heap
    ///
    /// Outputs:
    ///
    /// - a: The value loaded from the heap
    #[allow(non_snake_case)]
    fn heap_load<T1: Into<ir::HeapImm>>(self, Mem: crate::ir::Type, heap_imm: T1, index: ir::Value) -> Value {
        let heap_imm = heap_imm.into();
        let (inst, dfg) = self.HeapLoad(Opcode::HeapLoad, Mem, heap_imm, index);
        dfg.first_result(inst)
    }

    /// Store ``a`` into the given heap at address ``index + offset``,
    /// trapping on out-of-bounds accesses.
    ///
    /// Checks that ``index + offset .. index + offset + sizeof(a)`` is
    /// within the heap's bounds, trapping if it is not. Otherwise, when
    /// that range is in bounds, stores the value into the heap.
    ///
    /// Traps on ``index + offset + sizeof(a)`` overflow.
    ///
    /// Inputs:
    ///
    /// - heap_imm: Reference to out-of-line heap access immediates
    /// - index: Dynamic index (in bytes) into the heap
    /// - a: The value stored into the heap
    #[allow(non_snake_case)]
    fn heap_store<T1: Into<ir::HeapImm>>(self, heap_imm: T1, index: ir::Value, a: ir::Value) -> Inst {
        let heap_imm = heap_imm.into();
        let ctrl_typevar = self.data_flow_graph().value_type(index);
        self.HeapStore(Opcode::HeapStore, ctrl_typevar, heap_imm, index, a).0
    }

    /// Gets the content of the pinned register, when it's enabled.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn get_pinned_reg(self, iAddr: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::GetPinnedReg, iAddr);
        dfg.first_result(inst)
    }

    /// Sets the content of the pinned register, when it's enabled.
    ///
    /// Inputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn set_pinned_reg(self, addr: ir::Value) -> Inst {
        let ctrl_typevar = self.data_flow_graph().value_type(addr);
        self.Unary(Opcode::SetPinnedReg, ctrl_typevar, addr).0
    }

    /// Get the address in the frame pointer register.
    ///
    /// Usage of this instruction requires setting `preserve_frame_pointers` to `true`.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn get_frame_pointer(self, iAddr: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::GetFramePointer, iAddr);
        dfg.first_result(inst)
    }

    /// Get the address in the stack pointer register.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn get_stack_pointer(self, iAddr: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::GetStackPointer, iAddr);
        dfg.first_result(inst)
    }

    /// Get the PC where this function will transfer control to when it returns.
    ///
    /// Usage of this instruction requires setting `preserve_frame_pointers` to `true`.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn get_return_address(self, iAddr: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::GetReturnAddress, iAddr);
        dfg.first_result(inst)
    }

    /// Bounds check and compute absolute address of a table entry.
    ///
    /// Verify that the offset ``p`` is in bounds for the table T, and generate
    /// an absolute address that is safe to dereference.
    ///
    /// ``Offset`` must be less than the size of a table element.
    ///
    /// 1. If ``p`` is not greater than the table bound, return an absolute
    ///    address corresponding to a byte offset of ``p`` from the table's
    ///    base address.
    /// 2. If ``p`` is greater than the table bound, generate a trap.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - T: A table.
    /// - p: An unsigned table offset
    /// - Offset: Byte offset from element address
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn table_addr<T1: Into<ir::immediates::Offset32>>(self, iAddr: crate::ir::Type, T: ir::Table, p: ir::Value, Offset: T1) -> Value {
        let Offset = Offset.into();
        let (inst, dfg) = self.TableAddr(Opcode::TableAddr, iAddr, T, Offset, p);
        dfg.first_result(inst)
    }

    /// Integer constant.
    ///
    /// Create a scalar integer SSA value with an immediate constant value, or
    /// an integer vector where all the lanes have the same value.
    ///
    /// Inputs:
    ///
    /// - NarrowInt (controlling type variable): An integer type with lanes type to `i64`
    /// - N: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A constant integer scalar or vector value
    #[allow(non_snake_case)]
    fn iconst<T1: Into<ir::immediates::Imm64>>(self, NarrowInt: crate::ir::Type, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryImm(Opcode::Iconst, NarrowInt, N);
        dfg.first_result(inst)
    }

    /// Floating point constant.
    ///
    /// Create a `f32` SSA value with an immediate constant value.
    ///
    /// Inputs:
    ///
    /// - N: A 32-bit immediate floating point number.
    ///
    /// Outputs:
    ///
    /// - a: A constant f32 scalar value
    #[allow(non_snake_case)]
    fn f32const<T1: Into<ir::immediates::Ieee32>>(self, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryIeee32(Opcode::F32const, types::INVALID, N);
        dfg.first_result(inst)
    }

    /// Floating point constant.
    ///
    /// Create a `f64` SSA value with an immediate constant value.
    ///
    /// Inputs:
    ///
    /// - N: A 64-bit immediate floating point number.
    ///
    /// Outputs:
    ///
    /// - a: A constant f64 scalar value
    #[allow(non_snake_case)]
    fn f64const<T1: Into<ir::immediates::Ieee64>>(self, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryIeee64(Opcode::F64const, types::INVALID, N);
        dfg.first_result(inst)
    }

    /// SIMD vector constant.
    ///
    /// Construct a vector with the given immediate bytes.
    ///
    /// Inputs:
    ///
    /// - TxN (controlling type variable): A SIMD vector type
    /// - N: The 16 immediate bytes of a 128-bit vector
    ///
    /// Outputs:
    ///
    /// - a: A constant vector value
    #[allow(non_snake_case)]
    fn vconst<T1: Into<ir::Constant>>(self, TxN: crate::ir::Type, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryConst(Opcode::Vconst, TxN, N);
        dfg.first_result(inst)
    }

    /// SIMD vector shuffle.
    ///
    /// Shuffle two vectors using the given immediate bytes. For each of the 16 bytes of the
    /// immediate, a value i of 0-15 selects the i-th element of the first vector and a value i of
    /// 16-31 selects the (i-16)th element of the second vector. Immediate values outside of the
    /// 0-31 range place a 0 in the resulting vector lane.
    ///
    /// Inputs:
    ///
    /// - a: A vector value
    /// - b: A vector value
    /// - mask: The 16 immediate bytes used for selecting the elements to shuffle
    ///
    /// Outputs:
    ///
    /// - a: A vector value
    #[allow(non_snake_case)]
    fn shuffle<T1: Into<ir::Immediate>>(self, a: ir::Value, b: ir::Value, mask: T1) -> Value {
        let mask = mask.into();
        let (inst, dfg) = self.Shuffle(Opcode::Shuffle, types::INVALID, mask, a, b);
        dfg.first_result(inst)
    }

    /// Null constant value for reference types.
    ///
    /// Create a scalar reference SSA value with a constant null value.
    ///
    /// Inputs:
    ///
    /// - Ref (controlling type variable): A scalar reference type
    ///
    /// Outputs:
    ///
    /// - a: A constant reference null value
    #[allow(non_snake_case)]
    fn null(self, Ref: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::Null, Ref);
        dfg.first_result(inst)
    }

    /// Just a dummy instruction.
    ///
    /// Note: this doesn't compile to a machine code nop.
    #[allow(non_snake_case)]
    fn nop(self) -> Inst {
        self.NullAry(Opcode::Nop, types::INVALID).0
    }

    /// Conditional select.
    ///
    /// This instruction selects whole values. Use `vselect` for
    /// lane-wise selection.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - x: Value to use when `c` is true
    /// - y: Value to use when `c` is false
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or reference scalar or vector type
    #[allow(non_snake_case)]
    fn select(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::Select, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Conditional select intended for Spectre guards.
    ///
    /// This operation is semantically equivalent to a select instruction.
    /// However, it is guaranteed to not be removed or otherwise altered by any
    /// optimization pass, and is guaranteed to result in a conditional-move
    /// instruction, not a branch-based lowering.  As such, it is suitable
    /// for use when producing Spectre guards. For example, a bounds-check
    /// may guard against unsafe speculation past a bounds-check conditional
    /// branch by passing the address or index to be accessed through a
    /// conditional move, also gated on the same condition. Because no
    /// Spectre-vulnerable processors are known to perform speculation on
    /// conditional move instructions, this is guaranteed to pick the
    /// correct input. If the selected input in case of overflow is a "safe"
    /// value, for example a null pointer that causes an exception in the
    /// speculative path, this ensures that no Spectre vulnerability will
    /// exist.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - x: Value to use when `c` is true
    /// - y: Value to use when `c` is false
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or reference scalar or vector type
    #[allow(non_snake_case)]
    fn select_spectre_guard(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::SelectSpectreGuard, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Conditional select of bits.
    ///
    /// For each bit in `c`, this instruction selects the corresponding bit from `x` if the bit
    /// in `c` is 1 and the corresponding bit from `y` if the bit in `c` is 0. See also:
    /// `select`, `vselect`.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - x: Value to use when `c` is true
    /// - y: Value to use when `c` is false
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or reference scalar or vector type
    #[allow(non_snake_case)]
    fn bitselect(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::Bitselect, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Split a vector into two halves.
    ///
    /// Split the vector `x` into two separate values, each containing half of
    /// the lanes from ``x``. The result may be two scalars if ``x`` only had
    /// two lanes.
    ///
    /// Inputs:
    ///
    /// - x: Vector to split
    ///
    /// Outputs:
    ///
    /// - lo: Low-numbered lanes of `x`
    /// - hi: High-numbered lanes of `x`
    #[allow(non_snake_case)]
    fn vsplit(self, x: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Vsplit, ctrl_typevar, x);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Vector concatenation.
    ///
    /// Return a vector formed by concatenating ``x`` and ``y``. The resulting
    /// vector type has twice as many lanes as each of the inputs. The lanes of
    /// ``x`` appear as the low-numbered lanes, and the lanes of ``y`` become
    /// the high-numbered lanes of ``a``.
    ///
    /// It is possible to form a vector by concatenating two scalars.
    ///
    /// Inputs:
    ///
    /// - x: Low-numbered lanes
    /// - y: High-numbered lanes
    ///
    /// Outputs:
    ///
    /// - a: Concatenation of `x` and `y`
    #[allow(non_snake_case)]
    fn vconcat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Vconcat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Vector lane select.
    ///
    /// Select lanes from ``x`` or ``y`` controlled by the lanes of the truthy
    /// vector ``c``.
    ///
    /// Inputs:
    ///
    /// - c: Controlling vector
    /// - x: Value to use where `c` is true
    /// - y: Value to use where `c` is false
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type
    #[allow(non_snake_case)]
    fn vselect(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::Vselect, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Reduce a vector to a scalar boolean.
    ///
    /// Return a scalar boolean true if any lane in ``a`` is non-zero, false otherwise.
    ///
    /// Inputs:
    ///
    /// - a: A SIMD vector type
    ///
    /// Outputs:
    ///
    /// - s: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn vany_true(self, a: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(a);
        let (inst, dfg) = self.Unary(Opcode::VanyTrue, ctrl_typevar, a);
        dfg.first_result(inst)
    }

    /// Reduce a vector to a scalar boolean.
    ///
    /// Return a scalar boolean true if all lanes in ``i`` are non-zero, false otherwise.
    ///
    /// Inputs:
    ///
    /// - a: A SIMD vector type
    ///
    /// Outputs:
    ///
    /// - s: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn vall_true(self, a: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(a);
        let (inst, dfg) = self.Unary(Opcode::VallTrue, ctrl_typevar, a);
        dfg.first_result(inst)
    }

    /// Reduce a vector to a scalar integer.
    ///
    /// Return a scalar integer, consisting of the concatenation of the most significant bit
    /// of each lane of ``a``.
    ///
    /// Inputs:
    ///
    /// - Int (controlling type variable): A scalar or vector integer type
    /// - a: A SIMD vector type
    ///
    /// Outputs:
    ///
    /// - x: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn vhigh_bits(self, Int: crate::ir::Type, a: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::VhighBits, Int, a);
        dfg.first_result(inst)
    }

    /// Integer comparison.
    ///
    /// The condition code determines if the operands are interpreted as signed
    /// or unsigned integers.
    ///
    /// | Signed | Unsigned | Condition             |
    /// |--------|----------|-----------------------|
    /// | eq     | eq       | Equal                 |
    /// | ne     | ne       | Not equal             |
    /// | slt    | ult      | Less than             |
    /// | sge    | uge      | Greater than or equal |
    /// | sgt    | ugt      | Greater than          |
    /// | sle    | ule      | Less than or equal    |
    ///
    /// When this instruction compares integer vectors, it returns a vector of
    /// lane-wise comparisons.
    ///
    /// Inputs:
    ///
    /// - Cond: An integer comparison condition code.
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn icmp<T1: Into<ir::condcodes::IntCC>>(self, Cond: T1, x: ir::Value, y: ir::Value) -> Value {
        let Cond = Cond.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntCompare(Opcode::Icmp, ctrl_typevar, Cond, x, y);
        dfg.first_result(inst)
    }

    /// Compare scalar integer to a constant.
    ///
    /// This is the same as the `icmp` instruction, except one operand is
    /// a sign extended 64 bit immediate constant.
    ///
    /// This instruction can only compare scalars. Use `icmp` for
    /// lane-wise vector comparisons.
    ///
    /// Inputs:
    ///
    /// - Cond: An integer comparison condition code.
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn icmp_imm<T1: Into<ir::condcodes::IntCC>, T2: Into<ir::immediates::Imm64>>(self, Cond: T1, x: ir::Value, Y: T2) -> Value {
        let Cond = Cond.into();
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntCompareImm(Opcode::IcmpImm, ctrl_typevar, Cond, Y, x);
        dfg.first_result(inst)
    }

    /// Compare scalar integers and return flags.
    ///
    /// Compare two scalar integer values and return integer CPU flags
    /// representing the result.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - f: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn ifcmp(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ifcmp, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Compare scalar integer to a constant and return flags.
    ///
    /// Like `icmp_imm`, but returns integer CPU flags instead of testing
    /// a specific condition code.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - f: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn ifcmp_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IfcmpImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Wrapping integer addition: `a := x + y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn iadd(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Iadd, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Wrapping integer subtraction: `a := x - y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn isub(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Isub, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Integer negation: `a := -x \pmod{2^B}`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ineg(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Ineg, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Integer absolute value with wrapping: `a := |x|`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn iabs(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Iabs, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Wrapping integer multiplication: `a := x y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn imul(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Imul, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer multiplication, producing the high half of a
    /// double-length result.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn umulhi(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Umulhi, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer multiplication, producing the high half of a
    /// double-length result.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn smulhi(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Smulhi, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Fixed-point multiplication of numbers in the QN format, where N + 1
    /// is the number bitwidth:
    /// `a := signed_saturate((x * y + 1 << (Q - 1)) >> Q)`
    ///
    /// Polymorphic over all integer types (scalar and vector) with 16- or
    /// 32-bit numbers.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type with 16- or 32-bit numbers
    /// - y: A scalar or vector integer type with 16- or 32-bit numbers
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type with 16- or 32-bit numbers
    #[allow(non_snake_case)]
    fn sqmul_round_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::SqmulRoundSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer division: `a := \lfloor {x \over y} \rfloor`.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn udiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Udiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer division rounded toward zero: `a := sign(xy)
    /// \lfloor {|x| \over |y|}\rfloor`.
    ///
    /// This operation traps if the divisor is zero, or if the result is not
    /// representable in `B` bits two's complement. This only happens
    /// when `x = -2^{B-1}, y = -1`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn sdiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Sdiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer remainder.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn urem(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Urem, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer remainder. The result has the sign of the dividend.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn srem(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Srem, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Add immediate integer.
    ///
    /// Same as `iadd`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IaddImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Integer multiplication by immediate constant.
    ///
    /// Same as `imul`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn imul_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::ImulImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned integer division by an immediate constant.
    ///
    /// Same as `udiv`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn udiv_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UdivImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed integer division by an immediate constant.
    ///
    /// Same as `sdiv`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero, or if the result is not
    /// representable in `B` bits two's complement. This only happens
    /// when `x = -2^{B-1}, Y = -1`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn sdiv_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SdivImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned integer remainder with immediate divisor.
    ///
    /// Same as `urem`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn urem_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UremImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed integer remainder with immediate divisor.
    ///
    /// Same as `srem`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn srem_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SremImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Immediate reverse wrapping subtraction: `a := Y - x \pmod{2^B}`.
    ///
    /// The immediate operand is a sign extended 64 bit constant.
    ///
    /// Also works as integer negation when `Y = 0`. Use `iadd_imm`
    /// with a negative immediate operand for the reverse immediate
    /// subtraction.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn irsub_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IrsubImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Add integers with carry in.
    ///
    /// Same as `iadd` with an additional carry input. Computes:
    ///
    /// ```text
    ///     a = x + y + c_{in} \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: Input carry flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_cin(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddCin, ctrl_typevar, x, y, c_in);
        dfg.first_result(inst)
    }

    /// Add integers with carry in.
    ///
    /// Same as `iadd` with an additional carry flag input. Computes:
    ///
    /// ```text
    ///     a = x + y + c_{in} \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_ifcin(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddIfcin, ctrl_typevar, x, y, c_in);
        dfg.first_result(inst)
    }

    /// Add integers with carry out.
    ///
    /// Same as `iadd` with an additional carry output.
    ///
    /// ```text
    ///     a &= x + y \pmod 2^B \\
    ///     c_{out} &= x+y >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: Output carry flag
    #[allow(non_snake_case)]
    fn iadd_cout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddCout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry out.
    ///
    /// Same as `iadd` with an additional carry flag output.
    ///
    /// ```text
    ///     a &= x + y \pmod 2^B \\
    ///     c_{out} &= x+y >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn iadd_ifcout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddIfcout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry in and out.
    ///
    /// Same as `iadd` with an additional carry input and output.
    ///
    /// ```text
    ///     a &= x + y + c_{in} \pmod 2^B \\
    ///     c_{out} &= x + y + c_{in} >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: Input carry flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: Output carry flag
    #[allow(non_snake_case)]
    fn iadd_carry(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddCarry, ctrl_typevar, x, y, c_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry in and out.
    ///
    /// Same as `iadd` with an additional carry flag input and output.
    ///
    /// ```text
    ///     a &= x + y + c_{in} \pmod 2^B \\
    ///     c_{out} &= x + y + c_{in} >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn iadd_ifcarry(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddIfcarry, ctrl_typevar, x, y, c_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Unsigned addition of x and y, trapping if the result overflows.
    ///
    /// Accepts 32 or 64-bit integers, and does not support vector types.
    ///
    /// Inputs:
    ///
    /// - x: A 32 or 64-bit scalar integer type
    /// - y: A 32 or 64-bit scalar integer type
    /// - code: A trap reason code.
    ///
    /// Outputs:
    ///
    /// - a: A 32 or 64-bit scalar integer type
    #[allow(non_snake_case)]
    fn uadd_overflow_trap<T1: Into<ir::TrapCode>>(self, x: ir::Value, y: ir::Value, code: T1) -> Value {
        let code = code.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntAddTrap(Opcode::UaddOverflowTrap, ctrl_typevar, code, x, y);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow in.
    ///
    /// Same as `isub` with an additional borrow flag input. Computes:
    ///
    /// ```text
    ///     a = x - (y + b_{in}) \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: Input borrow flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn isub_bin(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubBin, ctrl_typevar, x, y, b_in);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow in.
    ///
    /// Same as `isub` with an additional borrow flag input. Computes:
    ///
    /// ```text
    ///     a = x - (y + b_{in}) \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn isub_ifbin(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubIfbin, ctrl_typevar, x, y, b_in);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow out.
    ///
    /// Same as `isub` with an additional borrow flag output.
    ///
    /// ```text
    ///     a &= x - y \pmod 2^B \\
    ///     b_{out} &= x < y
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: Output borrow flag
    #[allow(non_snake_case)]
    fn isub_bout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IsubBout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow out.
    ///
    /// Same as `isub` with an additional borrow flag output.
    ///
    /// ```text
    ///     a &= x - y \pmod 2^B \\
    ///     b_{out} &= x < y
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn isub_ifbout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IsubIfbout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow in and out.
    ///
    /// Same as `isub` with an additional borrow flag input and output.
    ///
    /// ```text
    ///     a &= x - (y + b_{in}) \pmod 2^B \\
    ///     b_{out} &= x < y + b_{in}
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: Input borrow flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: Output borrow flag
    #[allow(non_snake_case)]
    fn isub_borrow(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubBorrow, ctrl_typevar, x, y, b_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow in and out.
    ///
    /// Same as `isub` with an additional borrow flag input and output.
    ///
    /// ```text
    ///     a &= x - (y + b_{in}) \pmod 2^B \\
    ///     b_{out} &= x < y + b_{in}
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn isub_ifborrow(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubIfborrow, ctrl_typevar, x, y, b_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Bitwise and.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn band(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Band, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise or.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bor(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Bor, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise xor.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bxor(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Bxor, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise not.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bnot(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Bnot, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Bitwise and not.
    ///
    /// Computes `x & ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn band_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BandNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise or not.
    ///
    /// Computes `x | ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bor_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BorNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise xor not.
    ///
    /// Computes `x ^ ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bxor_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BxorNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise and with immediate.
    ///
    /// Same as `band`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn band_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BandImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Bitwise or with immediate.
    ///
    /// Same as `bor`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bor_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BorImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Bitwise xor with immediate.
    ///
    /// Same as `bxor`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bxor_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BxorImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Rotate left.
    ///
    /// Rotate the bits in ``x`` by ``y`` places.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotl(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Rotl, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Rotate right.
    ///
    /// Rotate the bits in ``x`` by ``y`` places.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Rotr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Rotate left by immediate.
    ///
    /// Same as `rotl`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotl_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::RotlImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Rotate right by immediate.
    ///
    /// Same as `rotr`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::RotrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Integer shift left. Shift the bits in ``x`` towards the MSB by ``y``
    /// places. Shift in zero bits to the LSB.
    ///
    /// The shift amount is masked to the size of ``x``.
    ///
    /// When shifting a B-bits integer type, this instruction computes:
    ///
    /// ```text
    ///     s &:= y \pmod B,
    ///     a &:= x \cdot 2^s \pmod{2^B}.
    /// ```
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ishl(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ishl, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned shift right. Shift bits in ``x`` towards the LSB by ``y``
    /// places, shifting in zero bits to the MSB. Also called a *logical
    /// shift*.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// When shifting a B-bits integer type, this instruction computes:
    ///
    /// ```text
    ///     s &:= y \pmod B,
    ///     a &:= \lfloor x \cdot 2^{-s} \rfloor.
    /// ```
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ushr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ushr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed shift right. Shift bits in ``x`` towards the LSB by ``y``
    /// places, shifting in sign bits to the MSB. Also called an *arithmetic
    /// shift*.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn sshr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Sshr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Integer shift left by immediate.
    ///
    /// The shift amount is masked to the size of ``x``.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ishl_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IshlImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned shift right by immediate.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ushr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UshrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed shift right by immediate.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn sshr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SshrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Reverse the bits of a integer.
    ///
    /// Reverses the bits in ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bitrev(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Bitrev, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Count leading zero bits.
    ///
    /// Starting from the MSB in ``x``, count the number of zero bits before
    /// reaching the first one bit. When ``x`` is zero, returns the size of x
    /// in bits.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn clz(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Clz, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Count leading sign bits.
    ///
    /// Starting from the MSB after the sign bit in ``x``, count the number of
    /// consecutive bits identical to the sign bit. When ``x`` is 0 or -1,
    /// returns one less than the size of x in bits.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn cls(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Cls, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Count trailing zeros.
    ///
    /// Starting from the LSB in ``x``, count the number of zero bits before
    /// reaching the first one bit. When ``x`` is zero, returns the size of x
    /// in bits.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn ctz(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Ctz, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reverse the byte order of an integer.
    ///
    /// Reverses the bytes in ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A multi byte scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A multi byte scalar integer type
    #[allow(non_snake_case)]
    fn bswap(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Bswap, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Population count
    ///
    /// Count the number of one bits in ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn popcnt(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Popcnt, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point comparison.
    ///
    /// Two IEEE 754-2008 floating point numbers, `x` and `y`, relate to each
    /// other in exactly one of four ways:
    ///
    /// ```text
    /// == ==========================================
    /// UN Unordered when one or both numbers is NaN.
    /// EQ When `x = y`. (And `0.0 = -0.0`).
    /// LT When `x < y`.
    /// GT When `x > y`.
    /// == ==========================================
    /// ```
    ///
    /// The 14 `floatcc` condition codes each correspond to a subset of
    /// the four relations, except for the empty set which would always be
    /// false, and the full set which would always be true.
    ///
    /// The condition codes are divided into 7 'ordered' conditions which don't
    /// include UN, and 7 unordered conditions which all include UN.
    ///
    /// ```text
    /// +-------+------------+---------+------------+-------------------------+
    /// |Ordered             |Unordered             |Condition                |
    /// +=======+============+=========+============+=========================+
    /// |ord    |EQ | LT | GT|uno      |UN          |NaNs absent / present.   |
    /// +-------+------------+---------+------------+-------------------------+
    /// |eq     |EQ          |ueq      |UN | EQ     |Equal                    |
    /// +-------+------------+---------+------------+-------------------------+
    /// |one    |LT | GT     |ne       |UN | LT | GT|Not equal                |
    /// +-------+------------+---------+------------+-------------------------+
    /// |lt     |LT          |ult      |UN | LT     |Less than                |
    /// +-------+------------+---------+------------+-------------------------+
    /// |le     |LT | EQ     |ule      |UN | LT | EQ|Less than or equal       |
    /// +-------+------------+---------+------------+-------------------------+
    /// |gt     |GT          |ugt      |UN | GT     |Greater than             |
    /// +-------+------------+---------+------------+-------------------------+
    /// |ge     |GT | EQ     |uge      |UN | GT | EQ|Greater than or equal    |
    /// +-------+------------+---------+------------+-------------------------+
    /// ```
    ///
    /// The standard C comparison operators, `<, <=, >, >=`, are all ordered,
    /// so they are false if either operand is NaN. The C equality operator,
    /// `==`, is ordered, and since inequality is defined as the logical
    /// inverse it is *unordered*. They map to the `floatcc` condition
    /// codes as follows:
    ///
    /// ```text
    /// ==== ====== ============
    /// C    `Cond` Subset
    /// ==== ====== ============
    /// `==` eq     EQ
    /// `!=` ne     UN | LT | GT
    /// `<`  lt     LT
    /// `<=` le     LT | EQ
    /// `>`  gt     GT
    /// `>=` ge     GT | EQ
    /// ==== ====== ============
    /// ```
    ///
    /// This subset of condition codes also corresponds to the WebAssembly
    /// floating point comparisons of the same name.
    ///
    /// When this instruction compares floating point vectors, it returns a
    /// vector with the results of lane-wise comparisons.
    ///
    /// Inputs:
    ///
    /// - Cond: A floating point comparison condition code
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn fcmp<T1: Into<ir::condcodes::FloatCC>>(self, Cond: T1, x: ir::Value, y: ir::Value) -> Value {
        let Cond = Cond.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.FloatCompare(Opcode::Fcmp, ctrl_typevar, Cond, x, y);
        dfg.first_result(inst)
    }

    /// Floating point comparison returning flags.
    ///
    /// Compares two numbers like `fcmp`, but returns floating point CPU
    /// flags instead of testing a specific condition.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - f: CPU flags representing the result of a floating point comparison. These
    /// flags can be tested with a :type:`floatcc` condition code.
    #[allow(non_snake_case)]
    fn ffcmp(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ffcmp, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point addition.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fadd(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fadd, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point subtraction.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fsub(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fsub, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point multiplication.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fmul(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fmul, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point division.
    ///
    /// Unlike the integer division instructions ` and
    /// `udiv`, this can't trap. Division by zero is infinity or
    /// NaN, depending on the dividend.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fdiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fdiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point square root.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn sqrt(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Sqrt, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point fused multiply-and-add.
    ///
    /// Computes `a := xy+z` without any intermediate rounding of the
    /// product.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    /// - z: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fma(self, x: ir::Value, y: ir::Value, z: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::Fma, ctrl_typevar, x, y, z);
        dfg.first_result(inst)
    }

    /// Floating point negation.
    ///
    /// Note that this is a pure bitwise operation.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` with its sign bit inverted
    #[allow(non_snake_case)]
    fn fneg(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Fneg, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point absolute value.
    ///
    /// Note that this is a pure bitwise operation.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` with its sign bit cleared
    #[allow(non_snake_case)]
    fn fabs(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Fabs, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point copy sign.
    ///
    /// Note that this is a pure bitwise operation. The sign bit from ``y`` is
    /// copied to the sign bit of ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` with its sign bit changed to that of ``y``
    #[allow(non_snake_case)]
    fn fcopysign(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fcopysign, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point minimum, propagating NaNs using the WebAssembly rules.
    ///
    /// If either operand is NaN, this returns NaN with an unspecified sign. Furthermore, if
    /// each input NaN consists of a mantissa whose most significant bit is 1 and the rest is
    /// 0, then the output has the same form. Otherwise, the output mantissa's most significant
    /// bit is 1 and the rest is unspecified.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: The smaller of ``x`` and ``y``
    #[allow(non_snake_case)]
    fn fmin(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fmin, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point pseudo-minimum, propagating NaNs.  This behaves differently from ``fmin``.
    /// See <https://github.com/WebAssembly/simd/pull/122> for background.
    ///
    /// The behaviour is defined as ``fmin_pseudo(a, b) = (b < a) ? b : a``, and the behaviour
    /// for zero or NaN inputs follows from the behaviour of ``<`` with such inputs.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: The smaller of ``x`` and ``y``
    #[allow(non_snake_case)]
    fn fmin_pseudo(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::FminPseudo, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point maximum, propagating NaNs using the WebAssembly rules.
    ///
    /// If either operand is NaN, this returns NaN with an unspecified sign. Furthermore, if
    /// each input NaN consists of a mantissa whose most significant bit is 1 and the rest is
    /// 0, then the output has the same form. Otherwise, the output mantissa's most significant
    /// bit is 1 and the rest is unspecified.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: The larger of ``x`` and ``y``
    #[allow(non_snake_case)]
    fn fmax(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fmax, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point pseudo-maximum, propagating NaNs.  This behaves differently from ``fmax``.
    /// See <https://github.com/WebAssembly/simd/pull/122> for background.
    ///
    /// The behaviour is defined as ``fmax_pseudo(a, b) = (a < b) ? b : a``, and the behaviour
    /// for zero or NaN inputs follows from the behaviour of ``<`` with such inputs.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: The larger of ``x`` and ``y``
    #[allow(non_snake_case)]
    fn fmax_pseudo(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::FmaxPseudo, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Round floating point round to integral, towards positive infinity.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` rounded to integral value
    #[allow(non_snake_case)]
    fn ceil(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Ceil, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Round floating point round to integral, towards negative infinity.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` rounded to integral value
    #[allow(non_snake_case)]
    fn floor(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Floor, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Round floating point round to integral, towards zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` rounded to integral value
    #[allow(non_snake_case)]
    fn trunc(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Trunc, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Round floating point round to integral, towards nearest with ties to
    /// even.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` rounded to integral value
    #[allow(non_snake_case)]
    fn nearest(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Nearest, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reference verification.
    ///
    /// The condition code determines if the reference type in question is
    /// null or not.
    ///
    /// Inputs:
    ///
    /// - x: A scalar reference type
    ///
    /// Outputs:
    ///
    /// - a: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn is_null(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::IsNull, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reference verification.
    ///
    /// The condition code determines if the reference type in question is
    /// invalid or not.
    ///
    /// Inputs:
    ///
    /// - x: A scalar reference type
    ///
    /// Outputs:
    ///
    /// - a: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn is_invalid(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::IsInvalid, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reinterpret the bits in `x` as a different type.
    ///
    /// The input and output types must be storable to memory and of the same
    /// size. A bitcast is equivalent to storing one type and loading the other
    /// type from the same address, both using the specified MemFlags.
    ///
    /// Note that this operation only supports the `big` or `little` MemFlags.
    /// The specified byte order only affects the result in the case where
    /// input and output types differ in lane count/size.  In this case, the
    /// operation is only valid if a byte order specifier is provided.
    ///
    /// Inputs:
    ///
    /// - MemTo (controlling type variable):
    /// - MemFlags: Memory operation flags
    /// - x: Any type that can be stored in memory
    ///
    /// Outputs:
    ///
    /// - a: Bits of `x` reinterpreted
    #[allow(non_snake_case)]
    fn bitcast<T1: Into<ir::MemFlags>>(self, MemTo: crate::ir::Type, MemFlags: T1, x: ir::Value) -> Value {
        let MemFlags = MemFlags.into();
        let (inst, dfg) = self.LoadNoOffset(Opcode::Bitcast, MemTo, MemFlags, x);
        dfg.first_result(inst)
    }

    /// Copies a scalar value to a vector value.  The scalar is copied into the
    /// least significant lane of the vector, and all other lanes will be zero.
    ///
    /// Inputs:
    ///
    /// - TxN (controlling type variable): A SIMD vector type
    /// - s: A scalar value
    ///
    /// Outputs:
    ///
    /// - a: A vector value
    #[allow(non_snake_case)]
    fn scalar_to_vector(self, TxN: crate::ir::Type, s: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::ScalarToVector, TxN, s);
        dfg.first_result(inst)
    }

    /// Convert `x` to an integer mask.
    ///
    /// True maps to all 1s and false maps to all 0s. The result type must have
    /// the same number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): An integer type with the same number of lanes
    /// - x: A scalar or vector whose values are truthy
    ///
    /// Outputs:
    ///
    /// - a: An integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn bmask(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Bmask, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a smaller integer type by discarding
    /// the most significant bits.
    ///
    /// This is the same as reducing modulo `2^n`.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A smaller integer type
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A smaller integer type
    #[allow(non_snake_case)]
    fn ireduce(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Ireduce, IntTo, x);
        dfg.first_result(inst)
    }

    /// Combine `x` and `y` into a vector with twice the lanes but half the integer width while
    /// saturating overflowing values to the signed maximum and minimum.
    ///
    /// The lanes will be concatenated after narrowing. For example, when `x` and `y` are `i32x4`
    /// and `x = [x3, x2, x1, x0]` and `y = [y3, y2, y1, y0]`, then after narrowing the value
    /// returned is an `i16x8`: `a = [y3', y2', y1', y0', x3', x2', x1', x0']`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    /// - y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn snarrow(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Snarrow, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Combine `x` and `y` into a vector with twice the lanes but half the integer width while
    /// saturating overflowing values to the unsigned maximum and minimum.
    ///
    /// Note that all input lanes are considered signed: any negative lanes will overflow and be
    /// replaced with the unsigned minimum, `0x00`.
    ///
    /// The lanes will be concatenated after narrowing. For example, when `x` and `y` are `i32x4`
    /// and `x = [x3, x2, x1, x0]` and `y = [y3, y2, y1, y0]`, then after narrowing the value
    /// returned is an `i16x8`: `a = [y3', y2', y1', y0', x3', x2', x1', x0']`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    /// - y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn unarrow(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Unarrow, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Combine `x` and `y` into a vector with twice the lanes but half the integer width while
    /// saturating overflowing values to the unsigned maximum and minimum.
    ///
    /// Note that all input lanes are considered unsigned: any negative values will be interpreted as unsigned, overflowing and being replaced with the unsigned maximum.
    ///
    /// The lanes will be concatenated after narrowing. For example, when `x` and `y` are `i32x4`
    /// and `x = [x3, x2, x1, x0]` and `y = [y3, y2, y1, y0]`, then after narrowing the value
    /// returned is an `i16x8`: `a = [y3', y2', y1', y0', x3', x2', x1', x0']`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    /// - y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn uunarrow(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Uunarrow, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Widen the low lanes of `x` using signed extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn swiden_low(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::SwidenLow, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Widen the high lanes of `x` using signed extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn swiden_high(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::SwidenHigh, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Widen the low lanes of `x` using unsigned extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn uwiden_low(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::UwidenLow, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Widen the high lanes of `x` using unsigned extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn uwiden_high(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::UwidenHigh, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Does lane-wise integer pairwise addition on two operands, putting the
    /// combined results into a single vector result. Here a pair refers to adjacent
    /// lanes in a vector, i.e. i*2 + (i*2+1) for i == num_lanes/2. The first operand
    /// pairwise add results will make up the low half of the resulting vector while
    /// the second operand pairwise add results will make up the upper half of the
    /// resulting vector.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    /// - y: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    #[allow(non_snake_case)]
    fn iadd_pairwise(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddPairwise, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Takes corresponding elements in `x` and `y`, performs a sign-extending length-doubling
    /// multiplication on them, then adds adjacent pairs of elements to form the result.  For
    /// example, if the input vectors are `[x3, x2, x1, x0]` and `[y3, y2, y1, y0]`, it produces
    /// the vector `[r1, r0]`, where `r1 = sx(x3) * sx(y3) + sx(x2) * sx(y2)` and
    /// `r0 = sx(x1) * sx(y1) + sx(x0) * sx(y0)`, and `sx(n)` sign-extends `n` to twice its width.
    ///
    /// This will double the lane width and halve the number of lanes.  So the resulting
    /// vector has the same number of bits as `x` and `y` do (individually).
    ///
    /// See <https://github.com/WebAssembly/simd/pull/127> for background info.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing 8 integer lanes each 16 bits wide.
    /// - y: A SIMD vector type containing 8 integer lanes each 16 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn widening_pairwise_dot_product_s(self, x: ir::Value, y: ir::Value) -> Value {
        let (inst, dfg) = self.Binary(Opcode::WideningPairwiseDotProductS, types::INVALID, x, y);
        dfg.first_result(inst)
    }

    /// Convert `x` to a larger integer type by zero-extending.
    ///
    /// Each lane in `x` is converted to a larger integer type by adding
    /// zeroes. The result has the same numerical value as `x` when both are
    /// interpreted as unsigned integers.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and each lane must not have fewer bits that the input lanes. If the
    /// input and output types are the same, this is a no-op.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn uextend(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Uextend, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a larger integer type by sign-extending.
    ///
    /// Each lane in `x` is converted to a larger integer type by replicating
    /// the sign bit. The result has the same numerical value as `x` when both
    /// are interpreted as signed integers.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and each lane must not have fewer bits that the input lanes. If the
    /// input and output types are the same, this is a no-op.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn sextend(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Sextend, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a larger floating point format.
    ///
    /// Each lane in `x` is converted to the destination floating point format.
    /// This is an exact operation.
    ///
    /// Cranelift currently only supports two floating point formats
    /// - `f32` and `f64`. This may change in the future.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and the result lanes must not have fewer bits than the input lanes.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fpromote(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Fpromote, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a smaller floating point format.
    ///
    /// Each lane in `x` is converted to the destination floating point format
    /// by rounding to nearest, ties to even.
    ///
    /// Cranelift currently only supports two floating point formats
    /// - `f32` and `f64`. This may change in the future.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and the result lanes must not have more bits than the input lanes.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fdemote(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Fdemote, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a smaller floating point format.
    ///
    /// Each lane in `x` is converted to the destination floating point format
    /// by rounding to nearest, ties to even.
    ///
    /// Cranelift currently only supports two floating point formats
    /// - `f32` and `f64`. This may change in the future.
    ///
    /// Fvdemote differs from fdemote in that with fvdemote it targets vectors.
    /// Fvdemote is constrained to having the input type being F64x2 and the result
    /// type being F32x4. The result lane that was the upper half of the input lane
    /// is initialized to zero.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type consisting of 2 lanes of 64-bit floats
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type consisting of 4 lanes of 32-bit floats
    #[allow(non_snake_case)]
    fn fvdemote(self, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Fvdemote, types::INVALID, x);
        dfg.first_result(inst)
    }

    /// Converts packed single precision floating point to packed double precision floating point.
    ///
    /// Considering only the lower half of the register, the low lanes in `x` are interpreted as
    /// single precision floats that are then converted to a double precision floats.
    ///
    /// The result type will have half the number of vector lanes as the input. Fvpromote_low is
    /// constrained to input F32x4 with a result type of F64x2.
    ///
    /// Inputs:
    ///
    /// - a: A SIMD vector type consisting of 4 lanes of 32-bit floats
    ///
    /// Outputs:
    ///
    /// - x: A SIMD vector type consisting of 2 lanes of 64-bit floats
    #[allow(non_snake_case)]
    fn fvpromote_low(self, a: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FvpromoteLow, types::INVALID, a);
        dfg.first_result(inst)
    }

    /// Converts floating point scalars to unsigned integer.
    ///
    /// Only operates on `x` if it is a scalar. If `x` is NaN or if
    /// the unsigned integral value cannot be represented in the result
    /// type, this instruction traps.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar only floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_uint(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToUint, IntTo, x);
        dfg.first_result(inst)
    }

    /// Converts floating point scalars to signed integer.
    ///
    /// Only operates on `x` if it is a scalar. If `x` is NaN or if
    /// the unsigned integral value cannot be represented in the result
    /// type, this instruction traps.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar only floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_sint(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToSint, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert floating point to unsigned integer as fcvt_to_uint does, but
    /// saturates the input instead of trapping. NaN and negative values are
    /// converted to 0.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_uint_sat(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToUintSat, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert floating point to signed integer as fcvt_to_sint does, but
    /// saturates the input instead of trapping. NaN values are converted to 0.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_sint_sat(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToSintSat, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert unsigned integer to floating point.
    ///
    /// Each lane in `x` is interpreted as an unsigned integer and converted to
    /// floating point using round to nearest, ties to even.
    ///
    /// The result type must have the same number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fcvt_from_uint(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtFromUint, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Convert signed integer to floating point.
    ///
    /// Each lane in `x` is interpreted as a signed integer and converted to
    /// floating point using round to nearest, ties to even.
    ///
    /// The result type must have the same number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fcvt_from_sint(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtFromSint, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Converts packed signed 32-bit integers to packed double precision floating point.
    ///
    /// Considering only the low half of the register, each lane in `x` is interpreted as a
    /// signed 32-bit integer that is then converted to a double precision float. This
    /// instruction differs from fcvt_from_sint in that it converts half the number of lanes
    /// which are converted to occupy twice the number of bits. No rounding should be needed
    /// for the resulting float.
    ///
    /// The result type will have half the number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fcvt_low_from_sint(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtLowFromSint, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Split an integer into low and high parts.
    ///
    /// Vectors of integers are split lane-wise, so the results have the same
    /// number of lanes as the input, but the lanes are half the size.
    ///
    /// Returns the low half of `x` and the high half of `x` as two independent
    /// values.
    ///
    /// Inputs:
    ///
    /// - x: An integer type with lanes from `i16` upwards
    ///
    /// Outputs:
    ///
    /// - lo: The low bits of `x`
    /// - hi: The high bits of `x`
    #[allow(non_snake_case)]
    fn isplit(self, x: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Isplit, ctrl_typevar, x);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Concatenate low and high bits to form a larger integer type.
    ///
    /// Vectors of integers are concatenated lane-wise such that the result has
    /// the same number of lanes as the inputs, but the lanes are twice the
    /// size.
    ///
    /// Inputs:
    ///
    /// - lo: An integer type with lanes type to `i64`
    /// - hi: An integer type with lanes type to `i64`
    ///
    /// Outputs:
    ///
    /// - a: The concatenation of `lo` and `hi`
    #[allow(non_snake_case)]
    fn iconcat(self, lo: ir::Value, hi: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(lo);
        let (inst, dfg) = self.Binary(Opcode::Iconcat, ctrl_typevar, lo, hi);
        dfg.first_result(inst)
    }

    /// Atomically read-modify-write memory at `p`, with second operand `x`.  The old value is
    /// returned.  `p` has the type of the target word size, and `x` may be an integer type of
    /// 8, 16, 32 or 64 bits, even on a 32-bit target.  The type of the returned value is the
    /// same as the type of `x`.  This operation is sequentially consistent and creates
    /// happens-before edges that order normal (non-atomic) loads and stores.
    ///
    /// Inputs:
    ///
    /// - AtomicMem (controlling type variable): Any type that can be stored in memory, which can be used in an atomic operation
    /// - MemFlags: Memory operation flags
    /// - AtomicRmwOp: Atomic Read-Modify-Write Ops
    /// - p: An integer address type
    /// - x: Value to be atomically stored
    ///
    /// Outputs:
    ///
    /// - a: Value atomically loaded
    #[allow(non_snake_case)]
    fn atomic_rmw<T1: Into<ir::MemFlags>, T2: Into<ir::AtomicRmwOp>>(self, AtomicMem: crate::ir::Type, MemFlags: T1, AtomicRmwOp: T2, p: ir::Value, x: ir::Value) -> Value {
        let MemFlags = MemFlags.into();
        let AtomicRmwOp = AtomicRmwOp.into();
        let (inst, dfg) = self.AtomicRmw(Opcode::AtomicRmw, AtomicMem, MemFlags, AtomicRmwOp, p, x);
        dfg.first_result(inst)
    }

    /// Perform an atomic compare-and-swap operation on memory at `p`, with expected value `e`,
    /// storing `x` if the value at `p` equals `e`.  The old value at `p` is returned,
    /// regardless of whether the operation succeeds or fails.  `p` has the type of the target
    /// word size, and `x` and `e` must have the same type and the same size, which may be an
    /// integer type of 8, 16, 32 or 64 bits, even on a 32-bit target.  The type of the returned
    /// value is the same as the type of `x` and `e`.  This operation is sequentially
    /// consistent and creates happens-before edges that order normal (non-atomic) loads and
    /// stores.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - e: Expected value in CAS
    /// - x: Value to be atomically stored
    ///
    /// Outputs:
    ///
    /// - a: Value atomically loaded
    #[allow(non_snake_case)]
    fn atomic_cas<T1: Into<ir::MemFlags>>(self, MemFlags: T1, p: ir::Value, e: ir::Value, x: ir::Value) -> Value {
        let MemFlags = MemFlags.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.AtomicCas(Opcode::AtomicCas, ctrl_typevar, MemFlags, p, e, x);
        dfg.first_result(inst)
    }

    /// Atomically load from memory at `p`.
    ///
    /// This is a polymorphic instruction that can load any value type which has a memory
    /// representation.  It should only be used for integer types with 8, 16, 32 or 64 bits.
    /// This operation is sequentially consistent and creates happens-before edges that order
    /// normal (non-atomic) loads and stores.
    ///
    /// Inputs:
    ///
    /// - AtomicMem (controlling type variable): Any type that can be stored in memory, which can be used in an atomic operation
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    ///
    /// Outputs:
    ///
    /// - a: Value atomically loaded
    #[allow(non_snake_case)]
    fn atomic_load<T1: Into<ir::MemFlags>>(self, AtomicMem: crate::ir::Type, MemFlags: T1, p: ir::Value) -> Value {
        let MemFlags = MemFlags.into();
        let (inst, dfg) = self.LoadNoOffset(Opcode::AtomicLoad, AtomicMem, MemFlags, p);
        dfg.first_result(inst)
    }

    /// Atomically store `x` to memory at `p`.
    ///
    /// This is a polymorphic instruction that can store any value type with a memory
    /// representation.  It should only be used for integer types with 8, 16, 32 or 64 bits.
    /// This operation is sequentially consistent and creates happens-before edges that order
    /// normal (non-atomic) loads and stores.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: Value to be atomically stored
    /// - p: An integer address type
    #[allow(non_snake_case)]
    fn atomic_store<T1: Into<ir::MemFlags>>(self, MemFlags: T1, x: ir::Value, p: ir::Value) -> Inst {
        let MemFlags = MemFlags.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.StoreNoOffset(Opcode::AtomicStore, ctrl_typevar, MemFlags, x, p).0
    }

    /// A memory fence.  This must provide ordering to ensure that, at a minimum, neither loads
    /// nor stores of any kind may move forwards or backwards across the fence.  This operation
    /// is sequentially consistent.
    #[allow(non_snake_case)]
    fn fence(self) -> Inst {
        self.NullAry(Opcode::Fence, types::INVALID).0
    }

    /// Return a fixed length sub vector, extracted from a dynamic vector.
    ///
    /// Inputs:
    ///
    /// - x: The dynamic vector to extract from
    /// - y: 128-bit vector index
    ///
    /// Outputs:
    ///
    /// - a: New fixed vector
    #[allow(non_snake_case)]
    fn extract_vector<T1: Into<ir::immediates::Uimm8>>(self, x: ir::Value, y: T1) -> Value {
        let y = y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm8(Opcode::ExtractVector, ctrl_typevar, y, x);
        dfg.first_result(inst)
    }

Branch(imms=(destination: ir::Block), vals=1)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 53)
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    fn brz(mut self, c: ir::Value, block: ir::Block, args: &[Value]) -> Inst {
        let ctrl_typevar = self.data_flow_graph().value_type(c);
        let mut vlist = ir::ValueList::default();
        {
            let pool = &mut self.data_flow_graph_mut().value_lists;
            vlist.push(c, pool);
            vlist.extend(args.iter().cloned(), pool);
        }
        self.Branch(Opcode::Brz, ctrl_typevar, block, vlist).0
    }

    /// Branch when non-zero.
    ///
    /// Take the branch when ``c != 0``.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - block: Destination basic block
    /// - args: block arguments
    #[allow(non_snake_case)]
    fn brnz(mut self, c: ir::Value, block: ir::Block, args: &[Value]) -> Inst {
        let ctrl_typevar = self.data_flow_graph().value_type(c);
        let mut vlist = ir::ValueList::default();
        {
            let pool = &mut self.data_flow_graph_mut().value_lists;
            vlist.push(c, pool);
            vlist.extend(args.iter().cloned(), pool);
        }
        self.Branch(Opcode::Brnz, ctrl_typevar, block, vlist).0
    }

BranchTable(imms=(destination: ir::Block, table: ir::JumpTable), vals=1)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 99)
98
99
100
    fn br_table(self, x: ir::Value, block: ir::Block, JT: ir::JumpTable) -> Inst {
        self.BranchTable(Opcode::BrTable, types::INVALID, block, JT, x).0
    }

Call(imms=(func_ref: ir::FuncRef), vals=0)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 216)
210
211
212
213
214
215
216
217
    fn call(mut self, FN: ir::FuncRef, args: &[Value]) -> Inst {
        let mut vlist = ir::ValueList::default();
        {
            let pool = &mut self.data_flow_graph_mut().value_lists;
            vlist.extend(args.iter().cloned(), pool);
        }
        self.Call(Opcode::Call, types::INVALID, FN, vlist).0
    }

CallIndirect(imms=(sig_ref: ir::SigRef), vals=1)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 247)
239
240
241
242
243
244
245
246
247
248
    fn call_indirect(mut self, SIG: ir::SigRef, callee: ir::Value, args: &[Value]) -> Inst {
        let ctrl_typevar = self.data_flow_graph().value_type(callee);
        let mut vlist = ir::ValueList::default();
        {
            let pool = &mut self.data_flow_graph_mut().value_lists;
            vlist.push(callee, pool);
            vlist.extend(args.iter().cloned(), pool);
        }
        self.CallIndirect(Opcode::CallIndirect, ctrl_typevar, SIG, vlist).0
    }

CondTrap(imms=(code: ir::TrapCode), vals=1)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 131)
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    fn trapz<T1: Into<ir::TrapCode>>(self, c: ir::Value, code: T1) -> Inst {
        let code = code.into();
        let ctrl_typevar = self.data_flow_graph().value_type(c);
        self.CondTrap(Opcode::Trapz, ctrl_typevar, code, c).0
    }

    /// A resumable trap.
    ///
    /// This instruction allows non-conditional traps to be used as non-terminal instructions.
    ///
    /// Inputs:
    ///
    /// - code: A trap reason code.
    #[allow(non_snake_case)]
    fn resumable_trap<T1: Into<ir::TrapCode>>(self, code: T1) -> Inst {
        let code = code.into();
        self.Trap(Opcode::ResumableTrap, types::INVALID, code).0
    }

    /// Trap when non-zero.
    ///
    /// If ``c`` is zero, execution continues at the following instruction.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - code: A trap reason code.
    #[allow(non_snake_case)]
    fn trapnz<T1: Into<ir::TrapCode>>(self, c: ir::Value, code: T1) -> Inst {
        let code = code.into();
        let ctrl_typevar = self.data_flow_graph().value_type(c);
        self.CondTrap(Opcode::Trapnz, ctrl_typevar, code, c).0
    }

    /// A resumable trap to be called when the passed condition is non-zero.
    ///
    /// If ``c`` is zero, execution continues at the following instruction.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - code: A trap reason code.
    #[allow(non_snake_case)]
    fn resumable_trapnz<T1: Into<ir::TrapCode>>(self, c: ir::Value, code: T1) -> Inst {
        let code = code.into();
        let ctrl_typevar = self.data_flow_graph().value_type(c);
        self.CondTrap(Opcode::ResumableTrapnz, ctrl_typevar, code, c).0
    }

DynamicStackLoad(imms=(dynamic_stack_slot: ir::DynamicStackSlot), vals=0)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 967)
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
    fn dynamic_stack_load(self, Mem: crate::ir::Type, DSS: ir::DynamicStackSlot) -> Value {
        let (inst, dfg) = self.DynamicStackLoad(Opcode::DynamicStackLoad, Mem, DSS);
        dfg.first_result(inst)
    }

    /// Store a value to a dynamic stack slot.
    ///
    /// This is a polymorphic instruction that can store any dynamic value type with a
    /// memory representation.
    ///
    /// Inputs:
    ///
    /// - x: Value to be stored
    /// - DSS: A dynamic stack slot
    #[allow(non_snake_case)]
    fn dynamic_stack_store(self, x: ir::Value, DSS: ir::DynamicStackSlot) -> Inst {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.DynamicStackStore(Opcode::DynamicStackStore, ctrl_typevar, DSS, x).0
    }

    /// Get the address of a dynamic stack slot.
    ///
    /// Compute the absolute address of the first byte of a dynamic stack slot.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - DSS: A dynamic stack slot
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn dynamic_stack_addr(self, iAddr: crate::ir::Type, DSS: ir::DynamicStackSlot) -> Value {
        let (inst, dfg) = self.DynamicStackLoad(Opcode::DynamicStackAddr, iAddr, DSS);
        dfg.first_result(inst)
    }

DynamicStackStore(imms=(dynamic_stack_slot: ir::DynamicStackSlot), vals=1)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 983)
981
982
983
984
    fn dynamic_stack_store(self, x: ir::Value, DSS: ir::DynamicStackSlot) -> Inst {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.DynamicStackStore(Opcode::DynamicStackStore, ctrl_typevar, DSS, x).0
    }

FloatCompare(imms=(cond: ir::condcodes::FloatCC), vals=2)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 3032)
3029
3030
3031
3032
3033
3034
    fn fcmp<T1: Into<ir::condcodes::FloatCC>>(self, Cond: T1, x: ir::Value, y: ir::Value) -> Value {
        let Cond = Cond.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.FloatCompare(Opcode::Fcmp, ctrl_typevar, Cond, x, y);
        dfg.first_result(inst)
    }

FuncAddr(imms=(func_ref: ir::FuncRef), vals=0)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 268)
267
268
269
270
    fn func_addr(self, iAddr: crate::ir::Type, FN: ir::FuncRef) -> Value {
        let (inst, dfg) = self.FuncAddr(Opcode::FuncAddr, iAddr, FN);
        dfg.first_result(inst)
    }

HeapAddr(imms=(heap: ir::Heap, offset: ir::immediates::Uimm32, size: ir::immediates::Uimm8), vals=1)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 1080)
1077
1078
1079
1080
1081
1082
    fn heap_addr<T1: Into<ir::immediates::Uimm32>, T2: Into<ir::immediates::Uimm8>>(self, iAddr: crate::ir::Type, H: ir::Heap, index: ir::Value, Offset: T1, Size: T2) -> Value {
        let Offset = Offset.into();
        let Size = Size.into();
        let (inst, dfg) = self.HeapAddr(Opcode::HeapAddr, iAddr, H, Offset, Size, index);
        dfg.first_result(inst)
    }

HeapLoad(imms=(heap_imm: ir::HeapImm), vals=1)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 1105)
1103
1104
1105
1106
1107
    fn heap_load<T1: Into<ir::HeapImm>>(self, Mem: crate::ir::Type, heap_imm: T1, index: ir::Value) -> Value {
        let heap_imm = heap_imm.into();
        let (inst, dfg) = self.HeapLoad(Opcode::HeapLoad, Mem, heap_imm, index);
        dfg.first_result(inst)
    }

HeapStore(imms=(heap_imm: ir::HeapImm), vals=2)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 1127)
1124
1125
1126
1127
1128
    fn heap_store<T1: Into<ir::HeapImm>>(self, heap_imm: T1, index: ir::Value, a: ir::Value) -> Inst {
        let heap_imm = heap_imm.into();
        let ctrl_typevar = self.data_flow_graph().value_type(index);
        self.HeapStore(Opcode::HeapStore, ctrl_typevar, heap_imm, index, a).0
    }

IntAddTrap(imms=(code: ir::TrapCode), vals=2)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 2252)
2249
2250
2251
2252
2253
2254
    fn uadd_overflow_trap<T1: Into<ir::TrapCode>>(self, x: ir::Value, y: ir::Value, code: T1) -> Value {
        let code = code.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntAddTrap(Opcode::UaddOverflowTrap, ctrl_typevar, code, x, y);
        dfg.first_result(inst)
    }

IntCompare(imms=(cond: ir::condcodes::IntCC), vals=2)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 1587)
1584
1585
1586
1587
1588
1589
    fn icmp<T1: Into<ir::condcodes::IntCC>>(self, Cond: T1, x: ir::Value, y: ir::Value) -> Value {
        let Cond = Cond.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntCompare(Opcode::Icmp, ctrl_typevar, Cond, x, y);
        dfg.first_result(inst)
    }

IntCompareImm(imms=(cond: ir::condcodes::IntCC, imm: ir::immediates::Imm64), vals=1)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 1614)
1610
1611
1612
1613
1614
1615
1616
    fn icmp_imm<T1: Into<ir::condcodes::IntCC>, T2: Into<ir::immediates::Imm64>>(self, Cond: T1, x: ir::Value, Y: T2) -> Value {
        let Cond = Cond.into();
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntCompareImm(Opcode::IcmpImm, ctrl_typevar, Cond, Y, x);
        dfg.first_result(inst)
    }

Jump(imms=(destination: ir::Block), vals=0)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 32)
26
27
28
29
30
31
32
33
    fn jump(mut self, block: ir::Block, args: &[Value]) -> Inst {
        let mut vlist = ir::ValueList::default();
        {
            let pool = &mut self.data_flow_graph_mut().value_lists;
            vlist.extend(args.iter().cloned(), pool);
        }
        self.Jump(Opcode::Jump, types::INVALID, block, vlist).0
    }

Load(imms=(flags: ir::MemFlags, offset: ir::immediates::Offset32), vals=1)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 549)
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
    fn load<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, Mem: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Load, Mem, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store ``x`` to memory at ``p + Offset``.
    ///
    /// This is a polymorphic instruction that can store any value type with a
    /// memory representation.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: Value to be stored
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn store<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Store, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 8 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i8`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - iExt8 (controlling type variable): An integer type with more than 8 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 8 bits
    #[allow(non_snake_case)]
    fn uload8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt8: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Uload8, iExt8, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 8 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i8`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - iExt8 (controlling type variable): An integer type with more than 8 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 8 bits
    #[allow(non_snake_case)]
    fn sload8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt8: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Sload8, iExt8, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 8 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i8`` followed by ``store.i8``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 8 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore8, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 16 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i16`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - iExt16 (controlling type variable): An integer type with more than 16 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 16 bits
    #[allow(non_snake_case)]
    fn uload16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt16: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Uload16, iExt16, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 16 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i16`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - iExt16 (controlling type variable): An integer type with more than 16 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 16 bits
    #[allow(non_snake_case)]
    fn sload16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt16: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Sload16, iExt16, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 16 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i16`` followed by ``store.i16``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 16 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore16, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 32 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i32`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 32 bits
    #[allow(non_snake_case)]
    fn uload32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload32, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 32 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i32`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 32 bits
    #[allow(non_snake_case)]
    fn sload32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload32, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 32 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i32`` followed by ``store.i32``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 32 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore32, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load an 8x8 vector (64 bits) from memory at ``p + Offset`` and zero-extend into an i16x8
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn uload8x8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload8x8, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load an 8x8 vector (64 bits) from memory at ``p + Offset`` and sign-extend into an i16x8
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn sload8x8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload8x8, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a 16x4 vector (64 bits) from memory at ``p + Offset`` and zero-extend into an i32x4
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn uload16x4<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload16x4, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a 16x4 vector (64 bits) from memory at ``p + Offset`` and sign-extend into an i32x4
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn sload16x4<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload16x4, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load an 32x2 vector (64 bits) from memory at ``p + Offset`` and zero-extend into an i64x2
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn uload32x2<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload32x2, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a 32x2 vector (64 bits) from memory at ``p + Offset`` and sign-extend into an i64x2
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn sload32x2<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload32x2, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

LoadNoOffset(imms=(flags: ir::MemFlags), vals=1)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 3436)
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
    fn bitcast<T1: Into<ir::MemFlags>>(self, MemTo: crate::ir::Type, MemFlags: T1, x: ir::Value) -> Value {
        let MemFlags = MemFlags.into();
        let (inst, dfg) = self.LoadNoOffset(Opcode::Bitcast, MemTo, MemFlags, x);
        dfg.first_result(inst)
    }

    /// Copies a scalar value to a vector value.  The scalar is copied into the
    /// least significant lane of the vector, and all other lanes will be zero.
    ///
    /// Inputs:
    ///
    /// - TxN (controlling type variable): A SIMD vector type
    /// - s: A scalar value
    ///
    /// Outputs:
    ///
    /// - a: A vector value
    #[allow(non_snake_case)]
    fn scalar_to_vector(self, TxN: crate::ir::Type, s: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::ScalarToVector, TxN, s);
        dfg.first_result(inst)
    }

    /// Convert `x` to an integer mask.
    ///
    /// True maps to all 1s and false maps to all 0s. The result type must have
    /// the same number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): An integer type with the same number of lanes
    /// - x: A scalar or vector whose values are truthy
    ///
    /// Outputs:
    ///
    /// - a: An integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn bmask(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Bmask, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a smaller integer type by discarding
    /// the most significant bits.
    ///
    /// This is the same as reducing modulo `2^n`.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A smaller integer type
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A smaller integer type
    #[allow(non_snake_case)]
    fn ireduce(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Ireduce, IntTo, x);
        dfg.first_result(inst)
    }

    /// Combine `x` and `y` into a vector with twice the lanes but half the integer width while
    /// saturating overflowing values to the signed maximum and minimum.
    ///
    /// The lanes will be concatenated after narrowing. For example, when `x` and `y` are `i32x4`
    /// and `x = [x3, x2, x1, x0]` and `y = [y3, y2, y1, y0]`, then after narrowing the value
    /// returned is an `i16x8`: `a = [y3', y2', y1', y0', x3', x2', x1', x0']`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    /// - y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn snarrow(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Snarrow, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Combine `x` and `y` into a vector with twice the lanes but half the integer width while
    /// saturating overflowing values to the unsigned maximum and minimum.
    ///
    /// Note that all input lanes are considered signed: any negative lanes will overflow and be
    /// replaced with the unsigned minimum, `0x00`.
    ///
    /// The lanes will be concatenated after narrowing. For example, when `x` and `y` are `i32x4`
    /// and `x = [x3, x2, x1, x0]` and `y = [y3, y2, y1, y0]`, then after narrowing the value
    /// returned is an `i16x8`: `a = [y3', y2', y1', y0', x3', x2', x1', x0']`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    /// - y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn unarrow(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Unarrow, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Combine `x` and `y` into a vector with twice the lanes but half the integer width while
    /// saturating overflowing values to the unsigned maximum and minimum.
    ///
    /// Note that all input lanes are considered unsigned: any negative values will be interpreted as unsigned, overflowing and being replaced with the unsigned maximum.
    ///
    /// The lanes will be concatenated after narrowing. For example, when `x` and `y` are `i32x4`
    /// and `x = [x3, x2, x1, x0]` and `y = [y3, y2, y1, y0]`, then after narrowing the value
    /// returned is an `i16x8`: `a = [y3', y2', y1', y0', x3', x2', x1', x0']`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    /// - y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn uunarrow(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Uunarrow, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Widen the low lanes of `x` using signed extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn swiden_low(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::SwidenLow, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Widen the high lanes of `x` using signed extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn swiden_high(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::SwidenHigh, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Widen the low lanes of `x` using unsigned extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn uwiden_low(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::UwidenLow, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Widen the high lanes of `x` using unsigned extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn uwiden_high(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::UwidenHigh, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Does lane-wise integer pairwise addition on two operands, putting the
    /// combined results into a single vector result. Here a pair refers to adjacent
    /// lanes in a vector, i.e. i*2 + (i*2+1) for i == num_lanes/2. The first operand
    /// pairwise add results will make up the low half of the resulting vector while
    /// the second operand pairwise add results will make up the upper half of the
    /// resulting vector.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    /// - y: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    #[allow(non_snake_case)]
    fn iadd_pairwise(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddPairwise, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Takes corresponding elements in `x` and `y`, performs a sign-extending length-doubling
    /// multiplication on them, then adds adjacent pairs of elements to form the result.  For
    /// example, if the input vectors are `[x3, x2, x1, x0]` and `[y3, y2, y1, y0]`, it produces
    /// the vector `[r1, r0]`, where `r1 = sx(x3) * sx(y3) + sx(x2) * sx(y2)` and
    /// `r0 = sx(x1) * sx(y1) + sx(x0) * sx(y0)`, and `sx(n)` sign-extends `n` to twice its width.
    ///
    /// This will double the lane width and halve the number of lanes.  So the resulting
    /// vector has the same number of bits as `x` and `y` do (individually).
    ///
    /// See <https://github.com/WebAssembly/simd/pull/127> for background info.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing 8 integer lanes each 16 bits wide.
    /// - y: A SIMD vector type containing 8 integer lanes each 16 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn widening_pairwise_dot_product_s(self, x: ir::Value, y: ir::Value) -> Value {
        let (inst, dfg) = self.Binary(Opcode::WideningPairwiseDotProductS, types::INVALID, x, y);
        dfg.first_result(inst)
    }

    /// Convert `x` to a larger integer type by zero-extending.
    ///
    /// Each lane in `x` is converted to a larger integer type by adding
    /// zeroes. The result has the same numerical value as `x` when both are
    /// interpreted as unsigned integers.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and each lane must not have fewer bits that the input lanes. If the
    /// input and output types are the same, this is a no-op.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn uextend(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Uextend, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a larger integer type by sign-extending.
    ///
    /// Each lane in `x` is converted to a larger integer type by replicating
    /// the sign bit. The result has the same numerical value as `x` when both
    /// are interpreted as signed integers.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and each lane must not have fewer bits that the input lanes. If the
    /// input and output types are the same, this is a no-op.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn sextend(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Sextend, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a larger floating point format.
    ///
    /// Each lane in `x` is converted to the destination floating point format.
    /// This is an exact operation.
    ///
    /// Cranelift currently only supports two floating point formats
    /// - `f32` and `f64`. This may change in the future.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and the result lanes must not have fewer bits than the input lanes.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fpromote(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Fpromote, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a smaller floating point format.
    ///
    /// Each lane in `x` is converted to the destination floating point format
    /// by rounding to nearest, ties to even.
    ///
    /// Cranelift currently only supports two floating point formats
    /// - `f32` and `f64`. This may change in the future.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and the result lanes must not have more bits than the input lanes.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fdemote(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Fdemote, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a smaller floating point format.
    ///
    /// Each lane in `x` is converted to the destination floating point format
    /// by rounding to nearest, ties to even.
    ///
    /// Cranelift currently only supports two floating point formats
    /// - `f32` and `f64`. This may change in the future.
    ///
    /// Fvdemote differs from fdemote in that with fvdemote it targets vectors.
    /// Fvdemote is constrained to having the input type being F64x2 and the result
    /// type being F32x4. The result lane that was the upper half of the input lane
    /// is initialized to zero.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type consisting of 2 lanes of 64-bit floats
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type consisting of 4 lanes of 32-bit floats
    #[allow(non_snake_case)]
    fn fvdemote(self, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Fvdemote, types::INVALID, x);
        dfg.first_result(inst)
    }

    /// Converts packed single precision floating point to packed double precision floating point.
    ///
    /// Considering only the lower half of the register, the low lanes in `x` are interpreted as
    /// single precision floats that are then converted to a double precision floats.
    ///
    /// The result type will have half the number of vector lanes as the input. Fvpromote_low is
    /// constrained to input F32x4 with a result type of F64x2.
    ///
    /// Inputs:
    ///
    /// - a: A SIMD vector type consisting of 4 lanes of 32-bit floats
    ///
    /// Outputs:
    ///
    /// - x: A SIMD vector type consisting of 2 lanes of 64-bit floats
    #[allow(non_snake_case)]
    fn fvpromote_low(self, a: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FvpromoteLow, types::INVALID, a);
        dfg.first_result(inst)
    }

    /// Converts floating point scalars to unsigned integer.
    ///
    /// Only operates on `x` if it is a scalar. If `x` is NaN or if
    /// the unsigned integral value cannot be represented in the result
    /// type, this instruction traps.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar only floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_uint(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToUint, IntTo, x);
        dfg.first_result(inst)
    }

    /// Converts floating point scalars to signed integer.
    ///
    /// Only operates on `x` if it is a scalar. If `x` is NaN or if
    /// the unsigned integral value cannot be represented in the result
    /// type, this instruction traps.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar only floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_sint(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToSint, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert floating point to unsigned integer as fcvt_to_uint does, but
    /// saturates the input instead of trapping. NaN and negative values are
    /// converted to 0.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_uint_sat(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToUintSat, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert floating point to signed integer as fcvt_to_sint does, but
    /// saturates the input instead of trapping. NaN values are converted to 0.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_sint_sat(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToSintSat, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert unsigned integer to floating point.
    ///
    /// Each lane in `x` is interpreted as an unsigned integer and converted to
    /// floating point using round to nearest, ties to even.
    ///
    /// The result type must have the same number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fcvt_from_uint(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtFromUint, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Convert signed integer to floating point.
    ///
    /// Each lane in `x` is interpreted as a signed integer and converted to
    /// floating point using round to nearest, ties to even.
    ///
    /// The result type must have the same number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fcvt_from_sint(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtFromSint, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Converts packed signed 32-bit integers to packed double precision floating point.
    ///
    /// Considering only the low half of the register, each lane in `x` is interpreted as a
    /// signed 32-bit integer that is then converted to a double precision float. This
    /// instruction differs from fcvt_from_sint in that it converts half the number of lanes
    /// which are converted to occupy twice the number of bits. No rounding should be needed
    /// for the resulting float.
    ///
    /// The result type will have half the number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fcvt_low_from_sint(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtLowFromSint, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Split an integer into low and high parts.
    ///
    /// Vectors of integers are split lane-wise, so the results have the same
    /// number of lanes as the input, but the lanes are half the size.
    ///
    /// Returns the low half of `x` and the high half of `x` as two independent
    /// values.
    ///
    /// Inputs:
    ///
    /// - x: An integer type with lanes from `i16` upwards
    ///
    /// Outputs:
    ///
    /// - lo: The low bits of `x`
    /// - hi: The high bits of `x`
    #[allow(non_snake_case)]
    fn isplit(self, x: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Isplit, ctrl_typevar, x);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Concatenate low and high bits to form a larger integer type.
    ///
    /// Vectors of integers are concatenated lane-wise such that the result has
    /// the same number of lanes as the inputs, but the lanes are twice the
    /// size.
    ///
    /// Inputs:
    ///
    /// - lo: An integer type with lanes type to `i64`
    /// - hi: An integer type with lanes type to `i64`
    ///
    /// Outputs:
    ///
    /// - a: The concatenation of `lo` and `hi`
    #[allow(non_snake_case)]
    fn iconcat(self, lo: ir::Value, hi: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(lo);
        let (inst, dfg) = self.Binary(Opcode::Iconcat, ctrl_typevar, lo, hi);
        dfg.first_result(inst)
    }

    /// Atomically read-modify-write memory at `p`, with second operand `x`.  The old value is
    /// returned.  `p` has the type of the target word size, and `x` may be an integer type of
    /// 8, 16, 32 or 64 bits, even on a 32-bit target.  The type of the returned value is the
    /// same as the type of `x`.  This operation is sequentially consistent and creates
    /// happens-before edges that order normal (non-atomic) loads and stores.
    ///
    /// Inputs:
    ///
    /// - AtomicMem (controlling type variable): Any type that can be stored in memory, which can be used in an atomic operation
    /// - MemFlags: Memory operation flags
    /// - AtomicRmwOp: Atomic Read-Modify-Write Ops
    /// - p: An integer address type
    /// - x: Value to be atomically stored
    ///
    /// Outputs:
    ///
    /// - a: Value atomically loaded
    #[allow(non_snake_case)]
    fn atomic_rmw<T1: Into<ir::MemFlags>, T2: Into<ir::AtomicRmwOp>>(self, AtomicMem: crate::ir::Type, MemFlags: T1, AtomicRmwOp: T2, p: ir::Value, x: ir::Value) -> Value {
        let MemFlags = MemFlags.into();
        let AtomicRmwOp = AtomicRmwOp.into();
        let (inst, dfg) = self.AtomicRmw(Opcode::AtomicRmw, AtomicMem, MemFlags, AtomicRmwOp, p, x);
        dfg.first_result(inst)
    }

    /// Perform an atomic compare-and-swap operation on memory at `p`, with expected value `e`,
    /// storing `x` if the value at `p` equals `e`.  The old value at `p` is returned,
    /// regardless of whether the operation succeeds or fails.  `p` has the type of the target
    /// word size, and `x` and `e` must have the same type and the same size, which may be an
    /// integer type of 8, 16, 32 or 64 bits, even on a 32-bit target.  The type of the returned
    /// value is the same as the type of `x` and `e`.  This operation is sequentially
    /// consistent and creates happens-before edges that order normal (non-atomic) loads and
    /// stores.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - e: Expected value in CAS
    /// - x: Value to be atomically stored
    ///
    /// Outputs:
    ///
    /// - a: Value atomically loaded
    #[allow(non_snake_case)]
    fn atomic_cas<T1: Into<ir::MemFlags>>(self, MemFlags: T1, p: ir::Value, e: ir::Value, x: ir::Value) -> Value {
        let MemFlags = MemFlags.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.AtomicCas(Opcode::AtomicCas, ctrl_typevar, MemFlags, p, e, x);
        dfg.first_result(inst)
    }

    /// Atomically load from memory at `p`.
    ///
    /// This is a polymorphic instruction that can load any value type which has a memory
    /// representation.  It should only be used for integer types with 8, 16, 32 or 64 bits.
    /// This operation is sequentially consistent and creates happens-before edges that order
    /// normal (non-atomic) loads and stores.
    ///
    /// Inputs:
    ///
    /// - AtomicMem (controlling type variable): Any type that can be stored in memory, which can be used in an atomic operation
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    ///
    /// Outputs:
    ///
    /// - a: Value atomically loaded
    #[allow(non_snake_case)]
    fn atomic_load<T1: Into<ir::MemFlags>>(self, AtomicMem: crate::ir::Type, MemFlags: T1, p: ir::Value) -> Value {
        let MemFlags = MemFlags.into();
        let (inst, dfg) = self.LoadNoOffset(Opcode::AtomicLoad, AtomicMem, MemFlags, p);
        dfg.first_result(inst)
    }

MultiAry(imms=(), vals=0)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 193)
187
188
189
190
191
192
193
194
    fn return_(mut self, rvals: &[Value]) -> Inst {
        let mut vlist = ir::ValueList::default();
        {
            let pool = &mut self.data_flow_graph_mut().value_lists;
            vlist.extend(rvals.iter().cloned(), pool);
        }
        self.MultiAry(Opcode::Return, types::INVALID, vlist).0
    }

NullAry(imms=(), vals=0)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 105)
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
    fn debugtrap(self) -> Inst {
        self.NullAry(Opcode::Debugtrap, types::INVALID).0
    }

    /// Terminate execution unconditionally.
    ///
    /// Inputs:
    ///
    /// - code: A trap reason code.
    #[allow(non_snake_case)]
    fn trap<T1: Into<ir::TrapCode>>(self, code: T1) -> Inst {
        let code = code.into();
        self.Trap(Opcode::Trap, types::INVALID, code).0
    }

    /// Trap when zero.
    ///
    /// if ``c`` is non-zero, execution continues at the following instruction.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - code: A trap reason code.
    #[allow(non_snake_case)]
    fn trapz<T1: Into<ir::TrapCode>>(self, c: ir::Value, code: T1) -> Inst {
        let code = code.into();
        let ctrl_typevar = self.data_flow_graph().value_type(c);
        self.CondTrap(Opcode::Trapz, ctrl_typevar, code, c).0
    }

    /// A resumable trap.
    ///
    /// This instruction allows non-conditional traps to be used as non-terminal instructions.
    ///
    /// Inputs:
    ///
    /// - code: A trap reason code.
    #[allow(non_snake_case)]
    fn resumable_trap<T1: Into<ir::TrapCode>>(self, code: T1) -> Inst {
        let code = code.into();
        self.Trap(Opcode::ResumableTrap, types::INVALID, code).0
    }

    /// Trap when non-zero.
    ///
    /// If ``c`` is zero, execution continues at the following instruction.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - code: A trap reason code.
    #[allow(non_snake_case)]
    fn trapnz<T1: Into<ir::TrapCode>>(self, c: ir::Value, code: T1) -> Inst {
        let code = code.into();
        let ctrl_typevar = self.data_flow_graph().value_type(c);
        self.CondTrap(Opcode::Trapnz, ctrl_typevar, code, c).0
    }

    /// A resumable trap to be called when the passed condition is non-zero.
    ///
    /// If ``c`` is zero, execution continues at the following instruction.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - code: A trap reason code.
    #[allow(non_snake_case)]
    fn resumable_trapnz<T1: Into<ir::TrapCode>>(self, c: ir::Value, code: T1) -> Inst {
        let code = code.into();
        let ctrl_typevar = self.data_flow_graph().value_type(c);
        self.CondTrap(Opcode::ResumableTrapnz, ctrl_typevar, code, c).0
    }

    /// Return from the function.
    ///
    /// Unconditionally transfer control to the calling function, passing the
    /// provided return values. The list of return values must match the
    /// function signature's return types.
    ///
    /// Inputs:
    ///
    /// - rvals: return values
    #[allow(non_snake_case)]
    fn return_(mut self, rvals: &[Value]) -> Inst {
        let mut vlist = ir::ValueList::default();
        {
            let pool = &mut self.data_flow_graph_mut().value_lists;
            vlist.extend(rvals.iter().cloned(), pool);
        }
        self.MultiAry(Opcode::Return, types::INVALID, vlist).0
    }

    /// Direct function call.
    ///
    /// Call a function which has been declared in the preamble. The argument
    /// types must match the function's signature.
    ///
    /// Inputs:
    ///
    /// - FN: function to call, declared by `function`
    /// - args: call arguments
    ///
    /// Outputs:
    ///
    /// - rvals: return values
    #[allow(non_snake_case)]
    fn call(mut self, FN: ir::FuncRef, args: &[Value]) -> Inst {
        let mut vlist = ir::ValueList::default();
        {
            let pool = &mut self.data_flow_graph_mut().value_lists;
            vlist.extend(args.iter().cloned(), pool);
        }
        self.Call(Opcode::Call, types::INVALID, FN, vlist).0
    }

    /// Indirect function call.
    ///
    /// Call the function pointed to by `callee` with the given arguments. The
    /// called function must match the specified signature.
    ///
    /// Note that this is different from WebAssembly's ``call_indirect``; the
    /// callee is a native address, rather than a table index. For WebAssembly,
    /// `table_addr` and `load` are used to obtain a native address
    /// from a table.
    ///
    /// Inputs:
    ///
    /// - SIG: function signature
    /// - callee: address of function to call
    /// - args: call arguments
    ///
    /// Outputs:
    ///
    /// - rvals: return values
    #[allow(non_snake_case)]
    fn call_indirect(mut self, SIG: ir::SigRef, callee: ir::Value, args: &[Value]) -> Inst {
        let ctrl_typevar = self.data_flow_graph().value_type(callee);
        let mut vlist = ir::ValueList::default();
        {
            let pool = &mut self.data_flow_graph_mut().value_lists;
            vlist.push(callee, pool);
            vlist.extend(args.iter().cloned(), pool);
        }
        self.CallIndirect(Opcode::CallIndirect, ctrl_typevar, SIG, vlist).0
    }

    /// Get the address of a function.
    ///
    /// Compute the absolute address of a function declared in the preamble.
    /// The returned address can be used as a ``callee`` argument to
    /// `call_indirect`. This is also a method for calling functions that
    /// are too far away to be addressable by a direct `call`
    /// instruction.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - FN: function to call, declared by `function`
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn func_addr(self, iAddr: crate::ir::Type, FN: ir::FuncRef) -> Value {
        let (inst, dfg) = self.FuncAddr(Opcode::FuncAddr, iAddr, FN);
        dfg.first_result(inst)
    }

    /// Vector splat.
    ///
    /// Return a vector whose lanes are all ``x``.
    ///
    /// Inputs:
    ///
    /// - TxN (controlling type variable): A SIMD vector type
    /// - x: Value to splat to all lanes
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type
    #[allow(non_snake_case)]
    fn splat(self, TxN: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Splat, TxN, x);
        dfg.first_result(inst)
    }

    /// Vector swizzle.
    ///
    /// Returns a new vector with byte-width lanes selected from the lanes of the first input
    /// vector ``x`` specified in the second input vector ``s``. The indices ``i`` in range
    /// ``[0, 15]`` select the ``i``-th element of ``x``. For indices outside of the range the
    /// resulting lane is 0. Note that this operates on byte-width lanes.
    ///
    /// Inputs:
    ///
    /// - TxN (controlling type variable): A SIMD vector type
    /// - x: Vector to modify by re-arranging lanes
    /// - y: Mask for re-arranging lanes
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type
    #[allow(non_snake_case)]
    fn swizzle(self, TxN: crate::ir::Type, x: ir::Value, y: ir::Value) -> Value {
        let (inst, dfg) = self.Binary(Opcode::Swizzle, TxN, x, y);
        dfg.first_result(inst)
    }

    /// Insert ``y`` as lane ``Idx`` in x.
    ///
    /// The lane index, ``Idx``, is an immediate value, not an SSA value. It
    /// must indicate a valid lane index for the type of ``x``.
    ///
    /// Inputs:
    ///
    /// - x: The vector to modify
    /// - y: New lane value
    /// - Idx: Lane index
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type
    #[allow(non_snake_case)]
    fn insertlane<T1: Into<ir::immediates::Uimm8>>(self, x: ir::Value, y: ir::Value, Idx: T1) -> Value {
        let Idx = Idx.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.TernaryImm8(Opcode::Insertlane, ctrl_typevar, Idx, x, y);
        dfg.first_result(inst)
    }

    /// Extract lane ``Idx`` from ``x``.
    ///
    /// The lane index, ``Idx``, is an immediate value, not an SSA value. It
    /// must indicate a valid lane index for the type of ``x``. Note that the upper bits of ``a``
    /// may or may not be zeroed depending on the ISA but the type system should prevent using
    /// ``a`` as anything other than the extracted value.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type
    /// - Idx: Lane index
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn extractlane<T1: Into<ir::immediates::Uimm8>>(self, x: ir::Value, Idx: T1) -> Value {
        let Idx = Idx.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm8(Opcode::Extractlane, ctrl_typevar, Idx, x);
        dfg.first_result(inst)
    }

    /// Signed integer minimum.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn smin(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Smin, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer minimum.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn umin(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Umin, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer maximum.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn smax(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Smax, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer maximum.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn umax(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Umax, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned average with rounding: `a := (x + y + 1) // 2`
    ///
    /// The addition does not lose any information (such as from overflow).
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn avg_round(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::AvgRound, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Add with unsigned saturation.
    ///
    /// This is similar to `iadd` but the operands are interpreted as unsigned integers and their
    /// summed result, instead of wrapping, will be saturated to the highest unsigned integer for
    /// the controlling type (e.g. `0xFF` for i8).
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn uadd_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::UaddSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Add with signed saturation.
    ///
    /// This is similar to `iadd` but the operands are interpreted as signed integers and their
    /// summed result, instead of wrapping, will be saturated to the lowest or highest
    /// signed integer for the controlling type (e.g. `0x80` or `0x7F` for i8). For example,
    /// since an `sadd_sat.i8` of `0x70` and `0x70` is greater than `0x7F`, the result will be
    /// clamped to `0x7F`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn sadd_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::SaddSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Subtract with unsigned saturation.
    ///
    /// This is similar to `isub` but the operands are interpreted as unsigned integers and their
    /// difference, instead of wrapping, will be saturated to the lowest unsigned integer for
    /// the controlling type (e.g. `0x00` for i8).
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn usub_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::UsubSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Subtract with signed saturation.
    ///
    /// This is similar to `isub` but the operands are interpreted as signed integers and their
    /// difference, instead of wrapping, will be saturated to the lowest or highest
    /// signed integer for the controlling type (e.g. `0x80` or `0x7F` for i8).
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn ssub_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::SsubSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Load from memory at ``p + Offset``.
    ///
    /// This is a polymorphic instruction that can load any value type which
    /// has a memory representation.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn load<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, Mem: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Load, Mem, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store ``x`` to memory at ``p + Offset``.
    ///
    /// This is a polymorphic instruction that can store any value type with a
    /// memory representation.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: Value to be stored
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn store<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Store, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 8 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i8`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - iExt8 (controlling type variable): An integer type with more than 8 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 8 bits
    #[allow(non_snake_case)]
    fn uload8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt8: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Uload8, iExt8, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 8 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i8`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - iExt8 (controlling type variable): An integer type with more than 8 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 8 bits
    #[allow(non_snake_case)]
    fn sload8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt8: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Sload8, iExt8, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 8 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i8`` followed by ``store.i8``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 8 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore8, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 16 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i16`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - iExt16 (controlling type variable): An integer type with more than 16 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 16 bits
    #[allow(non_snake_case)]
    fn uload16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt16: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Uload16, iExt16, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 16 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i16`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - iExt16 (controlling type variable): An integer type with more than 16 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 16 bits
    #[allow(non_snake_case)]
    fn sload16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt16: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Sload16, iExt16, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 16 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i16`` followed by ``store.i16``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 16 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore16, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 32 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i32`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 32 bits
    #[allow(non_snake_case)]
    fn uload32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload32, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 32 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i32`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 32 bits
    #[allow(non_snake_case)]
    fn sload32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload32, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 32 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i32`` followed by ``store.i32``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 32 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore32, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load an 8x8 vector (64 bits) from memory at ``p + Offset`` and zero-extend into an i16x8
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn uload8x8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload8x8, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load an 8x8 vector (64 bits) from memory at ``p + Offset`` and sign-extend into an i16x8
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn sload8x8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload8x8, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a 16x4 vector (64 bits) from memory at ``p + Offset`` and zero-extend into an i32x4
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn uload16x4<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload16x4, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a 16x4 vector (64 bits) from memory at ``p + Offset`` and sign-extend into an i32x4
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn sload16x4<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload16x4, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load an 32x2 vector (64 bits) from memory at ``p + Offset`` and zero-extend into an i64x2
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn uload32x2<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload32x2, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a 32x2 vector (64 bits) from memory at ``p + Offset`` and sign-extend into an i64x2
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn sload32x2<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload32x2, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a value from a stack slot at the constant offset.
    ///
    /// This is a polymorphic instruction that can load any value type which
    /// has a memory representation.
    ///
    /// The offset is an immediate constant, not an SSA value. The memory
    /// access cannot go out of bounds, i.e.
    /// `sizeof(a) + Offset <= sizeof(SS)`.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - SS: A stack slot
    /// - Offset: In-bounds offset into stack slot
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn stack_load<T1: Into<ir::immediates::Offset32>>(self, Mem: crate::ir::Type, SS: ir::StackSlot, Offset: T1) -> Value {
        let Offset = Offset.into();
        let (inst, dfg) = self.StackLoad(Opcode::StackLoad, Mem, SS, Offset);
        dfg.first_result(inst)
    }

    /// Store a value to a stack slot at a constant offset.
    ///
    /// This is a polymorphic instruction that can store any value type with a
    /// memory representation.
    ///
    /// The offset is an immediate constant, not an SSA value. The memory
    /// access cannot go out of bounds, i.e.
    /// `sizeof(a) + Offset <= sizeof(SS)`.
    ///
    /// Inputs:
    ///
    /// - x: Value to be stored
    /// - SS: A stack slot
    /// - Offset: In-bounds offset into stack slot
    #[allow(non_snake_case)]
    fn stack_store<T1: Into<ir::immediates::Offset32>>(self, x: ir::Value, SS: ir::StackSlot, Offset: T1) -> Inst {
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.StackStore(Opcode::StackStore, ctrl_typevar, SS, Offset, x).0
    }

    /// Get the address of a stack slot.
    ///
    /// Compute the absolute address of a byte in a stack slot. The offset must
    /// refer to a byte inside the stack slot:
    /// `0 <= Offset < sizeof(SS)`.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - SS: A stack slot
    /// - Offset: In-bounds offset into stack slot
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn stack_addr<T1: Into<ir::immediates::Offset32>>(self, iAddr: crate::ir::Type, SS: ir::StackSlot, Offset: T1) -> Value {
        let Offset = Offset.into();
        let (inst, dfg) = self.StackLoad(Opcode::StackAddr, iAddr, SS, Offset);
        dfg.first_result(inst)
    }

    /// Load a value from a dynamic stack slot.
    ///
    /// This is a polymorphic instruction that can load any value type which
    /// has a memory representation.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - DSS: A dynamic stack slot
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn dynamic_stack_load(self, Mem: crate::ir::Type, DSS: ir::DynamicStackSlot) -> Value {
        let (inst, dfg) = self.DynamicStackLoad(Opcode::DynamicStackLoad, Mem, DSS);
        dfg.first_result(inst)
    }

    /// Store a value to a dynamic stack slot.
    ///
    /// This is a polymorphic instruction that can store any dynamic value type with a
    /// memory representation.
    ///
    /// Inputs:
    ///
    /// - x: Value to be stored
    /// - DSS: A dynamic stack slot
    #[allow(non_snake_case)]
    fn dynamic_stack_store(self, x: ir::Value, DSS: ir::DynamicStackSlot) -> Inst {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.DynamicStackStore(Opcode::DynamicStackStore, ctrl_typevar, DSS, x).0
    }

    /// Get the address of a dynamic stack slot.
    ///
    /// Compute the absolute address of the first byte of a dynamic stack slot.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - DSS: A dynamic stack slot
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn dynamic_stack_addr(self, iAddr: crate::ir::Type, DSS: ir::DynamicStackSlot) -> Value {
        let (inst, dfg) = self.DynamicStackLoad(Opcode::DynamicStackAddr, iAddr, DSS);
        dfg.first_result(inst)
    }

    /// Compute the value of global GV.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - GV: A global value.
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn global_value(self, Mem: crate::ir::Type, GV: ir::GlobalValue) -> Value {
        let (inst, dfg) = self.UnaryGlobalValue(Opcode::GlobalValue, Mem, GV);
        dfg.first_result(inst)
    }

    /// Compute the value of global GV, which is a symbolic value.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - GV: A global value.
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn symbol_value(self, Mem: crate::ir::Type, GV: ir::GlobalValue) -> Value {
        let (inst, dfg) = self.UnaryGlobalValue(Opcode::SymbolValue, Mem, GV);
        dfg.first_result(inst)
    }

    /// Compute the value of global GV, which is a TLS (thread local storage) value.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - GV: A global value.
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn tls_value(self, Mem: crate::ir::Type, GV: ir::GlobalValue) -> Value {
        let (inst, dfg) = self.UnaryGlobalValue(Opcode::TlsValue, Mem, GV);
        dfg.first_result(inst)
    }

    /// Bounds check and compute absolute address of ``index + Offset`` in heap memory.
    ///
    /// Verify that the range ``index .. index + Offset + Size`` is in bounds for the
    /// heap ``H``, and generate an absolute address that is safe to dereference.
    ///
    /// 1. If ``index + Offset + Size`` is less than or equal ot the heap bound, return an
    ///    absolute address corresponding to a byte offset of ``index + Offset`` from the
    ///    heap's base address.
    ///
    /// 2. If ``index + Offset + Size`` is greater than the heap bound, return the
    ///    ``NULL`` pointer or any other address that is guaranteed to generate a trap
    ///    when accessed.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - H: A heap.
    /// - index: An unsigned heap offset
    /// - Offset: Static offset immediate in bytes
    /// - Size: Static size immediate in bytes
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn heap_addr<T1: Into<ir::immediates::Uimm32>, T2: Into<ir::immediates::Uimm8>>(self, iAddr: crate::ir::Type, H: ir::Heap, index: ir::Value, Offset: T1, Size: T2) -> Value {
        let Offset = Offset.into();
        let Size = Size.into();
        let (inst, dfg) = self.HeapAddr(Opcode::HeapAddr, iAddr, H, Offset, Size, index);
        dfg.first_result(inst)
    }

    /// Load a value from the given heap at address ``index + offset``,
    /// trapping on out-of-bounds accesses.
    ///
    /// Checks that ``index + offset .. index + offset + sizeof(a)`` is
    /// within the heap's bounds, trapping if it is not. Otherwise, when
    /// that range is in bounds, loads the value from the heap.
    ///
    /// Traps on ``index + offset + sizeof(a)`` overflow.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - heap_imm: Reference to out-of-line heap access immediates
    /// - index: Dynamic index (in bytes) into the heap
    ///
    /// Outputs:
    ///
    /// - a: The value loaded from the heap
    #[allow(non_snake_case)]
    fn heap_load<T1: Into<ir::HeapImm>>(self, Mem: crate::ir::Type, heap_imm: T1, index: ir::Value) -> Value {
        let heap_imm = heap_imm.into();
        let (inst, dfg) = self.HeapLoad(Opcode::HeapLoad, Mem, heap_imm, index);
        dfg.first_result(inst)
    }

    /// Store ``a`` into the given heap at address ``index + offset``,
    /// trapping on out-of-bounds accesses.
    ///
    /// Checks that ``index + offset .. index + offset + sizeof(a)`` is
    /// within the heap's bounds, trapping if it is not. Otherwise, when
    /// that range is in bounds, stores the value into the heap.
    ///
    /// Traps on ``index + offset + sizeof(a)`` overflow.
    ///
    /// Inputs:
    ///
    /// - heap_imm: Reference to out-of-line heap access immediates
    /// - index: Dynamic index (in bytes) into the heap
    /// - a: The value stored into the heap
    #[allow(non_snake_case)]
    fn heap_store<T1: Into<ir::HeapImm>>(self, heap_imm: T1, index: ir::Value, a: ir::Value) -> Inst {
        let heap_imm = heap_imm.into();
        let ctrl_typevar = self.data_flow_graph().value_type(index);
        self.HeapStore(Opcode::HeapStore, ctrl_typevar, heap_imm, index, a).0
    }

    /// Gets the content of the pinned register, when it's enabled.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn get_pinned_reg(self, iAddr: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::GetPinnedReg, iAddr);
        dfg.first_result(inst)
    }

    /// Sets the content of the pinned register, when it's enabled.
    ///
    /// Inputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn set_pinned_reg(self, addr: ir::Value) -> Inst {
        let ctrl_typevar = self.data_flow_graph().value_type(addr);
        self.Unary(Opcode::SetPinnedReg, ctrl_typevar, addr).0
    }

    /// Get the address in the frame pointer register.
    ///
    /// Usage of this instruction requires setting `preserve_frame_pointers` to `true`.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn get_frame_pointer(self, iAddr: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::GetFramePointer, iAddr);
        dfg.first_result(inst)
    }

    /// Get the address in the stack pointer register.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn get_stack_pointer(self, iAddr: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::GetStackPointer, iAddr);
        dfg.first_result(inst)
    }

    /// Get the PC where this function will transfer control to when it returns.
    ///
    /// Usage of this instruction requires setting `preserve_frame_pointers` to `true`.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn get_return_address(self, iAddr: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::GetReturnAddress, iAddr);
        dfg.first_result(inst)
    }

    /// Bounds check and compute absolute address of a table entry.
    ///
    /// Verify that the offset ``p`` is in bounds for the table T, and generate
    /// an absolute address that is safe to dereference.
    ///
    /// ``Offset`` must be less than the size of a table element.
    ///
    /// 1. If ``p`` is not greater than the table bound, return an absolute
    ///    address corresponding to a byte offset of ``p`` from the table's
    ///    base address.
    /// 2. If ``p`` is greater than the table bound, generate a trap.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - T: A table.
    /// - p: An unsigned table offset
    /// - Offset: Byte offset from element address
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn table_addr<T1: Into<ir::immediates::Offset32>>(self, iAddr: crate::ir::Type, T: ir::Table, p: ir::Value, Offset: T1) -> Value {
        let Offset = Offset.into();
        let (inst, dfg) = self.TableAddr(Opcode::TableAddr, iAddr, T, Offset, p);
        dfg.first_result(inst)
    }

    /// Integer constant.
    ///
    /// Create a scalar integer SSA value with an immediate constant value, or
    /// an integer vector where all the lanes have the same value.
    ///
    /// Inputs:
    ///
    /// - NarrowInt (controlling type variable): An integer type with lanes type to `i64`
    /// - N: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A constant integer scalar or vector value
    #[allow(non_snake_case)]
    fn iconst<T1: Into<ir::immediates::Imm64>>(self, NarrowInt: crate::ir::Type, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryImm(Opcode::Iconst, NarrowInt, N);
        dfg.first_result(inst)
    }

    /// Floating point constant.
    ///
    /// Create a `f32` SSA value with an immediate constant value.
    ///
    /// Inputs:
    ///
    /// - N: A 32-bit immediate floating point number.
    ///
    /// Outputs:
    ///
    /// - a: A constant f32 scalar value
    #[allow(non_snake_case)]
    fn f32const<T1: Into<ir::immediates::Ieee32>>(self, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryIeee32(Opcode::F32const, types::INVALID, N);
        dfg.first_result(inst)
    }

    /// Floating point constant.
    ///
    /// Create a `f64` SSA value with an immediate constant value.
    ///
    /// Inputs:
    ///
    /// - N: A 64-bit immediate floating point number.
    ///
    /// Outputs:
    ///
    /// - a: A constant f64 scalar value
    #[allow(non_snake_case)]
    fn f64const<T1: Into<ir::immediates::Ieee64>>(self, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryIeee64(Opcode::F64const, types::INVALID, N);
        dfg.first_result(inst)
    }

    /// SIMD vector constant.
    ///
    /// Construct a vector with the given immediate bytes.
    ///
    /// Inputs:
    ///
    /// - TxN (controlling type variable): A SIMD vector type
    /// - N: The 16 immediate bytes of a 128-bit vector
    ///
    /// Outputs:
    ///
    /// - a: A constant vector value
    #[allow(non_snake_case)]
    fn vconst<T1: Into<ir::Constant>>(self, TxN: crate::ir::Type, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryConst(Opcode::Vconst, TxN, N);
        dfg.first_result(inst)
    }

    /// SIMD vector shuffle.
    ///
    /// Shuffle two vectors using the given immediate bytes. For each of the 16 bytes of the
    /// immediate, a value i of 0-15 selects the i-th element of the first vector and a value i of
    /// 16-31 selects the (i-16)th element of the second vector. Immediate values outside of the
    /// 0-31 range place a 0 in the resulting vector lane.
    ///
    /// Inputs:
    ///
    /// - a: A vector value
    /// - b: A vector value
    /// - mask: The 16 immediate bytes used for selecting the elements to shuffle
    ///
    /// Outputs:
    ///
    /// - a: A vector value
    #[allow(non_snake_case)]
    fn shuffle<T1: Into<ir::Immediate>>(self, a: ir::Value, b: ir::Value, mask: T1) -> Value {
        let mask = mask.into();
        let (inst, dfg) = self.Shuffle(Opcode::Shuffle, types::INVALID, mask, a, b);
        dfg.first_result(inst)
    }

    /// Null constant value for reference types.
    ///
    /// Create a scalar reference SSA value with a constant null value.
    ///
    /// Inputs:
    ///
    /// - Ref (controlling type variable): A scalar reference type
    ///
    /// Outputs:
    ///
    /// - a: A constant reference null value
    #[allow(non_snake_case)]
    fn null(self, Ref: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::Null, Ref);
        dfg.first_result(inst)
    }

    /// Just a dummy instruction.
    ///
    /// Note: this doesn't compile to a machine code nop.
    #[allow(non_snake_case)]
    fn nop(self) -> Inst {
        self.NullAry(Opcode::Nop, types::INVALID).0
    }

    /// Conditional select.
    ///
    /// This instruction selects whole values. Use `vselect` for
    /// lane-wise selection.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - x: Value to use when `c` is true
    /// - y: Value to use when `c` is false
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or reference scalar or vector type
    #[allow(non_snake_case)]
    fn select(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::Select, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Conditional select intended for Spectre guards.
    ///
    /// This operation is semantically equivalent to a select instruction.
    /// However, it is guaranteed to not be removed or otherwise altered by any
    /// optimization pass, and is guaranteed to result in a conditional-move
    /// instruction, not a branch-based lowering.  As such, it is suitable
    /// for use when producing Spectre guards. For example, a bounds-check
    /// may guard against unsafe speculation past a bounds-check conditional
    /// branch by passing the address or index to be accessed through a
    /// conditional move, also gated on the same condition. Because no
    /// Spectre-vulnerable processors are known to perform speculation on
    /// conditional move instructions, this is guaranteed to pick the
    /// correct input. If the selected input in case of overflow is a "safe"
    /// value, for example a null pointer that causes an exception in the
    /// speculative path, this ensures that no Spectre vulnerability will
    /// exist.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - x: Value to use when `c` is true
    /// - y: Value to use when `c` is false
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or reference scalar or vector type
    #[allow(non_snake_case)]
    fn select_spectre_guard(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::SelectSpectreGuard, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Conditional select of bits.
    ///
    /// For each bit in `c`, this instruction selects the corresponding bit from `x` if the bit
    /// in `c` is 1 and the corresponding bit from `y` if the bit in `c` is 0. See also:
    /// `select`, `vselect`.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - x: Value to use when `c` is true
    /// - y: Value to use when `c` is false
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or reference scalar or vector type
    #[allow(non_snake_case)]
    fn bitselect(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::Bitselect, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Split a vector into two halves.
    ///
    /// Split the vector `x` into two separate values, each containing half of
    /// the lanes from ``x``. The result may be two scalars if ``x`` only had
    /// two lanes.
    ///
    /// Inputs:
    ///
    /// - x: Vector to split
    ///
    /// Outputs:
    ///
    /// - lo: Low-numbered lanes of `x`
    /// - hi: High-numbered lanes of `x`
    #[allow(non_snake_case)]
    fn vsplit(self, x: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Vsplit, ctrl_typevar, x);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Vector concatenation.
    ///
    /// Return a vector formed by concatenating ``x`` and ``y``. The resulting
    /// vector type has twice as many lanes as each of the inputs. The lanes of
    /// ``x`` appear as the low-numbered lanes, and the lanes of ``y`` become
    /// the high-numbered lanes of ``a``.
    ///
    /// It is possible to form a vector by concatenating two scalars.
    ///
    /// Inputs:
    ///
    /// - x: Low-numbered lanes
    /// - y: High-numbered lanes
    ///
    /// Outputs:
    ///
    /// - a: Concatenation of `x` and `y`
    #[allow(non_snake_case)]
    fn vconcat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Vconcat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Vector lane select.
    ///
    /// Select lanes from ``x`` or ``y`` controlled by the lanes of the truthy
    /// vector ``c``.
    ///
    /// Inputs:
    ///
    /// - c: Controlling vector
    /// - x: Value to use where `c` is true
    /// - y: Value to use where `c` is false
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type
    #[allow(non_snake_case)]
    fn vselect(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::Vselect, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Reduce a vector to a scalar boolean.
    ///
    /// Return a scalar boolean true if any lane in ``a`` is non-zero, false otherwise.
    ///
    /// Inputs:
    ///
    /// - a: A SIMD vector type
    ///
    /// Outputs:
    ///
    /// - s: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn vany_true(self, a: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(a);
        let (inst, dfg) = self.Unary(Opcode::VanyTrue, ctrl_typevar, a);
        dfg.first_result(inst)
    }

    /// Reduce a vector to a scalar boolean.
    ///
    /// Return a scalar boolean true if all lanes in ``i`` are non-zero, false otherwise.
    ///
    /// Inputs:
    ///
    /// - a: A SIMD vector type
    ///
    /// Outputs:
    ///
    /// - s: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn vall_true(self, a: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(a);
        let (inst, dfg) = self.Unary(Opcode::VallTrue, ctrl_typevar, a);
        dfg.first_result(inst)
    }

    /// Reduce a vector to a scalar integer.
    ///
    /// Return a scalar integer, consisting of the concatenation of the most significant bit
    /// of each lane of ``a``.
    ///
    /// Inputs:
    ///
    /// - Int (controlling type variable): A scalar or vector integer type
    /// - a: A SIMD vector type
    ///
    /// Outputs:
    ///
    /// - x: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn vhigh_bits(self, Int: crate::ir::Type, a: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::VhighBits, Int, a);
        dfg.first_result(inst)
    }

    /// Integer comparison.
    ///
    /// The condition code determines if the operands are interpreted as signed
    /// or unsigned integers.
    ///
    /// | Signed | Unsigned | Condition             |
    /// |--------|----------|-----------------------|
    /// | eq     | eq       | Equal                 |
    /// | ne     | ne       | Not equal             |
    /// | slt    | ult      | Less than             |
    /// | sge    | uge      | Greater than or equal |
    /// | sgt    | ugt      | Greater than          |
    /// | sle    | ule      | Less than or equal    |
    ///
    /// When this instruction compares integer vectors, it returns a vector of
    /// lane-wise comparisons.
    ///
    /// Inputs:
    ///
    /// - Cond: An integer comparison condition code.
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn icmp<T1: Into<ir::condcodes::IntCC>>(self, Cond: T1, x: ir::Value, y: ir::Value) -> Value {
        let Cond = Cond.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntCompare(Opcode::Icmp, ctrl_typevar, Cond, x, y);
        dfg.first_result(inst)
    }

    /// Compare scalar integer to a constant.
    ///
    /// This is the same as the `icmp` instruction, except one operand is
    /// a sign extended 64 bit immediate constant.
    ///
    /// This instruction can only compare scalars. Use `icmp` for
    /// lane-wise vector comparisons.
    ///
    /// Inputs:
    ///
    /// - Cond: An integer comparison condition code.
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn icmp_imm<T1: Into<ir::condcodes::IntCC>, T2: Into<ir::immediates::Imm64>>(self, Cond: T1, x: ir::Value, Y: T2) -> Value {
        let Cond = Cond.into();
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntCompareImm(Opcode::IcmpImm, ctrl_typevar, Cond, Y, x);
        dfg.first_result(inst)
    }

    /// Compare scalar integers and return flags.
    ///
    /// Compare two scalar integer values and return integer CPU flags
    /// representing the result.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - f: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn ifcmp(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ifcmp, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Compare scalar integer to a constant and return flags.
    ///
    /// Like `icmp_imm`, but returns integer CPU flags instead of testing
    /// a specific condition code.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - f: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn ifcmp_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IfcmpImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Wrapping integer addition: `a := x + y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn iadd(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Iadd, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Wrapping integer subtraction: `a := x - y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn isub(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Isub, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Integer negation: `a := -x \pmod{2^B}`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ineg(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Ineg, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Integer absolute value with wrapping: `a := |x|`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn iabs(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Iabs, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Wrapping integer multiplication: `a := x y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn imul(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Imul, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer multiplication, producing the high half of a
    /// double-length result.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn umulhi(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Umulhi, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer multiplication, producing the high half of a
    /// double-length result.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn smulhi(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Smulhi, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Fixed-point multiplication of numbers in the QN format, where N + 1
    /// is the number bitwidth:
    /// `a := signed_saturate((x * y + 1 << (Q - 1)) >> Q)`
    ///
    /// Polymorphic over all integer types (scalar and vector) with 16- or
    /// 32-bit numbers.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type with 16- or 32-bit numbers
    /// - y: A scalar or vector integer type with 16- or 32-bit numbers
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type with 16- or 32-bit numbers
    #[allow(non_snake_case)]
    fn sqmul_round_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::SqmulRoundSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer division: `a := \lfloor {x \over y} \rfloor`.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn udiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Udiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer division rounded toward zero: `a := sign(xy)
    /// \lfloor {|x| \over |y|}\rfloor`.
    ///
    /// This operation traps if the divisor is zero, or if the result is not
    /// representable in `B` bits two's complement. This only happens
    /// when `x = -2^{B-1}, y = -1`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn sdiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Sdiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer remainder.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn urem(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Urem, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer remainder. The result has the sign of the dividend.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn srem(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Srem, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Add immediate integer.
    ///
    /// Same as `iadd`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IaddImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Integer multiplication by immediate constant.
    ///
    /// Same as `imul`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn imul_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::ImulImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned integer division by an immediate constant.
    ///
    /// Same as `udiv`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn udiv_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UdivImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed integer division by an immediate constant.
    ///
    /// Same as `sdiv`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero, or if the result is not
    /// representable in `B` bits two's complement. This only happens
    /// when `x = -2^{B-1}, Y = -1`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn sdiv_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SdivImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned integer remainder with immediate divisor.
    ///
    /// Same as `urem`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn urem_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UremImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed integer remainder with immediate divisor.
    ///
    /// Same as `srem`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn srem_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SremImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Immediate reverse wrapping subtraction: `a := Y - x \pmod{2^B}`.
    ///
    /// The immediate operand is a sign extended 64 bit constant.
    ///
    /// Also works as integer negation when `Y = 0`. Use `iadd_imm`
    /// with a negative immediate operand for the reverse immediate
    /// subtraction.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn irsub_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IrsubImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Add integers with carry in.
    ///
    /// Same as `iadd` with an additional carry input. Computes:
    ///
    /// ```text
    ///     a = x + y + c_{in} \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: Input carry flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_cin(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddCin, ctrl_typevar, x, y, c_in);
        dfg.first_result(inst)
    }

    /// Add integers with carry in.
    ///
    /// Same as `iadd` with an additional carry flag input. Computes:
    ///
    /// ```text
    ///     a = x + y + c_{in} \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_ifcin(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddIfcin, ctrl_typevar, x, y, c_in);
        dfg.first_result(inst)
    }

    /// Add integers with carry out.
    ///
    /// Same as `iadd` with an additional carry output.
    ///
    /// ```text
    ///     a &= x + y \pmod 2^B \\
    ///     c_{out} &= x+y >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: Output carry flag
    #[allow(non_snake_case)]
    fn iadd_cout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddCout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry out.
    ///
    /// Same as `iadd` with an additional carry flag output.
    ///
    /// ```text
    ///     a &= x + y \pmod 2^B \\
    ///     c_{out} &= x+y >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn iadd_ifcout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddIfcout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry in and out.
    ///
    /// Same as `iadd` with an additional carry input and output.
    ///
    /// ```text
    ///     a &= x + y + c_{in} \pmod 2^B \\
    ///     c_{out} &= x + y + c_{in} >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: Input carry flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: Output carry flag
    #[allow(non_snake_case)]
    fn iadd_carry(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddCarry, ctrl_typevar, x, y, c_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry in and out.
    ///
    /// Same as `iadd` with an additional carry flag input and output.
    ///
    /// ```text
    ///     a &= x + y + c_{in} \pmod 2^B \\
    ///     c_{out} &= x + y + c_{in} >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn iadd_ifcarry(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddIfcarry, ctrl_typevar, x, y, c_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Unsigned addition of x and y, trapping if the result overflows.
    ///
    /// Accepts 32 or 64-bit integers, and does not support vector types.
    ///
    /// Inputs:
    ///
    /// - x: A 32 or 64-bit scalar integer type
    /// - y: A 32 or 64-bit scalar integer type
    /// - code: A trap reason code.
    ///
    /// Outputs:
    ///
    /// - a: A 32 or 64-bit scalar integer type
    #[allow(non_snake_case)]
    fn uadd_overflow_trap<T1: Into<ir::TrapCode>>(self, x: ir::Value, y: ir::Value, code: T1) -> Value {
        let code = code.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntAddTrap(Opcode::UaddOverflowTrap, ctrl_typevar, code, x, y);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow in.
    ///
    /// Same as `isub` with an additional borrow flag input. Computes:
    ///
    /// ```text
    ///     a = x - (y + b_{in}) \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: Input borrow flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn isub_bin(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubBin, ctrl_typevar, x, y, b_in);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow in.
    ///
    /// Same as `isub` with an additional borrow flag input. Computes:
    ///
    /// ```text
    ///     a = x - (y + b_{in}) \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn isub_ifbin(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubIfbin, ctrl_typevar, x, y, b_in);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow out.
    ///
    /// Same as `isub` with an additional borrow flag output.
    ///
    /// ```text
    ///     a &= x - y \pmod 2^B \\
    ///     b_{out} &= x < y
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: Output borrow flag
    #[allow(non_snake_case)]
    fn isub_bout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IsubBout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow out.
    ///
    /// Same as `isub` with an additional borrow flag output.
    ///
    /// ```text
    ///     a &= x - y \pmod 2^B \\
    ///     b_{out} &= x < y
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn isub_ifbout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IsubIfbout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow in and out.
    ///
    /// Same as `isub` with an additional borrow flag input and output.
    ///
    /// ```text
    ///     a &= x - (y + b_{in}) \pmod 2^B \\
    ///     b_{out} &= x < y + b_{in}
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: Input borrow flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: Output borrow flag
    #[allow(non_snake_case)]
    fn isub_borrow(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubBorrow, ctrl_typevar, x, y, b_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow in and out.
    ///
    /// Same as `isub` with an additional borrow flag input and output.
    ///
    /// ```text
    ///     a &= x - (y + b_{in}) \pmod 2^B \\
    ///     b_{out} &= x < y + b_{in}
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn isub_ifborrow(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubIfborrow, ctrl_typevar, x, y, b_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Bitwise and.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn band(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Band, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise or.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bor(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Bor, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise xor.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bxor(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Bxor, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise not.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bnot(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Bnot, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Bitwise and not.
    ///
    /// Computes `x & ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn band_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BandNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise or not.
    ///
    /// Computes `x | ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bor_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BorNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise xor not.
    ///
    /// Computes `x ^ ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bxor_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BxorNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise and with immediate.
    ///
    /// Same as `band`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn band_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BandImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Bitwise or with immediate.
    ///
    /// Same as `bor`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bor_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BorImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Bitwise xor with immediate.
    ///
    /// Same as `bxor`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bxor_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BxorImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Rotate left.
    ///
    /// Rotate the bits in ``x`` by ``y`` places.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotl(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Rotl, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Rotate right.
    ///
    /// Rotate the bits in ``x`` by ``y`` places.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Rotr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Rotate left by immediate.
    ///
    /// Same as `rotl`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotl_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::RotlImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Rotate right by immediate.
    ///
    /// Same as `rotr`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::RotrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Integer shift left. Shift the bits in ``x`` towards the MSB by ``y``
    /// places. Shift in zero bits to the LSB.
    ///
    /// The shift amount is masked to the size of ``x``.
    ///
    /// When shifting a B-bits integer type, this instruction computes:
    ///
    /// ```text
    ///     s &:= y \pmod B,
    ///     a &:= x \cdot 2^s \pmod{2^B}.
    /// ```
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ishl(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ishl, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned shift right. Shift bits in ``x`` towards the LSB by ``y``
    /// places, shifting in zero bits to the MSB. Also called a *logical
    /// shift*.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// When shifting a B-bits integer type, this instruction computes:
    ///
    /// ```text
    ///     s &:= y \pmod B,
    ///     a &:= \lfloor x \cdot 2^{-s} \rfloor.
    /// ```
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ushr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ushr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed shift right. Shift bits in ``x`` towards the LSB by ``y``
    /// places, shifting in sign bits to the MSB. Also called an *arithmetic
    /// shift*.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn sshr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Sshr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Integer shift left by immediate.
    ///
    /// The shift amount is masked to the size of ``x``.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ishl_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IshlImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned shift right by immediate.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ushr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UshrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed shift right by immediate.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn sshr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SshrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Reverse the bits of a integer.
    ///
    /// Reverses the bits in ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bitrev(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Bitrev, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Count leading zero bits.
    ///
    /// Starting from the MSB in ``x``, count the number of zero bits before
    /// reaching the first one bit. When ``x`` is zero, returns the size of x
    /// in bits.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn clz(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Clz, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Count leading sign bits.
    ///
    /// Starting from the MSB after the sign bit in ``x``, count the number of
    /// consecutive bits identical to the sign bit. When ``x`` is 0 or -1,
    /// returns one less than the size of x in bits.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn cls(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Cls, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Count trailing zeros.
    ///
    /// Starting from the LSB in ``x``, count the number of zero bits before
    /// reaching the first one bit. When ``x`` is zero, returns the size of x
    /// in bits.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn ctz(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Ctz, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reverse the byte order of an integer.
    ///
    /// Reverses the bytes in ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A multi byte scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A multi byte scalar integer type
    #[allow(non_snake_case)]
    fn bswap(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Bswap, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Population count
    ///
    /// Count the number of one bits in ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn popcnt(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Popcnt, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point comparison.
    ///
    /// Two IEEE 754-2008 floating point numbers, `x` and `y`, relate to each
    /// other in exactly one of four ways:
    ///
    /// ```text
    /// == ==========================================
    /// UN Unordered when one or both numbers is NaN.
    /// EQ When `x = y`. (And `0.0 = -0.0`).
    /// LT When `x < y`.
    /// GT When `x > y`.
    /// == ==========================================
    /// ```
    ///
    /// The 14 `floatcc` condition codes each correspond to a subset of
    /// the four relations, except for the empty set which would always be
    /// false, and the full set which would always be true.
    ///
    /// The condition codes are divided into 7 'ordered' conditions which don't
    /// include UN, and 7 unordered conditions which all include UN.
    ///
    /// ```text
    /// +-------+------------+---------+------------+-------------------------+
    /// |Ordered             |Unordered             |Condition                |
    /// +=======+============+=========+============+=========================+
    /// |ord    |EQ | LT | GT|uno      |UN          |NaNs absent / present.   |
    /// +-------+------------+---------+------------+-------------------------+
    /// |eq     |EQ          |ueq      |UN | EQ     |Equal                    |
    /// +-------+------------+---------+------------+-------------------------+
    /// |one    |LT | GT     |ne       |UN | LT | GT|Not equal                |
    /// +-------+------------+---------+------------+-------------------------+
    /// |lt     |LT          |ult      |UN | LT     |Less than                |
    /// +-------+------------+---------+------------+-------------------------+
    /// |le     |LT | EQ     |ule      |UN | LT | EQ|Less than or equal       |
    /// +-------+------------+---------+------------+-------------------------+
    /// |gt     |GT          |ugt      |UN | GT     |Greater than             |
    /// +-------+------------+---------+------------+-------------------------+
    /// |ge     |GT | EQ     |uge      |UN | GT | EQ|Greater than or equal    |
    /// +-------+------------+---------+------------+-------------------------+
    /// ```
    ///
    /// The standard C comparison operators, `<, <=, >, >=`, are all ordered,
    /// so they are false if either operand is NaN. The C equality operator,
    /// `==`, is ordered, and since inequality is defined as the logical
    /// inverse it is *unordered*. They map to the `floatcc` condition
    /// codes as follows:
    ///
    /// ```text
    /// ==== ====== ============
    /// C    `Cond` Subset
    /// ==== ====== ============
    /// `==` eq     EQ
    /// `!=` ne     UN | LT | GT
    /// `<`  lt     LT
    /// `<=` le     LT | EQ
    /// `>`  gt     GT
    /// `>=` ge     GT | EQ
    /// ==== ====== ============
    /// ```
    ///
    /// This subset of condition codes also corresponds to the WebAssembly
    /// floating point comparisons of the same name.
    ///
    /// When this instruction compares floating point vectors, it returns a
    /// vector with the results of lane-wise comparisons.
    ///
    /// Inputs:
    ///
    /// - Cond: A floating point comparison condition code
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn fcmp<T1: Into<ir::condcodes::FloatCC>>(self, Cond: T1, x: ir::Value, y: ir::Value) -> Value {
        let Cond = Cond.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.FloatCompare(Opcode::Fcmp, ctrl_typevar, Cond, x, y);
        dfg.first_result(inst)
    }

    /// Floating point comparison returning flags.
    ///
    /// Compares two numbers like `fcmp`, but returns floating point CPU
    /// flags instead of testing a specific condition.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - f: CPU flags representing the result of a floating point comparison. These
    /// flags can be tested with a :type:`floatcc` condition code.
    #[allow(non_snake_case)]
    fn ffcmp(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ffcmp, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point addition.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fadd(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fadd, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point subtraction.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fsub(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fsub, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point multiplication.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fmul(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fmul, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point division.
    ///
    /// Unlike the integer division instructions ` and
    /// `udiv`, this can't trap. Division by zero is infinity or
    /// NaN, depending on the dividend.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fdiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fdiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point square root.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn sqrt(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Sqrt, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point fused multiply-and-add.
    ///
    /// Computes `a := xy+z` without any intermediate rounding of the
    /// product.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    /// - z: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fma(self, x: ir::Value, y: ir::Value, z: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::Fma, ctrl_typevar, x, y, z);
        dfg.first_result(inst)
    }

    /// Floating point negation.
    ///
    /// Note that this is a pure bitwise operation.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` with its sign bit inverted
    #[allow(non_snake_case)]
    fn fneg(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Fneg, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point absolute value.
    ///
    /// Note that this is a pure bitwise operation.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` with its sign bit cleared
    #[allow(non_snake_case)]
    fn fabs(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Fabs, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point copy sign.
    ///
    /// Note that this is a pure bitwise operation. The sign bit from ``y`` is
    /// copied to the sign bit of ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` with its sign bit changed to that of ``y``
    #[allow(non_snake_case)]
    fn fcopysign(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fcopysign, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point minimum, propagating NaNs using the WebAssembly rules.
    ///
    /// If either operand is NaN, this returns NaN with an unspecified sign. Furthermore, if
    /// each input NaN consists of a mantissa whose most significant bit is 1 and the rest is
    /// 0, then the output has the same form. Otherwise, the output mantissa's most significant
    /// bit is 1 and the rest is unspecified.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: The smaller of ``x`` and ``y``
    #[allow(non_snake_case)]
    fn fmin(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fmin, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point pseudo-minimum, propagating NaNs.  This behaves differently from ``fmin``.
    /// See <https://github.com/WebAssembly/simd/pull/122> for background.
    ///
    /// The behaviour is defined as ``fmin_pseudo(a, b) = (b < a) ? b : a``, and the behaviour
    /// for zero or NaN inputs follows from the behaviour of ``<`` with such inputs.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: The smaller of ``x`` and ``y``
    #[allow(non_snake_case)]
    fn fmin_pseudo(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::FminPseudo, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point maximum, propagating NaNs using the WebAssembly rules.
    ///
    /// If either operand is NaN, this returns NaN with an unspecified sign. Furthermore, if
    /// each input NaN consists of a mantissa whose most significant bit is 1 and the rest is
    /// 0, then the output has the same form. Otherwise, the output mantissa's most significant
    /// bit is 1 and the rest is unspecified.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: The larger of ``x`` and ``y``
    #[allow(non_snake_case)]
    fn fmax(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fmax, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point pseudo-maximum, propagating NaNs.  This behaves differently from ``fmax``.
    /// See <https://github.com/WebAssembly/simd/pull/122> for background.
    ///
    /// The behaviour is defined as ``fmax_pseudo(a, b) = (a < b) ? b : a``, and the behaviour
    /// for zero or NaN inputs follows from the behaviour of ``<`` with such inputs.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: The larger of ``x`` and ``y``
    #[allow(non_snake_case)]
    fn fmax_pseudo(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::FmaxPseudo, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Round floating point round to integral, towards positive infinity.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` rounded to integral value
    #[allow(non_snake_case)]
    fn ceil(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Ceil, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Round floating point round to integral, towards negative infinity.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` rounded to integral value
    #[allow(non_snake_case)]
    fn floor(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Floor, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Round floating point round to integral, towards zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` rounded to integral value
    #[allow(non_snake_case)]
    fn trunc(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Trunc, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Round floating point round to integral, towards nearest with ties to
    /// even.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` rounded to integral value
    #[allow(non_snake_case)]
    fn nearest(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Nearest, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reference verification.
    ///
    /// The condition code determines if the reference type in question is
    /// null or not.
    ///
    /// Inputs:
    ///
    /// - x: A scalar reference type
    ///
    /// Outputs:
    ///
    /// - a: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn is_null(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::IsNull, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reference verification.
    ///
    /// The condition code determines if the reference type in question is
    /// invalid or not.
    ///
    /// Inputs:
    ///
    /// - x: A scalar reference type
    ///
    /// Outputs:
    ///
    /// - a: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn is_invalid(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::IsInvalid, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reinterpret the bits in `x` as a different type.
    ///
    /// The input and output types must be storable to memory and of the same
    /// size. A bitcast is equivalent to storing one type and loading the other
    /// type from the same address, both using the specified MemFlags.
    ///
    /// Note that this operation only supports the `big` or `little` MemFlags.
    /// The specified byte order only affects the result in the case where
    /// input and output types differ in lane count/size.  In this case, the
    /// operation is only valid if a byte order specifier is provided.
    ///
    /// Inputs:
    ///
    /// - MemTo (controlling type variable):
    /// - MemFlags: Memory operation flags
    /// - x: Any type that can be stored in memory
    ///
    /// Outputs:
    ///
    /// - a: Bits of `x` reinterpreted
    #[allow(non_snake_case)]
    fn bitcast<T1: Into<ir::MemFlags>>(self, MemTo: crate::ir::Type, MemFlags: T1, x: ir::Value) -> Value {
        let MemFlags = MemFlags.into();
        let (inst, dfg) = self.LoadNoOffset(Opcode::Bitcast, MemTo, MemFlags, x);
        dfg.first_result(inst)
    }

    /// Copies a scalar value to a vector value.  The scalar is copied into the
    /// least significant lane of the vector, and all other lanes will be zero.
    ///
    /// Inputs:
    ///
    /// - TxN (controlling type variable): A SIMD vector type
    /// - s: A scalar value
    ///
    /// Outputs:
    ///
    /// - a: A vector value
    #[allow(non_snake_case)]
    fn scalar_to_vector(self, TxN: crate::ir::Type, s: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::ScalarToVector, TxN, s);
        dfg.first_result(inst)
    }

    /// Convert `x` to an integer mask.
    ///
    /// True maps to all 1s and false maps to all 0s. The result type must have
    /// the same number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): An integer type with the same number of lanes
    /// - x: A scalar or vector whose values are truthy
    ///
    /// Outputs:
    ///
    /// - a: An integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn bmask(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Bmask, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a smaller integer type by discarding
    /// the most significant bits.
    ///
    /// This is the same as reducing modulo `2^n`.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A smaller integer type
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A smaller integer type
    #[allow(non_snake_case)]
    fn ireduce(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Ireduce, IntTo, x);
        dfg.first_result(inst)
    }

    /// Combine `x` and `y` into a vector with twice the lanes but half the integer width while
    /// saturating overflowing values to the signed maximum and minimum.
    ///
    /// The lanes will be concatenated after narrowing. For example, when `x` and `y` are `i32x4`
    /// and `x = [x3, x2, x1, x0]` and `y = [y3, y2, y1, y0]`, then after narrowing the value
    /// returned is an `i16x8`: `a = [y3', y2', y1', y0', x3', x2', x1', x0']`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    /// - y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn snarrow(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Snarrow, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Combine `x` and `y` into a vector with twice the lanes but half the integer width while
    /// saturating overflowing values to the unsigned maximum and minimum.
    ///
    /// Note that all input lanes are considered signed: any negative lanes will overflow and be
    /// replaced with the unsigned minimum, `0x00`.
    ///
    /// The lanes will be concatenated after narrowing. For example, when `x` and `y` are `i32x4`
    /// and `x = [x3, x2, x1, x0]` and `y = [y3, y2, y1, y0]`, then after narrowing the value
    /// returned is an `i16x8`: `a = [y3', y2', y1', y0', x3', x2', x1', x0']`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    /// - y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn unarrow(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Unarrow, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Combine `x` and `y` into a vector with twice the lanes but half the integer width while
    /// saturating overflowing values to the unsigned maximum and minimum.
    ///
    /// Note that all input lanes are considered unsigned: any negative values will be interpreted as unsigned, overflowing and being replaced with the unsigned maximum.
    ///
    /// The lanes will be concatenated after narrowing. For example, when `x` and `y` are `i32x4`
    /// and `x = [x3, x2, x1, x0]` and `y = [y3, y2, y1, y0]`, then after narrowing the value
    /// returned is an `i16x8`: `a = [y3', y2', y1', y0', x3', x2', x1', x0']`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    /// - y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn uunarrow(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Uunarrow, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Widen the low lanes of `x` using signed extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn swiden_low(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::SwidenLow, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Widen the high lanes of `x` using signed extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn swiden_high(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::SwidenHigh, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Widen the low lanes of `x` using unsigned extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn uwiden_low(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::UwidenLow, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Widen the high lanes of `x` using unsigned extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn uwiden_high(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::UwidenHigh, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Does lane-wise integer pairwise addition on two operands, putting the
    /// combined results into a single vector result. Here a pair refers to adjacent
    /// lanes in a vector, i.e. i*2 + (i*2+1) for i == num_lanes/2. The first operand
    /// pairwise add results will make up the low half of the resulting vector while
    /// the second operand pairwise add results will make up the upper half of the
    /// resulting vector.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    /// - y: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    #[allow(non_snake_case)]
    fn iadd_pairwise(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddPairwise, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Takes corresponding elements in `x` and `y`, performs a sign-extending length-doubling
    /// multiplication on them, then adds adjacent pairs of elements to form the result.  For
    /// example, if the input vectors are `[x3, x2, x1, x0]` and `[y3, y2, y1, y0]`, it produces
    /// the vector `[r1, r0]`, where `r1 = sx(x3) * sx(y3) + sx(x2) * sx(y2)` and
    /// `r0 = sx(x1) * sx(y1) + sx(x0) * sx(y0)`, and `sx(n)` sign-extends `n` to twice its width.
    ///
    /// This will double the lane width and halve the number of lanes.  So the resulting
    /// vector has the same number of bits as `x` and `y` do (individually).
    ///
    /// See <https://github.com/WebAssembly/simd/pull/127> for background info.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing 8 integer lanes each 16 bits wide.
    /// - y: A SIMD vector type containing 8 integer lanes each 16 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn widening_pairwise_dot_product_s(self, x: ir::Value, y: ir::Value) -> Value {
        let (inst, dfg) = self.Binary(Opcode::WideningPairwiseDotProductS, types::INVALID, x, y);
        dfg.first_result(inst)
    }

    /// Convert `x` to a larger integer type by zero-extending.
    ///
    /// Each lane in `x` is converted to a larger integer type by adding
    /// zeroes. The result has the same numerical value as `x` when both are
    /// interpreted as unsigned integers.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and each lane must not have fewer bits that the input lanes. If the
    /// input and output types are the same, this is a no-op.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn uextend(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Uextend, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a larger integer type by sign-extending.
    ///
    /// Each lane in `x` is converted to a larger integer type by replicating
    /// the sign bit. The result has the same numerical value as `x` when both
    /// are interpreted as signed integers.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and each lane must not have fewer bits that the input lanes. If the
    /// input and output types are the same, this is a no-op.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn sextend(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Sextend, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a larger floating point format.
    ///
    /// Each lane in `x` is converted to the destination floating point format.
    /// This is an exact operation.
    ///
    /// Cranelift currently only supports two floating point formats
    /// - `f32` and `f64`. This may change in the future.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and the result lanes must not have fewer bits than the input lanes.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fpromote(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Fpromote, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a smaller floating point format.
    ///
    /// Each lane in `x` is converted to the destination floating point format
    /// by rounding to nearest, ties to even.
    ///
    /// Cranelift currently only supports two floating point formats
    /// - `f32` and `f64`. This may change in the future.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and the result lanes must not have more bits than the input lanes.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fdemote(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Fdemote, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a smaller floating point format.
    ///
    /// Each lane in `x` is converted to the destination floating point format
    /// by rounding to nearest, ties to even.
    ///
    /// Cranelift currently only supports two floating point formats
    /// - `f32` and `f64`. This may change in the future.
    ///
    /// Fvdemote differs from fdemote in that with fvdemote it targets vectors.
    /// Fvdemote is constrained to having the input type being F64x2 and the result
    /// type being F32x4. The result lane that was the upper half of the input lane
    /// is initialized to zero.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type consisting of 2 lanes of 64-bit floats
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type consisting of 4 lanes of 32-bit floats
    #[allow(non_snake_case)]
    fn fvdemote(self, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Fvdemote, types::INVALID, x);
        dfg.first_result(inst)
    }

    /// Converts packed single precision floating point to packed double precision floating point.
    ///
    /// Considering only the lower half of the register, the low lanes in `x` are interpreted as
    /// single precision floats that are then converted to a double precision floats.
    ///
    /// The result type will have half the number of vector lanes as the input. Fvpromote_low is
    /// constrained to input F32x4 with a result type of F64x2.
    ///
    /// Inputs:
    ///
    /// - a: A SIMD vector type consisting of 4 lanes of 32-bit floats
    ///
    /// Outputs:
    ///
    /// - x: A SIMD vector type consisting of 2 lanes of 64-bit floats
    #[allow(non_snake_case)]
    fn fvpromote_low(self, a: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FvpromoteLow, types::INVALID, a);
        dfg.first_result(inst)
    }

    /// Converts floating point scalars to unsigned integer.
    ///
    /// Only operates on `x` if it is a scalar. If `x` is NaN or if
    /// the unsigned integral value cannot be represented in the result
    /// type, this instruction traps.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar only floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_uint(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToUint, IntTo, x);
        dfg.first_result(inst)
    }

    /// Converts floating point scalars to signed integer.
    ///
    /// Only operates on `x` if it is a scalar. If `x` is NaN or if
    /// the unsigned integral value cannot be represented in the result
    /// type, this instruction traps.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar only floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_sint(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToSint, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert floating point to unsigned integer as fcvt_to_uint does, but
    /// saturates the input instead of trapping. NaN and negative values are
    /// converted to 0.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_uint_sat(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToUintSat, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert floating point to signed integer as fcvt_to_sint does, but
    /// saturates the input instead of trapping. NaN values are converted to 0.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_sint_sat(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToSintSat, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert unsigned integer to floating point.
    ///
    /// Each lane in `x` is interpreted as an unsigned integer and converted to
    /// floating point using round to nearest, ties to even.
    ///
    /// The result type must have the same number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fcvt_from_uint(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtFromUint, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Convert signed integer to floating point.
    ///
    /// Each lane in `x` is interpreted as a signed integer and converted to
    /// floating point using round to nearest, ties to even.
    ///
    /// The result type must have the same number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fcvt_from_sint(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtFromSint, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Converts packed signed 32-bit integers to packed double precision floating point.
    ///
    /// Considering only the low half of the register, each lane in `x` is interpreted as a
    /// signed 32-bit integer that is then converted to a double precision float. This
    /// instruction differs from fcvt_from_sint in that it converts half the number of lanes
    /// which are converted to occupy twice the number of bits. No rounding should be needed
    /// for the resulting float.
    ///
    /// The result type will have half the number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fcvt_low_from_sint(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtLowFromSint, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Split an integer into low and high parts.
    ///
    /// Vectors of integers are split lane-wise, so the results have the same
    /// number of lanes as the input, but the lanes are half the size.
    ///
    /// Returns the low half of `x` and the high half of `x` as two independent
    /// values.
    ///
    /// Inputs:
    ///
    /// - x: An integer type with lanes from `i16` upwards
    ///
    /// Outputs:
    ///
    /// - lo: The low bits of `x`
    /// - hi: The high bits of `x`
    #[allow(non_snake_case)]
    fn isplit(self, x: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Isplit, ctrl_typevar, x);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Concatenate low and high bits to form a larger integer type.
    ///
    /// Vectors of integers are concatenated lane-wise such that the result has
    /// the same number of lanes as the inputs, but the lanes are twice the
    /// size.
    ///
    /// Inputs:
    ///
    /// - lo: An integer type with lanes type to `i64`
    /// - hi: An integer type with lanes type to `i64`
    ///
    /// Outputs:
    ///
    /// - a: The concatenation of `lo` and `hi`
    #[allow(non_snake_case)]
    fn iconcat(self, lo: ir::Value, hi: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(lo);
        let (inst, dfg) = self.Binary(Opcode::Iconcat, ctrl_typevar, lo, hi);
        dfg.first_result(inst)
    }

    /// Atomically read-modify-write memory at `p`, with second operand `x`.  The old value is
    /// returned.  `p` has the type of the target word size, and `x` may be an integer type of
    /// 8, 16, 32 or 64 bits, even on a 32-bit target.  The type of the returned value is the
    /// same as the type of `x`.  This operation is sequentially consistent and creates
    /// happens-before edges that order normal (non-atomic) loads and stores.
    ///
    /// Inputs:
    ///
    /// - AtomicMem (controlling type variable): Any type that can be stored in memory, which can be used in an atomic operation
    /// - MemFlags: Memory operation flags
    /// - AtomicRmwOp: Atomic Read-Modify-Write Ops
    /// - p: An integer address type
    /// - x: Value to be atomically stored
    ///
    /// Outputs:
    ///
    /// - a: Value atomically loaded
    #[allow(non_snake_case)]
    fn atomic_rmw<T1: Into<ir::MemFlags>, T2: Into<ir::AtomicRmwOp>>(self, AtomicMem: crate::ir::Type, MemFlags: T1, AtomicRmwOp: T2, p: ir::Value, x: ir::Value) -> Value {
        let MemFlags = MemFlags.into();
        let AtomicRmwOp = AtomicRmwOp.into();
        let (inst, dfg) = self.AtomicRmw(Opcode::AtomicRmw, AtomicMem, MemFlags, AtomicRmwOp, p, x);
        dfg.first_result(inst)
    }

    /// Perform an atomic compare-and-swap operation on memory at `p`, with expected value `e`,
    /// storing `x` if the value at `p` equals `e`.  The old value at `p` is returned,
    /// regardless of whether the operation succeeds or fails.  `p` has the type of the target
    /// word size, and `x` and `e` must have the same type and the same size, which may be an
    /// integer type of 8, 16, 32 or 64 bits, even on a 32-bit target.  The type of the returned
    /// value is the same as the type of `x` and `e`.  This operation is sequentially
    /// consistent and creates happens-before edges that order normal (non-atomic) loads and
    /// stores.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - e: Expected value in CAS
    /// - x: Value to be atomically stored
    ///
    /// Outputs:
    ///
    /// - a: Value atomically loaded
    #[allow(non_snake_case)]
    fn atomic_cas<T1: Into<ir::MemFlags>>(self, MemFlags: T1, p: ir::Value, e: ir::Value, x: ir::Value) -> Value {
        let MemFlags = MemFlags.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.AtomicCas(Opcode::AtomicCas, ctrl_typevar, MemFlags, p, e, x);
        dfg.first_result(inst)
    }

    /// Atomically load from memory at `p`.
    ///
    /// This is a polymorphic instruction that can load any value type which has a memory
    /// representation.  It should only be used for integer types with 8, 16, 32 or 64 bits.
    /// This operation is sequentially consistent and creates happens-before edges that order
    /// normal (non-atomic) loads and stores.
    ///
    /// Inputs:
    ///
    /// - AtomicMem (controlling type variable): Any type that can be stored in memory, which can be used in an atomic operation
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    ///
    /// Outputs:
    ///
    /// - a: Value atomically loaded
    #[allow(non_snake_case)]
    fn atomic_load<T1: Into<ir::MemFlags>>(self, AtomicMem: crate::ir::Type, MemFlags: T1, p: ir::Value) -> Value {
        let MemFlags = MemFlags.into();
        let (inst, dfg) = self.LoadNoOffset(Opcode::AtomicLoad, AtomicMem, MemFlags, p);
        dfg.first_result(inst)
    }

    /// Atomically store `x` to memory at `p`.
    ///
    /// This is a polymorphic instruction that can store any value type with a memory
    /// representation.  It should only be used for integer types with 8, 16, 32 or 64 bits.
    /// This operation is sequentially consistent and creates happens-before edges that order
    /// normal (non-atomic) loads and stores.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: Value to be atomically stored
    /// - p: An integer address type
    #[allow(non_snake_case)]
    fn atomic_store<T1: Into<ir::MemFlags>>(self, MemFlags: T1, x: ir::Value, p: ir::Value) -> Inst {
        let MemFlags = MemFlags.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.StoreNoOffset(Opcode::AtomicStore, ctrl_typevar, MemFlags, x, p).0
    }

    /// A memory fence.  This must provide ordering to ensure that, at a minimum, neither loads
    /// nor stores of any kind may move forwards or backwards across the fence.  This operation
    /// is sequentially consistent.
    #[allow(non_snake_case)]
    fn fence(self) -> Inst {
        self.NullAry(Opcode::Fence, types::INVALID).0
    }

Shuffle(imms=(imm: ir::Immediate), vals=2)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 1328)
1326
1327
1328
1329
1330
    fn shuffle<T1: Into<ir::Immediate>>(self, a: ir::Value, b: ir::Value, mask: T1) -> Value {
        let mask = mask.into();
        let (inst, dfg) = self.Shuffle(Opcode::Shuffle, types::INVALID, mask, a, b);
        dfg.first_result(inst)
    }

StackLoad(imms=(stack_slot: ir::StackSlot, offset: ir::immediates::Offset32), vals=0)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 905)
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
    fn stack_load<T1: Into<ir::immediates::Offset32>>(self, Mem: crate::ir::Type, SS: ir::StackSlot, Offset: T1) -> Value {
        let Offset = Offset.into();
        let (inst, dfg) = self.StackLoad(Opcode::StackLoad, Mem, SS, Offset);
        dfg.first_result(inst)
    }

    /// Store a value to a stack slot at a constant offset.
    ///
    /// This is a polymorphic instruction that can store any value type with a
    /// memory representation.
    ///
    /// The offset is an immediate constant, not an SSA value. The memory
    /// access cannot go out of bounds, i.e.
    /// `sizeof(a) + Offset <= sizeof(SS)`.
    ///
    /// Inputs:
    ///
    /// - x: Value to be stored
    /// - SS: A stack slot
    /// - Offset: In-bounds offset into stack slot
    #[allow(non_snake_case)]
    fn stack_store<T1: Into<ir::immediates::Offset32>>(self, x: ir::Value, SS: ir::StackSlot, Offset: T1) -> Inst {
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.StackStore(Opcode::StackStore, ctrl_typevar, SS, Offset, x).0
    }

    /// Get the address of a stack slot.
    ///
    /// Compute the absolute address of a byte in a stack slot. The offset must
    /// refer to a byte inside the stack slot:
    /// `0 <= Offset < sizeof(SS)`.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - SS: A stack slot
    /// - Offset: In-bounds offset into stack slot
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn stack_addr<T1: Into<ir::immediates::Offset32>>(self, iAddr: crate::ir::Type, SS: ir::StackSlot, Offset: T1) -> Value {
        let Offset = Offset.into();
        let (inst, dfg) = self.StackLoad(Opcode::StackAddr, iAddr, SS, Offset);
        dfg.first_result(inst)
    }

StackStore(imms=(stack_slot: ir::StackSlot, offset: ir::immediates::Offset32), vals=1)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 927)
924
925
926
927
928
    fn stack_store<T1: Into<ir::immediates::Offset32>>(self, x: ir::Value, SS: ir::StackSlot, Offset: T1) -> Inst {
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.StackStore(Opcode::StackStore, ctrl_typevar, SS, Offset, x).0
    }

Store(imms=(flags: ir::MemFlags, offset: ir::immediates::Offset32), vals=2)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 569)
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
    fn store<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Store, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 8 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i8`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - iExt8 (controlling type variable): An integer type with more than 8 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 8 bits
    #[allow(non_snake_case)]
    fn uload8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt8: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Uload8, iExt8, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 8 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i8`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - iExt8 (controlling type variable): An integer type with more than 8 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 8 bits
    #[allow(non_snake_case)]
    fn sload8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt8: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Sload8, iExt8, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 8 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i8`` followed by ``store.i8``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 8 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore8, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 16 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i16`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - iExt16 (controlling type variable): An integer type with more than 16 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 16 bits
    #[allow(non_snake_case)]
    fn uload16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt16: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Uload16, iExt16, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 16 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i16`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - iExt16 (controlling type variable): An integer type with more than 16 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 16 bits
    #[allow(non_snake_case)]
    fn sload16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt16: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Sload16, iExt16, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 16 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i16`` followed by ``store.i16``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 16 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore16, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 32 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i32`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 32 bits
    #[allow(non_snake_case)]
    fn uload32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload32, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 32 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i32`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 32 bits
    #[allow(non_snake_case)]
    fn sload32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload32, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 32 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i32`` followed by ``store.i32``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 32 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore32, ctrl_typevar, MemFlags, Offset, x, p).0
    }

StoreNoOffset(imms=(flags: ir::MemFlags), vals=2)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 4107)
4104
4105
4106
4107
4108
    fn atomic_store<T1: Into<ir::MemFlags>>(self, MemFlags: T1, x: ir::Value, p: ir::Value) -> Inst {
        let MemFlags = MemFlags.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.StoreNoOffset(Opcode::AtomicStore, ctrl_typevar, MemFlags, x, p).0
    }

TableAddr(imms=(table: ir::Table, offset: ir::immediates::Offset32), vals=1)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 1230)
1228
1229
1230
1231
1232
    fn table_addr<T1: Into<ir::immediates::Offset32>>(self, iAddr: crate::ir::Type, T: ir::Table, p: ir::Value, Offset: T1) -> Value {
        let Offset = Offset.into();
        let (inst, dfg) = self.TableAddr(Opcode::TableAddr, iAddr, T, Offset, p);
        dfg.first_result(inst)
    }

Ternary(imms=(), vals=3)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 1374)
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
    fn select(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::Select, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Conditional select intended for Spectre guards.
    ///
    /// This operation is semantically equivalent to a select instruction.
    /// However, it is guaranteed to not be removed or otherwise altered by any
    /// optimization pass, and is guaranteed to result in a conditional-move
    /// instruction, not a branch-based lowering.  As such, it is suitable
    /// for use when producing Spectre guards. For example, a bounds-check
    /// may guard against unsafe speculation past a bounds-check conditional
    /// branch by passing the address or index to be accessed through a
    /// conditional move, also gated on the same condition. Because no
    /// Spectre-vulnerable processors are known to perform speculation on
    /// conditional move instructions, this is guaranteed to pick the
    /// correct input. If the selected input in case of overflow is a "safe"
    /// value, for example a null pointer that causes an exception in the
    /// speculative path, this ensures that no Spectre vulnerability will
    /// exist.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - x: Value to use when `c` is true
    /// - y: Value to use when `c` is false
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or reference scalar or vector type
    #[allow(non_snake_case)]
    fn select_spectre_guard(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::SelectSpectreGuard, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Conditional select of bits.
    ///
    /// For each bit in `c`, this instruction selects the corresponding bit from `x` if the bit
    /// in `c` is 1 and the corresponding bit from `y` if the bit in `c` is 0. See also:
    /// `select`, `vselect`.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - x: Value to use when `c` is true
    /// - y: Value to use when `c` is false
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or reference scalar or vector type
    #[allow(non_snake_case)]
    fn bitselect(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::Bitselect, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Split a vector into two halves.
    ///
    /// Split the vector `x` into two separate values, each containing half of
    /// the lanes from ``x``. The result may be two scalars if ``x`` only had
    /// two lanes.
    ///
    /// Inputs:
    ///
    /// - x: Vector to split
    ///
    /// Outputs:
    ///
    /// - lo: Low-numbered lanes of `x`
    /// - hi: High-numbered lanes of `x`
    #[allow(non_snake_case)]
    fn vsplit(self, x: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Vsplit, ctrl_typevar, x);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Vector concatenation.
    ///
    /// Return a vector formed by concatenating ``x`` and ``y``. The resulting
    /// vector type has twice as many lanes as each of the inputs. The lanes of
    /// ``x`` appear as the low-numbered lanes, and the lanes of ``y`` become
    /// the high-numbered lanes of ``a``.
    ///
    /// It is possible to form a vector by concatenating two scalars.
    ///
    /// Inputs:
    ///
    /// - x: Low-numbered lanes
    /// - y: High-numbered lanes
    ///
    /// Outputs:
    ///
    /// - a: Concatenation of `x` and `y`
    #[allow(non_snake_case)]
    fn vconcat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Vconcat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Vector lane select.
    ///
    /// Select lanes from ``x`` or ``y`` controlled by the lanes of the truthy
    /// vector ``c``.
    ///
    /// Inputs:
    ///
    /// - c: Controlling vector
    /// - x: Value to use where `c` is true
    /// - y: Value to use where `c` is false
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type
    #[allow(non_snake_case)]
    fn vselect(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::Vselect, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Reduce a vector to a scalar boolean.
    ///
    /// Return a scalar boolean true if any lane in ``a`` is non-zero, false otherwise.
    ///
    /// Inputs:
    ///
    /// - a: A SIMD vector type
    ///
    /// Outputs:
    ///
    /// - s: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn vany_true(self, a: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(a);
        let (inst, dfg) = self.Unary(Opcode::VanyTrue, ctrl_typevar, a);
        dfg.first_result(inst)
    }

    /// Reduce a vector to a scalar boolean.
    ///
    /// Return a scalar boolean true if all lanes in ``i`` are non-zero, false otherwise.
    ///
    /// Inputs:
    ///
    /// - a: A SIMD vector type
    ///
    /// Outputs:
    ///
    /// - s: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn vall_true(self, a: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(a);
        let (inst, dfg) = self.Unary(Opcode::VallTrue, ctrl_typevar, a);
        dfg.first_result(inst)
    }

    /// Reduce a vector to a scalar integer.
    ///
    /// Return a scalar integer, consisting of the concatenation of the most significant bit
    /// of each lane of ``a``.
    ///
    /// Inputs:
    ///
    /// - Int (controlling type variable): A scalar or vector integer type
    /// - a: A SIMD vector type
    ///
    /// Outputs:
    ///
    /// - x: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn vhigh_bits(self, Int: crate::ir::Type, a: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::VhighBits, Int, a);
        dfg.first_result(inst)
    }

    /// Integer comparison.
    ///
    /// The condition code determines if the operands are interpreted as signed
    /// or unsigned integers.
    ///
    /// | Signed | Unsigned | Condition             |
    /// |--------|----------|-----------------------|
    /// | eq     | eq       | Equal                 |
    /// | ne     | ne       | Not equal             |
    /// | slt    | ult      | Less than             |
    /// | sge    | uge      | Greater than or equal |
    /// | sgt    | ugt      | Greater than          |
    /// | sle    | ule      | Less than or equal    |
    ///
    /// When this instruction compares integer vectors, it returns a vector of
    /// lane-wise comparisons.
    ///
    /// Inputs:
    ///
    /// - Cond: An integer comparison condition code.
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn icmp<T1: Into<ir::condcodes::IntCC>>(self, Cond: T1, x: ir::Value, y: ir::Value) -> Value {
        let Cond = Cond.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntCompare(Opcode::Icmp, ctrl_typevar, Cond, x, y);
        dfg.first_result(inst)
    }

    /// Compare scalar integer to a constant.
    ///
    /// This is the same as the `icmp` instruction, except one operand is
    /// a sign extended 64 bit immediate constant.
    ///
    /// This instruction can only compare scalars. Use `icmp` for
    /// lane-wise vector comparisons.
    ///
    /// Inputs:
    ///
    /// - Cond: An integer comparison condition code.
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn icmp_imm<T1: Into<ir::condcodes::IntCC>, T2: Into<ir::immediates::Imm64>>(self, Cond: T1, x: ir::Value, Y: T2) -> Value {
        let Cond = Cond.into();
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntCompareImm(Opcode::IcmpImm, ctrl_typevar, Cond, Y, x);
        dfg.first_result(inst)
    }

    /// Compare scalar integers and return flags.
    ///
    /// Compare two scalar integer values and return integer CPU flags
    /// representing the result.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - f: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn ifcmp(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ifcmp, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Compare scalar integer to a constant and return flags.
    ///
    /// Like `icmp_imm`, but returns integer CPU flags instead of testing
    /// a specific condition code.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - f: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn ifcmp_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IfcmpImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Wrapping integer addition: `a := x + y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn iadd(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Iadd, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Wrapping integer subtraction: `a := x - y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn isub(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Isub, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Integer negation: `a := -x \pmod{2^B}`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ineg(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Ineg, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Integer absolute value with wrapping: `a := |x|`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn iabs(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Iabs, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Wrapping integer multiplication: `a := x y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn imul(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Imul, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer multiplication, producing the high half of a
    /// double-length result.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn umulhi(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Umulhi, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer multiplication, producing the high half of a
    /// double-length result.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn smulhi(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Smulhi, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Fixed-point multiplication of numbers in the QN format, where N + 1
    /// is the number bitwidth:
    /// `a := signed_saturate((x * y + 1 << (Q - 1)) >> Q)`
    ///
    /// Polymorphic over all integer types (scalar and vector) with 16- or
    /// 32-bit numbers.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type with 16- or 32-bit numbers
    /// - y: A scalar or vector integer type with 16- or 32-bit numbers
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type with 16- or 32-bit numbers
    #[allow(non_snake_case)]
    fn sqmul_round_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::SqmulRoundSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer division: `a := \lfloor {x \over y} \rfloor`.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn udiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Udiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer division rounded toward zero: `a := sign(xy)
    /// \lfloor {|x| \over |y|}\rfloor`.
    ///
    /// This operation traps if the divisor is zero, or if the result is not
    /// representable in `B` bits two's complement. This only happens
    /// when `x = -2^{B-1}, y = -1`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn sdiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Sdiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer remainder.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn urem(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Urem, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer remainder. The result has the sign of the dividend.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn srem(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Srem, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Add immediate integer.
    ///
    /// Same as `iadd`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IaddImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Integer multiplication by immediate constant.
    ///
    /// Same as `imul`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn imul_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::ImulImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned integer division by an immediate constant.
    ///
    /// Same as `udiv`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn udiv_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UdivImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed integer division by an immediate constant.
    ///
    /// Same as `sdiv`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero, or if the result is not
    /// representable in `B` bits two's complement. This only happens
    /// when `x = -2^{B-1}, Y = -1`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn sdiv_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SdivImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned integer remainder with immediate divisor.
    ///
    /// Same as `urem`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn urem_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UremImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed integer remainder with immediate divisor.
    ///
    /// Same as `srem`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn srem_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SremImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Immediate reverse wrapping subtraction: `a := Y - x \pmod{2^B}`.
    ///
    /// The immediate operand is a sign extended 64 bit constant.
    ///
    /// Also works as integer negation when `Y = 0`. Use `iadd_imm`
    /// with a negative immediate operand for the reverse immediate
    /// subtraction.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn irsub_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IrsubImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Add integers with carry in.
    ///
    /// Same as `iadd` with an additional carry input. Computes:
    ///
    /// ```text
    ///     a = x + y + c_{in} \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: Input carry flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_cin(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddCin, ctrl_typevar, x, y, c_in);
        dfg.first_result(inst)
    }

    /// Add integers with carry in.
    ///
    /// Same as `iadd` with an additional carry flag input. Computes:
    ///
    /// ```text
    ///     a = x + y + c_{in} \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_ifcin(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddIfcin, ctrl_typevar, x, y, c_in);
        dfg.first_result(inst)
    }

    /// Add integers with carry out.
    ///
    /// Same as `iadd` with an additional carry output.
    ///
    /// ```text
    ///     a &= x + y \pmod 2^B \\
    ///     c_{out} &= x+y >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: Output carry flag
    #[allow(non_snake_case)]
    fn iadd_cout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddCout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry out.
    ///
    /// Same as `iadd` with an additional carry flag output.
    ///
    /// ```text
    ///     a &= x + y \pmod 2^B \\
    ///     c_{out} &= x+y >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn iadd_ifcout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddIfcout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry in and out.
    ///
    /// Same as `iadd` with an additional carry input and output.
    ///
    /// ```text
    ///     a &= x + y + c_{in} \pmod 2^B \\
    ///     c_{out} &= x + y + c_{in} >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: Input carry flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: Output carry flag
    #[allow(non_snake_case)]
    fn iadd_carry(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddCarry, ctrl_typevar, x, y, c_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry in and out.
    ///
    /// Same as `iadd` with an additional carry flag input and output.
    ///
    /// ```text
    ///     a &= x + y + c_{in} \pmod 2^B \\
    ///     c_{out} &= x + y + c_{in} >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn iadd_ifcarry(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddIfcarry, ctrl_typevar, x, y, c_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Unsigned addition of x and y, trapping if the result overflows.
    ///
    /// Accepts 32 or 64-bit integers, and does not support vector types.
    ///
    /// Inputs:
    ///
    /// - x: A 32 or 64-bit scalar integer type
    /// - y: A 32 or 64-bit scalar integer type
    /// - code: A trap reason code.
    ///
    /// Outputs:
    ///
    /// - a: A 32 or 64-bit scalar integer type
    #[allow(non_snake_case)]
    fn uadd_overflow_trap<T1: Into<ir::TrapCode>>(self, x: ir::Value, y: ir::Value, code: T1) -> Value {
        let code = code.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntAddTrap(Opcode::UaddOverflowTrap, ctrl_typevar, code, x, y);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow in.
    ///
    /// Same as `isub` with an additional borrow flag input. Computes:
    ///
    /// ```text
    ///     a = x - (y + b_{in}) \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: Input borrow flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn isub_bin(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubBin, ctrl_typevar, x, y, b_in);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow in.
    ///
    /// Same as `isub` with an additional borrow flag input. Computes:
    ///
    /// ```text
    ///     a = x - (y + b_{in}) \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn isub_ifbin(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubIfbin, ctrl_typevar, x, y, b_in);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow out.
    ///
    /// Same as `isub` with an additional borrow flag output.
    ///
    /// ```text
    ///     a &= x - y \pmod 2^B \\
    ///     b_{out} &= x < y
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: Output borrow flag
    #[allow(non_snake_case)]
    fn isub_bout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IsubBout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow out.
    ///
    /// Same as `isub` with an additional borrow flag output.
    ///
    /// ```text
    ///     a &= x - y \pmod 2^B \\
    ///     b_{out} &= x < y
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn isub_ifbout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IsubIfbout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow in and out.
    ///
    /// Same as `isub` with an additional borrow flag input and output.
    ///
    /// ```text
    ///     a &= x - (y + b_{in}) \pmod 2^B \\
    ///     b_{out} &= x < y + b_{in}
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: Input borrow flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: Output borrow flag
    #[allow(non_snake_case)]
    fn isub_borrow(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubBorrow, ctrl_typevar, x, y, b_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow in and out.
    ///
    /// Same as `isub` with an additional borrow flag input and output.
    ///
    /// ```text
    ///     a &= x - (y + b_{in}) \pmod 2^B \\
    ///     b_{out} &= x < y + b_{in}
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn isub_ifborrow(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubIfborrow, ctrl_typevar, x, y, b_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Bitwise and.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn band(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Band, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise or.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bor(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Bor, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise xor.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bxor(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Bxor, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise not.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bnot(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Bnot, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Bitwise and not.
    ///
    /// Computes `x & ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn band_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BandNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise or not.
    ///
    /// Computes `x | ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bor_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BorNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise xor not.
    ///
    /// Computes `x ^ ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bxor_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BxorNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise and with immediate.
    ///
    /// Same as `band`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn band_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BandImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Bitwise or with immediate.
    ///
    /// Same as `bor`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bor_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BorImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Bitwise xor with immediate.
    ///
    /// Same as `bxor`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bxor_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BxorImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Rotate left.
    ///
    /// Rotate the bits in ``x`` by ``y`` places.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotl(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Rotl, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Rotate right.
    ///
    /// Rotate the bits in ``x`` by ``y`` places.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Rotr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Rotate left by immediate.
    ///
    /// Same as `rotl`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotl_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::RotlImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Rotate right by immediate.
    ///
    /// Same as `rotr`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::RotrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Integer shift left. Shift the bits in ``x`` towards the MSB by ``y``
    /// places. Shift in zero bits to the LSB.
    ///
    /// The shift amount is masked to the size of ``x``.
    ///
    /// When shifting a B-bits integer type, this instruction computes:
    ///
    /// ```text
    ///     s &:= y \pmod B,
    ///     a &:= x \cdot 2^s \pmod{2^B}.
    /// ```
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ishl(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ishl, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned shift right. Shift bits in ``x`` towards the LSB by ``y``
    /// places, shifting in zero bits to the MSB. Also called a *logical
    /// shift*.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// When shifting a B-bits integer type, this instruction computes:
    ///
    /// ```text
    ///     s &:= y \pmod B,
    ///     a &:= \lfloor x \cdot 2^{-s} \rfloor.
    /// ```
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ushr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ushr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed shift right. Shift bits in ``x`` towards the LSB by ``y``
    /// places, shifting in sign bits to the MSB. Also called an *arithmetic
    /// shift*.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn sshr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Sshr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Integer shift left by immediate.
    ///
    /// The shift amount is masked to the size of ``x``.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ishl_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IshlImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned shift right by immediate.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ushr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UshrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed shift right by immediate.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn sshr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SshrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Reverse the bits of a integer.
    ///
    /// Reverses the bits in ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bitrev(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Bitrev, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Count leading zero bits.
    ///
    /// Starting from the MSB in ``x``, count the number of zero bits before
    /// reaching the first one bit. When ``x`` is zero, returns the size of x
    /// in bits.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn clz(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Clz, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Count leading sign bits.
    ///
    /// Starting from the MSB after the sign bit in ``x``, count the number of
    /// consecutive bits identical to the sign bit. When ``x`` is 0 or -1,
    /// returns one less than the size of x in bits.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn cls(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Cls, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Count trailing zeros.
    ///
    /// Starting from the LSB in ``x``, count the number of zero bits before
    /// reaching the first one bit. When ``x`` is zero, returns the size of x
    /// in bits.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn ctz(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Ctz, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reverse the byte order of an integer.
    ///
    /// Reverses the bytes in ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A multi byte scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A multi byte scalar integer type
    #[allow(non_snake_case)]
    fn bswap(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Bswap, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Population count
    ///
    /// Count the number of one bits in ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn popcnt(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Popcnt, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point comparison.
    ///
    /// Two IEEE 754-2008 floating point numbers, `x` and `y`, relate to each
    /// other in exactly one of four ways:
    ///
    /// ```text
    /// == ==========================================
    /// UN Unordered when one or both numbers is NaN.
    /// EQ When `x = y`. (And `0.0 = -0.0`).
    /// LT When `x < y`.
    /// GT When `x > y`.
    /// == ==========================================
    /// ```
    ///
    /// The 14 `floatcc` condition codes each correspond to a subset of
    /// the four relations, except for the empty set which would always be
    /// false, and the full set which would always be true.
    ///
    /// The condition codes are divided into 7 'ordered' conditions which don't
    /// include UN, and 7 unordered conditions which all include UN.
    ///
    /// ```text
    /// +-------+------------+---------+------------+-------------------------+
    /// |Ordered             |Unordered             |Condition                |
    /// +=======+============+=========+============+=========================+
    /// |ord    |EQ | LT | GT|uno      |UN          |NaNs absent / present.   |
    /// +-------+------------+---------+------------+-------------------------+
    /// |eq     |EQ          |ueq      |UN | EQ     |Equal                    |
    /// +-------+------------+---------+------------+-------------------------+
    /// |one    |LT | GT     |ne       |UN | LT | GT|Not equal                |
    /// +-------+------------+---------+------------+-------------------------+
    /// |lt     |LT          |ult      |UN | LT     |Less than                |
    /// +-------+------------+---------+------------+-------------------------+
    /// |le     |LT | EQ     |ule      |UN | LT | EQ|Less than or equal       |
    /// +-------+------------+---------+------------+-------------------------+
    /// |gt     |GT          |ugt      |UN | GT     |Greater than             |
    /// +-------+------------+---------+------------+-------------------------+
    /// |ge     |GT | EQ     |uge      |UN | GT | EQ|Greater than or equal    |
    /// +-------+------------+---------+------------+-------------------------+
    /// ```
    ///
    /// The standard C comparison operators, `<, <=, >, >=`, are all ordered,
    /// so they are false if either operand is NaN. The C equality operator,
    /// `==`, is ordered, and since inequality is defined as the logical
    /// inverse it is *unordered*. They map to the `floatcc` condition
    /// codes as follows:
    ///
    /// ```text
    /// ==== ====== ============
    /// C    `Cond` Subset
    /// ==== ====== ============
    /// `==` eq     EQ
    /// `!=` ne     UN | LT | GT
    /// `<`  lt     LT
    /// `<=` le     LT | EQ
    /// `>`  gt     GT
    /// `>=` ge     GT | EQ
    /// ==== ====== ============
    /// ```
    ///
    /// This subset of condition codes also corresponds to the WebAssembly
    /// floating point comparisons of the same name.
    ///
    /// When this instruction compares floating point vectors, it returns a
    /// vector with the results of lane-wise comparisons.
    ///
    /// Inputs:
    ///
    /// - Cond: A floating point comparison condition code
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn fcmp<T1: Into<ir::condcodes::FloatCC>>(self, Cond: T1, x: ir::Value, y: ir::Value) -> Value {
        let Cond = Cond.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.FloatCompare(Opcode::Fcmp, ctrl_typevar, Cond, x, y);
        dfg.first_result(inst)
    }

    /// Floating point comparison returning flags.
    ///
    /// Compares two numbers like `fcmp`, but returns floating point CPU
    /// flags instead of testing a specific condition.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - f: CPU flags representing the result of a floating point comparison. These
    /// flags can be tested with a :type:`floatcc` condition code.
    #[allow(non_snake_case)]
    fn ffcmp(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ffcmp, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point addition.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fadd(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fadd, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point subtraction.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fsub(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fsub, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point multiplication.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fmul(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fmul, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point division.
    ///
    /// Unlike the integer division instructions ` and
    /// `udiv`, this can't trap. Division by zero is infinity or
    /// NaN, depending on the dividend.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fdiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fdiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point square root.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn sqrt(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Sqrt, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point fused multiply-and-add.
    ///
    /// Computes `a := xy+z` without any intermediate rounding of the
    /// product.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    /// - z: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fma(self, x: ir::Value, y: ir::Value, z: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::Fma, ctrl_typevar, x, y, z);
        dfg.first_result(inst)
    }

TernaryImm8(imms=(imm: ir::immediates::Uimm8), vals=2)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 330)
327
328
329
330
331
332
    fn insertlane<T1: Into<ir::immediates::Uimm8>>(self, x: ir::Value, y: ir::Value, Idx: T1) -> Value {
        let Idx = Idx.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.TernaryImm8(Opcode::Insertlane, ctrl_typevar, Idx, x, y);
        dfg.first_result(inst)
    }

Trap(imms=(code: ir::TrapCode), vals=0)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 116)
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    fn trap<T1: Into<ir::TrapCode>>(self, code: T1) -> Inst {
        let code = code.into();
        self.Trap(Opcode::Trap, types::INVALID, code).0
    }

    /// Trap when zero.
    ///
    /// if ``c`` is non-zero, execution continues at the following instruction.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - code: A trap reason code.
    #[allow(non_snake_case)]
    fn trapz<T1: Into<ir::TrapCode>>(self, c: ir::Value, code: T1) -> Inst {
        let code = code.into();
        let ctrl_typevar = self.data_flow_graph().value_type(c);
        self.CondTrap(Opcode::Trapz, ctrl_typevar, code, c).0
    }

    /// A resumable trap.
    ///
    /// This instruction allows non-conditional traps to be used as non-terminal instructions.
    ///
    /// Inputs:
    ///
    /// - code: A trap reason code.
    #[allow(non_snake_case)]
    fn resumable_trap<T1: Into<ir::TrapCode>>(self, code: T1) -> Inst {
        let code = code.into();
        self.Trap(Opcode::ResumableTrap, types::INVALID, code).0
    }

Unary(imms=(), vals=1)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 286)
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
    fn splat(self, TxN: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Splat, TxN, x);
        dfg.first_result(inst)
    }

    /// Vector swizzle.
    ///
    /// Returns a new vector with byte-width lanes selected from the lanes of the first input
    /// vector ``x`` specified in the second input vector ``s``. The indices ``i`` in range
    /// ``[0, 15]`` select the ``i``-th element of ``x``. For indices outside of the range the
    /// resulting lane is 0. Note that this operates on byte-width lanes.
    ///
    /// Inputs:
    ///
    /// - TxN (controlling type variable): A SIMD vector type
    /// - x: Vector to modify by re-arranging lanes
    /// - y: Mask for re-arranging lanes
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type
    #[allow(non_snake_case)]
    fn swizzle(self, TxN: crate::ir::Type, x: ir::Value, y: ir::Value) -> Value {
        let (inst, dfg) = self.Binary(Opcode::Swizzle, TxN, x, y);
        dfg.first_result(inst)
    }

    /// Insert ``y`` as lane ``Idx`` in x.
    ///
    /// The lane index, ``Idx``, is an immediate value, not an SSA value. It
    /// must indicate a valid lane index for the type of ``x``.
    ///
    /// Inputs:
    ///
    /// - x: The vector to modify
    /// - y: New lane value
    /// - Idx: Lane index
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type
    #[allow(non_snake_case)]
    fn insertlane<T1: Into<ir::immediates::Uimm8>>(self, x: ir::Value, y: ir::Value, Idx: T1) -> Value {
        let Idx = Idx.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.TernaryImm8(Opcode::Insertlane, ctrl_typevar, Idx, x, y);
        dfg.first_result(inst)
    }

    /// Extract lane ``Idx`` from ``x``.
    ///
    /// The lane index, ``Idx``, is an immediate value, not an SSA value. It
    /// must indicate a valid lane index for the type of ``x``. Note that the upper bits of ``a``
    /// may or may not be zeroed depending on the ISA but the type system should prevent using
    /// ``a`` as anything other than the extracted value.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type
    /// - Idx: Lane index
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn extractlane<T1: Into<ir::immediates::Uimm8>>(self, x: ir::Value, Idx: T1) -> Value {
        let Idx = Idx.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm8(Opcode::Extractlane, ctrl_typevar, Idx, x);
        dfg.first_result(inst)
    }

    /// Signed integer minimum.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn smin(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Smin, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer minimum.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn umin(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Umin, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer maximum.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn smax(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Smax, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer maximum.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn umax(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Umax, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned average with rounding: `a := (x + y + 1) // 2`
    ///
    /// The addition does not lose any information (such as from overflow).
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn avg_round(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::AvgRound, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Add with unsigned saturation.
    ///
    /// This is similar to `iadd` but the operands are interpreted as unsigned integers and their
    /// summed result, instead of wrapping, will be saturated to the highest unsigned integer for
    /// the controlling type (e.g. `0xFF` for i8).
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn uadd_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::UaddSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Add with signed saturation.
    ///
    /// This is similar to `iadd` but the operands are interpreted as signed integers and their
    /// summed result, instead of wrapping, will be saturated to the lowest or highest
    /// signed integer for the controlling type (e.g. `0x80` or `0x7F` for i8). For example,
    /// since an `sadd_sat.i8` of `0x70` and `0x70` is greater than `0x7F`, the result will be
    /// clamped to `0x7F`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn sadd_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::SaddSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Subtract with unsigned saturation.
    ///
    /// This is similar to `isub` but the operands are interpreted as unsigned integers and their
    /// difference, instead of wrapping, will be saturated to the lowest unsigned integer for
    /// the controlling type (e.g. `0x00` for i8).
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn usub_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::UsubSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Subtract with signed saturation.
    ///
    /// This is similar to `isub` but the operands are interpreted as signed integers and their
    /// difference, instead of wrapping, will be saturated to the lowest or highest
    /// signed integer for the controlling type (e.g. `0x80` or `0x7F` for i8).
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integers
    /// - y: A SIMD vector type containing integers
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integers
    #[allow(non_snake_case)]
    fn ssub_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::SsubSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Load from memory at ``p + Offset``.
    ///
    /// This is a polymorphic instruction that can load any value type which
    /// has a memory representation.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn load<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, Mem: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Load, Mem, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store ``x`` to memory at ``p + Offset``.
    ///
    /// This is a polymorphic instruction that can store any value type with a
    /// memory representation.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: Value to be stored
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn store<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Store, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 8 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i8`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - iExt8 (controlling type variable): An integer type with more than 8 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 8 bits
    #[allow(non_snake_case)]
    fn uload8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt8: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Uload8, iExt8, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 8 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i8`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - iExt8 (controlling type variable): An integer type with more than 8 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 8 bits
    #[allow(non_snake_case)]
    fn sload8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt8: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Sload8, iExt8, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 8 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i8`` followed by ``store.i8``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 8 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore8, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 16 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i16`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - iExt16 (controlling type variable): An integer type with more than 16 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 16 bits
    #[allow(non_snake_case)]
    fn uload16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt16: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Uload16, iExt16, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 16 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i16`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - iExt16 (controlling type variable): An integer type with more than 16 bits
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 16 bits
    #[allow(non_snake_case)]
    fn sload16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, iExt16: crate::ir::Type, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let (inst, dfg) = self.Load(Opcode::Sload16, iExt16, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 16 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i16`` followed by ``store.i16``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 16 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore16<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore16, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load 32 bits from memory at ``p + Offset`` and zero-extend.
    ///
    /// This is equivalent to ``load.i32`` followed by ``uextend``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 32 bits
    #[allow(non_snake_case)]
    fn uload32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload32, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load 32 bits from memory at ``p + Offset`` and sign-extend.
    ///
    /// This is equivalent to ``load.i32`` followed by ``sextend``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: An integer type with more than 32 bits
    #[allow(non_snake_case)]
    fn sload32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload32, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Store the low 32 bits of ``x`` to memory at ``p + Offset``.
    ///
    /// This is equivalent to ``ireduce.i32`` followed by ``store.i32``.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - x: An integer type with more than 32 bits
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    #[allow(non_snake_case)]
    fn istore32<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, x: ir::Value, p: ir::Value, Offset: T2) -> Inst {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.Store(Opcode::Istore32, ctrl_typevar, MemFlags, Offset, x, p).0
    }

    /// Load an 8x8 vector (64 bits) from memory at ``p + Offset`` and zero-extend into an i16x8
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn uload8x8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload8x8, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load an 8x8 vector (64 bits) from memory at ``p + Offset`` and sign-extend into an i16x8
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn sload8x8<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload8x8, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a 16x4 vector (64 bits) from memory at ``p + Offset`` and zero-extend into an i32x4
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn uload16x4<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload16x4, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a 16x4 vector (64 bits) from memory at ``p + Offset`` and sign-extend into an i32x4
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn sload16x4<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload16x4, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load an 32x2 vector (64 bits) from memory at ``p + Offset`` and zero-extend into an i64x2
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn uload32x2<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Uload32x2, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a 32x2 vector (64 bits) from memory at ``p + Offset`` and sign-extend into an i64x2
    /// vector.
    ///
    /// Inputs:
    ///
    /// - MemFlags: Memory operation flags
    /// - p: An integer address type
    /// - Offset: Byte offset from base address
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn sload32x2<T1: Into<ir::MemFlags>, T2: Into<ir::immediates::Offset32>>(self, MemFlags: T1, p: ir::Value, Offset: T2) -> Value {
        let MemFlags = MemFlags.into();
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(p);
        let (inst, dfg) = self.Load(Opcode::Sload32x2, ctrl_typevar, MemFlags, Offset, p);
        dfg.first_result(inst)
    }

    /// Load a value from a stack slot at the constant offset.
    ///
    /// This is a polymorphic instruction that can load any value type which
    /// has a memory representation.
    ///
    /// The offset is an immediate constant, not an SSA value. The memory
    /// access cannot go out of bounds, i.e.
    /// `sizeof(a) + Offset <= sizeof(SS)`.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - SS: A stack slot
    /// - Offset: In-bounds offset into stack slot
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn stack_load<T1: Into<ir::immediates::Offset32>>(self, Mem: crate::ir::Type, SS: ir::StackSlot, Offset: T1) -> Value {
        let Offset = Offset.into();
        let (inst, dfg) = self.StackLoad(Opcode::StackLoad, Mem, SS, Offset);
        dfg.first_result(inst)
    }

    /// Store a value to a stack slot at a constant offset.
    ///
    /// This is a polymorphic instruction that can store any value type with a
    /// memory representation.
    ///
    /// The offset is an immediate constant, not an SSA value. The memory
    /// access cannot go out of bounds, i.e.
    /// `sizeof(a) + Offset <= sizeof(SS)`.
    ///
    /// Inputs:
    ///
    /// - x: Value to be stored
    /// - SS: A stack slot
    /// - Offset: In-bounds offset into stack slot
    #[allow(non_snake_case)]
    fn stack_store<T1: Into<ir::immediates::Offset32>>(self, x: ir::Value, SS: ir::StackSlot, Offset: T1) -> Inst {
        let Offset = Offset.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.StackStore(Opcode::StackStore, ctrl_typevar, SS, Offset, x).0
    }

    /// Get the address of a stack slot.
    ///
    /// Compute the absolute address of a byte in a stack slot. The offset must
    /// refer to a byte inside the stack slot:
    /// `0 <= Offset < sizeof(SS)`.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - SS: A stack slot
    /// - Offset: In-bounds offset into stack slot
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn stack_addr<T1: Into<ir::immediates::Offset32>>(self, iAddr: crate::ir::Type, SS: ir::StackSlot, Offset: T1) -> Value {
        let Offset = Offset.into();
        let (inst, dfg) = self.StackLoad(Opcode::StackAddr, iAddr, SS, Offset);
        dfg.first_result(inst)
    }

    /// Load a value from a dynamic stack slot.
    ///
    /// This is a polymorphic instruction that can load any value type which
    /// has a memory representation.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - DSS: A dynamic stack slot
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn dynamic_stack_load(self, Mem: crate::ir::Type, DSS: ir::DynamicStackSlot) -> Value {
        let (inst, dfg) = self.DynamicStackLoad(Opcode::DynamicStackLoad, Mem, DSS);
        dfg.first_result(inst)
    }

    /// Store a value to a dynamic stack slot.
    ///
    /// This is a polymorphic instruction that can store any dynamic value type with a
    /// memory representation.
    ///
    /// Inputs:
    ///
    /// - x: Value to be stored
    /// - DSS: A dynamic stack slot
    #[allow(non_snake_case)]
    fn dynamic_stack_store(self, x: ir::Value, DSS: ir::DynamicStackSlot) -> Inst {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        self.DynamicStackStore(Opcode::DynamicStackStore, ctrl_typevar, DSS, x).0
    }

    /// Get the address of a dynamic stack slot.
    ///
    /// Compute the absolute address of the first byte of a dynamic stack slot.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - DSS: A dynamic stack slot
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn dynamic_stack_addr(self, iAddr: crate::ir::Type, DSS: ir::DynamicStackSlot) -> Value {
        let (inst, dfg) = self.DynamicStackLoad(Opcode::DynamicStackAddr, iAddr, DSS);
        dfg.first_result(inst)
    }

    /// Compute the value of global GV.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - GV: A global value.
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn global_value(self, Mem: crate::ir::Type, GV: ir::GlobalValue) -> Value {
        let (inst, dfg) = self.UnaryGlobalValue(Opcode::GlobalValue, Mem, GV);
        dfg.first_result(inst)
    }

    /// Compute the value of global GV, which is a symbolic value.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - GV: A global value.
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn symbol_value(self, Mem: crate::ir::Type, GV: ir::GlobalValue) -> Value {
        let (inst, dfg) = self.UnaryGlobalValue(Opcode::SymbolValue, Mem, GV);
        dfg.first_result(inst)
    }

    /// Compute the value of global GV, which is a TLS (thread local storage) value.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - GV: A global value.
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn tls_value(self, Mem: crate::ir::Type, GV: ir::GlobalValue) -> Value {
        let (inst, dfg) = self.UnaryGlobalValue(Opcode::TlsValue, Mem, GV);
        dfg.first_result(inst)
    }

    /// Bounds check and compute absolute address of ``index + Offset`` in heap memory.
    ///
    /// Verify that the range ``index .. index + Offset + Size`` is in bounds for the
    /// heap ``H``, and generate an absolute address that is safe to dereference.
    ///
    /// 1. If ``index + Offset + Size`` is less than or equal ot the heap bound, return an
    ///    absolute address corresponding to a byte offset of ``index + Offset`` from the
    ///    heap's base address.
    ///
    /// 2. If ``index + Offset + Size`` is greater than the heap bound, return the
    ///    ``NULL`` pointer or any other address that is guaranteed to generate a trap
    ///    when accessed.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - H: A heap.
    /// - index: An unsigned heap offset
    /// - Offset: Static offset immediate in bytes
    /// - Size: Static size immediate in bytes
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn heap_addr<T1: Into<ir::immediates::Uimm32>, T2: Into<ir::immediates::Uimm8>>(self, iAddr: crate::ir::Type, H: ir::Heap, index: ir::Value, Offset: T1, Size: T2) -> Value {
        let Offset = Offset.into();
        let Size = Size.into();
        let (inst, dfg) = self.HeapAddr(Opcode::HeapAddr, iAddr, H, Offset, Size, index);
        dfg.first_result(inst)
    }

    /// Load a value from the given heap at address ``index + offset``,
    /// trapping on out-of-bounds accesses.
    ///
    /// Checks that ``index + offset .. index + offset + sizeof(a)`` is
    /// within the heap's bounds, trapping if it is not. Otherwise, when
    /// that range is in bounds, loads the value from the heap.
    ///
    /// Traps on ``index + offset + sizeof(a)`` overflow.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - heap_imm: Reference to out-of-line heap access immediates
    /// - index: Dynamic index (in bytes) into the heap
    ///
    /// Outputs:
    ///
    /// - a: The value loaded from the heap
    #[allow(non_snake_case)]
    fn heap_load<T1: Into<ir::HeapImm>>(self, Mem: crate::ir::Type, heap_imm: T1, index: ir::Value) -> Value {
        let heap_imm = heap_imm.into();
        let (inst, dfg) = self.HeapLoad(Opcode::HeapLoad, Mem, heap_imm, index);
        dfg.first_result(inst)
    }

    /// Store ``a`` into the given heap at address ``index + offset``,
    /// trapping on out-of-bounds accesses.
    ///
    /// Checks that ``index + offset .. index + offset + sizeof(a)`` is
    /// within the heap's bounds, trapping if it is not. Otherwise, when
    /// that range is in bounds, stores the value into the heap.
    ///
    /// Traps on ``index + offset + sizeof(a)`` overflow.
    ///
    /// Inputs:
    ///
    /// - heap_imm: Reference to out-of-line heap access immediates
    /// - index: Dynamic index (in bytes) into the heap
    /// - a: The value stored into the heap
    #[allow(non_snake_case)]
    fn heap_store<T1: Into<ir::HeapImm>>(self, heap_imm: T1, index: ir::Value, a: ir::Value) -> Inst {
        let heap_imm = heap_imm.into();
        let ctrl_typevar = self.data_flow_graph().value_type(index);
        self.HeapStore(Opcode::HeapStore, ctrl_typevar, heap_imm, index, a).0
    }

    /// Gets the content of the pinned register, when it's enabled.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn get_pinned_reg(self, iAddr: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::GetPinnedReg, iAddr);
        dfg.first_result(inst)
    }

    /// Sets the content of the pinned register, when it's enabled.
    ///
    /// Inputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn set_pinned_reg(self, addr: ir::Value) -> Inst {
        let ctrl_typevar = self.data_flow_graph().value_type(addr);
        self.Unary(Opcode::SetPinnedReg, ctrl_typevar, addr).0
    }

    /// Get the address in the frame pointer register.
    ///
    /// Usage of this instruction requires setting `preserve_frame_pointers` to `true`.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn get_frame_pointer(self, iAddr: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::GetFramePointer, iAddr);
        dfg.first_result(inst)
    }

    /// Get the address in the stack pointer register.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn get_stack_pointer(self, iAddr: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::GetStackPointer, iAddr);
        dfg.first_result(inst)
    }

    /// Get the PC where this function will transfer control to when it returns.
    ///
    /// Usage of this instruction requires setting `preserve_frame_pointers` to `true`.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn get_return_address(self, iAddr: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::GetReturnAddress, iAddr);
        dfg.first_result(inst)
    }

    /// Bounds check and compute absolute address of a table entry.
    ///
    /// Verify that the offset ``p`` is in bounds for the table T, and generate
    /// an absolute address that is safe to dereference.
    ///
    /// ``Offset`` must be less than the size of a table element.
    ///
    /// 1. If ``p`` is not greater than the table bound, return an absolute
    ///    address corresponding to a byte offset of ``p`` from the table's
    ///    base address.
    /// 2. If ``p`` is greater than the table bound, generate a trap.
    ///
    /// Inputs:
    ///
    /// - iAddr (controlling type variable): An integer address type
    /// - T: A table.
    /// - p: An unsigned table offset
    /// - Offset: Byte offset from element address
    ///
    /// Outputs:
    ///
    /// - addr: An integer address type
    #[allow(non_snake_case)]
    fn table_addr<T1: Into<ir::immediates::Offset32>>(self, iAddr: crate::ir::Type, T: ir::Table, p: ir::Value, Offset: T1) -> Value {
        let Offset = Offset.into();
        let (inst, dfg) = self.TableAddr(Opcode::TableAddr, iAddr, T, Offset, p);
        dfg.first_result(inst)
    }

    /// Integer constant.
    ///
    /// Create a scalar integer SSA value with an immediate constant value, or
    /// an integer vector where all the lanes have the same value.
    ///
    /// Inputs:
    ///
    /// - NarrowInt (controlling type variable): An integer type with lanes type to `i64`
    /// - N: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A constant integer scalar or vector value
    #[allow(non_snake_case)]
    fn iconst<T1: Into<ir::immediates::Imm64>>(self, NarrowInt: crate::ir::Type, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryImm(Opcode::Iconst, NarrowInt, N);
        dfg.first_result(inst)
    }

    /// Floating point constant.
    ///
    /// Create a `f32` SSA value with an immediate constant value.
    ///
    /// Inputs:
    ///
    /// - N: A 32-bit immediate floating point number.
    ///
    /// Outputs:
    ///
    /// - a: A constant f32 scalar value
    #[allow(non_snake_case)]
    fn f32const<T1: Into<ir::immediates::Ieee32>>(self, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryIeee32(Opcode::F32const, types::INVALID, N);
        dfg.first_result(inst)
    }

    /// Floating point constant.
    ///
    /// Create a `f64` SSA value with an immediate constant value.
    ///
    /// Inputs:
    ///
    /// - N: A 64-bit immediate floating point number.
    ///
    /// Outputs:
    ///
    /// - a: A constant f64 scalar value
    #[allow(non_snake_case)]
    fn f64const<T1: Into<ir::immediates::Ieee64>>(self, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryIeee64(Opcode::F64const, types::INVALID, N);
        dfg.first_result(inst)
    }

    /// SIMD vector constant.
    ///
    /// Construct a vector with the given immediate bytes.
    ///
    /// Inputs:
    ///
    /// - TxN (controlling type variable): A SIMD vector type
    /// - N: The 16 immediate bytes of a 128-bit vector
    ///
    /// Outputs:
    ///
    /// - a: A constant vector value
    #[allow(non_snake_case)]
    fn vconst<T1: Into<ir::Constant>>(self, TxN: crate::ir::Type, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryConst(Opcode::Vconst, TxN, N);
        dfg.first_result(inst)
    }

    /// SIMD vector shuffle.
    ///
    /// Shuffle two vectors using the given immediate bytes. For each of the 16 bytes of the
    /// immediate, a value i of 0-15 selects the i-th element of the first vector and a value i of
    /// 16-31 selects the (i-16)th element of the second vector. Immediate values outside of the
    /// 0-31 range place a 0 in the resulting vector lane.
    ///
    /// Inputs:
    ///
    /// - a: A vector value
    /// - b: A vector value
    /// - mask: The 16 immediate bytes used for selecting the elements to shuffle
    ///
    /// Outputs:
    ///
    /// - a: A vector value
    #[allow(non_snake_case)]
    fn shuffle<T1: Into<ir::Immediate>>(self, a: ir::Value, b: ir::Value, mask: T1) -> Value {
        let mask = mask.into();
        let (inst, dfg) = self.Shuffle(Opcode::Shuffle, types::INVALID, mask, a, b);
        dfg.first_result(inst)
    }

    /// Null constant value for reference types.
    ///
    /// Create a scalar reference SSA value with a constant null value.
    ///
    /// Inputs:
    ///
    /// - Ref (controlling type variable): A scalar reference type
    ///
    /// Outputs:
    ///
    /// - a: A constant reference null value
    #[allow(non_snake_case)]
    fn null(self, Ref: crate::ir::Type) -> Value {
        let (inst, dfg) = self.NullAry(Opcode::Null, Ref);
        dfg.first_result(inst)
    }

    /// Just a dummy instruction.
    ///
    /// Note: this doesn't compile to a machine code nop.
    #[allow(non_snake_case)]
    fn nop(self) -> Inst {
        self.NullAry(Opcode::Nop, types::INVALID).0
    }

    /// Conditional select.
    ///
    /// This instruction selects whole values. Use `vselect` for
    /// lane-wise selection.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - x: Value to use when `c` is true
    /// - y: Value to use when `c` is false
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or reference scalar or vector type
    #[allow(non_snake_case)]
    fn select(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::Select, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Conditional select intended for Spectre guards.
    ///
    /// This operation is semantically equivalent to a select instruction.
    /// However, it is guaranteed to not be removed or otherwise altered by any
    /// optimization pass, and is guaranteed to result in a conditional-move
    /// instruction, not a branch-based lowering.  As such, it is suitable
    /// for use when producing Spectre guards. For example, a bounds-check
    /// may guard against unsafe speculation past a bounds-check conditional
    /// branch by passing the address or index to be accessed through a
    /// conditional move, also gated on the same condition. Because no
    /// Spectre-vulnerable processors are known to perform speculation on
    /// conditional move instructions, this is guaranteed to pick the
    /// correct input. If the selected input in case of overflow is a "safe"
    /// value, for example a null pointer that causes an exception in the
    /// speculative path, this ensures that no Spectre vulnerability will
    /// exist.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - x: Value to use when `c` is true
    /// - y: Value to use when `c` is false
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or reference scalar or vector type
    #[allow(non_snake_case)]
    fn select_spectre_guard(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::SelectSpectreGuard, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Conditional select of bits.
    ///
    /// For each bit in `c`, this instruction selects the corresponding bit from `x` if the bit
    /// in `c` is 1 and the corresponding bit from `y` if the bit in `c` is 0. See also:
    /// `select`, `vselect`.
    ///
    /// Inputs:
    ///
    /// - c: Controlling value to test
    /// - x: Value to use when `c` is true
    /// - y: Value to use when `c` is false
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or reference scalar or vector type
    #[allow(non_snake_case)]
    fn bitselect(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::Bitselect, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Split a vector into two halves.
    ///
    /// Split the vector `x` into two separate values, each containing half of
    /// the lanes from ``x``. The result may be two scalars if ``x`` only had
    /// two lanes.
    ///
    /// Inputs:
    ///
    /// - x: Vector to split
    ///
    /// Outputs:
    ///
    /// - lo: Low-numbered lanes of `x`
    /// - hi: High-numbered lanes of `x`
    #[allow(non_snake_case)]
    fn vsplit(self, x: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Vsplit, ctrl_typevar, x);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Vector concatenation.
    ///
    /// Return a vector formed by concatenating ``x`` and ``y``. The resulting
    /// vector type has twice as many lanes as each of the inputs. The lanes of
    /// ``x`` appear as the low-numbered lanes, and the lanes of ``y`` become
    /// the high-numbered lanes of ``a``.
    ///
    /// It is possible to form a vector by concatenating two scalars.
    ///
    /// Inputs:
    ///
    /// - x: Low-numbered lanes
    /// - y: High-numbered lanes
    ///
    /// Outputs:
    ///
    /// - a: Concatenation of `x` and `y`
    #[allow(non_snake_case)]
    fn vconcat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Vconcat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Vector lane select.
    ///
    /// Select lanes from ``x`` or ``y`` controlled by the lanes of the truthy
    /// vector ``c``.
    ///
    /// Inputs:
    ///
    /// - c: Controlling vector
    /// - x: Value to use where `c` is true
    /// - y: Value to use where `c` is false
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type
    #[allow(non_snake_case)]
    fn vselect(self, c: ir::Value, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Ternary(Opcode::Vselect, ctrl_typevar, c, x, y);
        dfg.first_result(inst)
    }

    /// Reduce a vector to a scalar boolean.
    ///
    /// Return a scalar boolean true if any lane in ``a`` is non-zero, false otherwise.
    ///
    /// Inputs:
    ///
    /// - a: A SIMD vector type
    ///
    /// Outputs:
    ///
    /// - s: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn vany_true(self, a: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(a);
        let (inst, dfg) = self.Unary(Opcode::VanyTrue, ctrl_typevar, a);
        dfg.first_result(inst)
    }

    /// Reduce a vector to a scalar boolean.
    ///
    /// Return a scalar boolean true if all lanes in ``i`` are non-zero, false otherwise.
    ///
    /// Inputs:
    ///
    /// - a: A SIMD vector type
    ///
    /// Outputs:
    ///
    /// - s: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn vall_true(self, a: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(a);
        let (inst, dfg) = self.Unary(Opcode::VallTrue, ctrl_typevar, a);
        dfg.first_result(inst)
    }

    /// Reduce a vector to a scalar integer.
    ///
    /// Return a scalar integer, consisting of the concatenation of the most significant bit
    /// of each lane of ``a``.
    ///
    /// Inputs:
    ///
    /// - Int (controlling type variable): A scalar or vector integer type
    /// - a: A SIMD vector type
    ///
    /// Outputs:
    ///
    /// - x: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn vhigh_bits(self, Int: crate::ir::Type, a: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::VhighBits, Int, a);
        dfg.first_result(inst)
    }

    /// Integer comparison.
    ///
    /// The condition code determines if the operands are interpreted as signed
    /// or unsigned integers.
    ///
    /// | Signed | Unsigned | Condition             |
    /// |--------|----------|-----------------------|
    /// | eq     | eq       | Equal                 |
    /// | ne     | ne       | Not equal             |
    /// | slt    | ult      | Less than             |
    /// | sge    | uge      | Greater than or equal |
    /// | sgt    | ugt      | Greater than          |
    /// | sle    | ule      | Less than or equal    |
    ///
    /// When this instruction compares integer vectors, it returns a vector of
    /// lane-wise comparisons.
    ///
    /// Inputs:
    ///
    /// - Cond: An integer comparison condition code.
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn icmp<T1: Into<ir::condcodes::IntCC>>(self, Cond: T1, x: ir::Value, y: ir::Value) -> Value {
        let Cond = Cond.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntCompare(Opcode::Icmp, ctrl_typevar, Cond, x, y);
        dfg.first_result(inst)
    }

    /// Compare scalar integer to a constant.
    ///
    /// This is the same as the `icmp` instruction, except one operand is
    /// a sign extended 64 bit immediate constant.
    ///
    /// This instruction can only compare scalars. Use `icmp` for
    /// lane-wise vector comparisons.
    ///
    /// Inputs:
    ///
    /// - Cond: An integer comparison condition code.
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn icmp_imm<T1: Into<ir::condcodes::IntCC>, T2: Into<ir::immediates::Imm64>>(self, Cond: T1, x: ir::Value, Y: T2) -> Value {
        let Cond = Cond.into();
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntCompareImm(Opcode::IcmpImm, ctrl_typevar, Cond, Y, x);
        dfg.first_result(inst)
    }

    /// Compare scalar integers and return flags.
    ///
    /// Compare two scalar integer values and return integer CPU flags
    /// representing the result.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - f: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn ifcmp(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ifcmp, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Compare scalar integer to a constant and return flags.
    ///
    /// Like `icmp_imm`, but returns integer CPU flags instead of testing
    /// a specific condition code.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - f: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn ifcmp_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IfcmpImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Wrapping integer addition: `a := x + y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn iadd(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Iadd, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Wrapping integer subtraction: `a := x - y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn isub(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Isub, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Integer negation: `a := -x \pmod{2^B}`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ineg(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Ineg, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Integer absolute value with wrapping: `a := |x|`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn iabs(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Iabs, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Wrapping integer multiplication: `a := x y \pmod{2^B}`.
    ///
    /// This instruction does not depend on the signed/unsigned interpretation
    /// of the operands.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn imul(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Imul, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer multiplication, producing the high half of a
    /// double-length result.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn umulhi(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Umulhi, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer multiplication, producing the high half of a
    /// double-length result.
    ///
    /// Polymorphic over all integer types (vector and scalar).
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    /// - y: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn smulhi(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Smulhi, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Fixed-point multiplication of numbers in the QN format, where N + 1
    /// is the number bitwidth:
    /// `a := signed_saturate((x * y + 1 << (Q - 1)) >> Q)`
    ///
    /// Polymorphic over all integer types (scalar and vector) with 16- or
    /// 32-bit numbers.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type with 16- or 32-bit numbers
    /// - y: A scalar or vector integer type with 16- or 32-bit numbers
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type with 16- or 32-bit numbers
    #[allow(non_snake_case)]
    fn sqmul_round_sat(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::SqmulRoundSat, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer division: `a := \lfloor {x \over y} \rfloor`.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn udiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Udiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer division rounded toward zero: `a := sign(xy)
    /// \lfloor {|x| \over |y|}\rfloor`.
    ///
    /// This operation traps if the divisor is zero, or if the result is not
    /// representable in `B` bits two's complement. This only happens
    /// when `x = -2^{B-1}, y = -1`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn sdiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Sdiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned integer remainder.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn urem(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Urem, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed integer remainder. The result has the sign of the dividend.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn srem(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Srem, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Add immediate integer.
    ///
    /// Same as `iadd`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IaddImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Integer multiplication by immediate constant.
    ///
    /// Same as `imul`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn imul_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::ImulImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned integer division by an immediate constant.
    ///
    /// Same as `udiv`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn udiv_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UdivImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed integer division by an immediate constant.
    ///
    /// Same as `sdiv`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero, or if the result is not
    /// representable in `B` bits two's complement. This only happens
    /// when `x = -2^{B-1}, Y = -1`.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn sdiv_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SdivImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned integer remainder with immediate divisor.
    ///
    /// Same as `urem`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn urem_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UremImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed integer remainder with immediate divisor.
    ///
    /// Same as `srem`, but one operand is a sign extended 64 bit immediate constant.
    ///
    /// This operation traps if the divisor is zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn srem_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SremImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Immediate reverse wrapping subtraction: `a := Y - x \pmod{2^B}`.
    ///
    /// The immediate operand is a sign extended 64 bit constant.
    ///
    /// Also works as integer negation when `Y = 0`. Use `iadd_imm`
    /// with a negative immediate operand for the reverse immediate
    /// subtraction.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn irsub_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IrsubImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Add integers with carry in.
    ///
    /// Same as `iadd` with an additional carry input. Computes:
    ///
    /// ```text
    ///     a = x + y + c_{in} \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: Input carry flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_cin(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddCin, ctrl_typevar, x, y, c_in);
        dfg.first_result(inst)
    }

    /// Add integers with carry in.
    ///
    /// Same as `iadd` with an additional carry flag input. Computes:
    ///
    /// ```text
    ///     a = x + y + c_{in} \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn iadd_ifcin(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddIfcin, ctrl_typevar, x, y, c_in);
        dfg.first_result(inst)
    }

    /// Add integers with carry out.
    ///
    /// Same as `iadd` with an additional carry output.
    ///
    /// ```text
    ///     a &= x + y \pmod 2^B \\
    ///     c_{out} &= x+y >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: Output carry flag
    #[allow(non_snake_case)]
    fn iadd_cout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddCout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry out.
    ///
    /// Same as `iadd` with an additional carry flag output.
    ///
    /// ```text
    ///     a &= x + y \pmod 2^B \\
    ///     c_{out} &= x+y >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn iadd_ifcout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddIfcout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry in and out.
    ///
    /// Same as `iadd` with an additional carry input and output.
    ///
    /// ```text
    ///     a &= x + y + c_{in} \pmod 2^B \\
    ///     c_{out} &= x + y + c_{in} >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: Input carry flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: Output carry flag
    #[allow(non_snake_case)]
    fn iadd_carry(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddCarry, ctrl_typevar, x, y, c_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Add integers with carry in and out.
    ///
    /// Same as `iadd` with an additional carry flag input and output.
    ///
    /// ```text
    ///     a &= x + y + c_{in} \pmod 2^B \\
    ///     c_{out} &= x + y + c_{in} >= 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - c_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - c_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn iadd_ifcarry(self, x: ir::Value, y: ir::Value, c_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IaddIfcarry, ctrl_typevar, x, y, c_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Unsigned addition of x and y, trapping if the result overflows.
    ///
    /// Accepts 32 or 64-bit integers, and does not support vector types.
    ///
    /// Inputs:
    ///
    /// - x: A 32 or 64-bit scalar integer type
    /// - y: A 32 or 64-bit scalar integer type
    /// - code: A trap reason code.
    ///
    /// Outputs:
    ///
    /// - a: A 32 or 64-bit scalar integer type
    #[allow(non_snake_case)]
    fn uadd_overflow_trap<T1: Into<ir::TrapCode>>(self, x: ir::Value, y: ir::Value, code: T1) -> Value {
        let code = code.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.IntAddTrap(Opcode::UaddOverflowTrap, ctrl_typevar, code, x, y);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow in.
    ///
    /// Same as `isub` with an additional borrow flag input. Computes:
    ///
    /// ```text
    ///     a = x - (y + b_{in}) \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: Input borrow flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn isub_bin(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubBin, ctrl_typevar, x, y, b_in);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow in.
    ///
    /// Same as `isub` with an additional borrow flag input. Computes:
    ///
    /// ```text
    ///     a = x - (y + b_{in}) \pmod 2^B
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn isub_ifbin(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubIfbin, ctrl_typevar, x, y, b_in);
        dfg.first_result(inst)
    }

    /// Subtract integers with borrow out.
    ///
    /// Same as `isub` with an additional borrow flag output.
    ///
    /// ```text
    ///     a &= x - y \pmod 2^B \\
    ///     b_{out} &= x < y
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: Output borrow flag
    #[allow(non_snake_case)]
    fn isub_bout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IsubBout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow out.
    ///
    /// Same as `isub` with an additional borrow flag output.
    ///
    /// ```text
    ///     a &= x - y \pmod 2^B \\
    ///     b_{out} &= x < y
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn isub_ifbout(self, x: ir::Value, y: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IsubIfbout, ctrl_typevar, x, y);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow in and out.
    ///
    /// Same as `isub` with an additional borrow flag input and output.
    ///
    /// ```text
    ///     a &= x - (y + b_{in}) \pmod 2^B \\
    ///     b_{out} &= x < y + b_{in}
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: Input borrow flag
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: Output borrow flag
    #[allow(non_snake_case)]
    fn isub_borrow(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubBorrow, ctrl_typevar, x, y, b_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Subtract integers with borrow in and out.
    ///
    /// Same as `isub` with an additional borrow flag input and output.
    ///
    /// ```text
    ///     a &= x - (y + b_{in}) \pmod 2^B \\
    ///     b_{out} &= x < y + b_{in}
    /// ```
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - y: A scalar integer type
    /// - b_in: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    /// - b_out: CPU flags representing the result of an integer comparison. These flags
    /// can be tested with an :type:`intcc` condition code.
    #[allow(non_snake_case)]
    fn isub_ifborrow(self, x: ir::Value, y: ir::Value, b_in: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::IsubIfborrow, ctrl_typevar, x, y, b_in);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

    /// Bitwise and.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn band(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Band, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise or.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bor(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Bor, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise xor.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bxor(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Bxor, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise not.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bnot(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Bnot, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Bitwise and not.
    ///
    /// Computes `x & ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn band_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BandNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise or not.
    ///
    /// Computes `x | ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bor_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BorNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise xor not.
    ///
    /// Computes `x ^ ~y`.
    ///
    /// Inputs:
    ///
    /// - x: Any integer, float, or vector type
    /// - y: Any integer, float, or vector type
    ///
    /// Outputs:
    ///
    /// - a: Any integer, float, or vector type
    #[allow(non_snake_case)]
    fn bxor_not(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::BxorNot, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Bitwise and with immediate.
    ///
    /// Same as `band`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn band_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BandImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Bitwise or with immediate.
    ///
    /// Same as `bor`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bor_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BorImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Bitwise xor with immediate.
    ///
    /// Same as `bxor`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Polymorphic over all scalar integer types, but does not support vector
    /// types.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bxor_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::BxorImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Rotate left.
    ///
    /// Rotate the bits in ``x`` by ``y`` places.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotl(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Rotl, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Rotate right.
    ///
    /// Rotate the bits in ``x`` by ``y`` places.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Rotr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Rotate left by immediate.
    ///
    /// Same as `rotl`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotl_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::RotlImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Rotate right by immediate.
    ///
    /// Same as `rotr`, but one operand is a zero extended 64 bit immediate constant.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn rotr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::RotrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Integer shift left. Shift the bits in ``x`` towards the MSB by ``y``
    /// places. Shift in zero bits to the LSB.
    ///
    /// The shift amount is masked to the size of ``x``.
    ///
    /// When shifting a B-bits integer type, this instruction computes:
    ///
    /// ```text
    ///     s &:= y \pmod B,
    ///     a &:= x \cdot 2^s \pmod{2^B}.
    /// ```
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ishl(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ishl, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Unsigned shift right. Shift bits in ``x`` towards the LSB by ``y``
    /// places, shifting in zero bits to the MSB. Also called a *logical
    /// shift*.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// When shifting a B-bits integer type, this instruction computes:
    ///
    /// ```text
    ///     s &:= y \pmod B,
    ///     a &:= \lfloor x \cdot 2^{-s} \rfloor.
    /// ```
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ushr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ushr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Signed shift right. Shift bits in ``x`` towards the LSB by ``y``
    /// places, shifting in sign bits to the MSB. Also called an *arithmetic
    /// shift*.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - y: Number of bits to shift
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn sshr(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Sshr, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Integer shift left by immediate.
    ///
    /// The shift amount is masked to the size of ``x``.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ishl_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::IshlImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Unsigned shift right by immediate.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn ushr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::UshrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Signed shift right by immediate.
    ///
    /// The shift amount is masked to the size of the register.
    ///
    /// Inputs:
    ///
    /// - x: Scalar or vector value to shift
    /// - Y: A 64-bit immediate integer.
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn sshr_imm<T1: Into<ir::immediates::Imm64>>(self, x: ir::Value, Y: T1) -> Value {
        let Y = Y.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.BinaryImm64(Opcode::SshrImm, ctrl_typevar, Y, x);
        dfg.first_result(inst)
    }

    /// Reverse the bits of a integer.
    ///
    /// Reverses the bits in ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn bitrev(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Bitrev, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Count leading zero bits.
    ///
    /// Starting from the MSB in ``x``, count the number of zero bits before
    /// reaching the first one bit. When ``x`` is zero, returns the size of x
    /// in bits.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn clz(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Clz, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Count leading sign bits.
    ///
    /// Starting from the MSB after the sign bit in ``x``, count the number of
    /// consecutive bits identical to the sign bit. When ``x`` is 0 or -1,
    /// returns one less than the size of x in bits.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn cls(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Cls, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Count trailing zeros.
    ///
    /// Starting from the LSB in ``x``, count the number of zero bits before
    /// reaching the first one bit. When ``x`` is zero, returns the size of x
    /// in bits.
    ///
    /// Inputs:
    ///
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar integer type
    #[allow(non_snake_case)]
    fn ctz(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Ctz, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reverse the byte order of an integer.
    ///
    /// Reverses the bytes in ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A multi byte scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A multi byte scalar integer type
    #[allow(non_snake_case)]
    fn bswap(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Bswap, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Population count
    ///
    /// Count the number of one bits in ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector integer type
    #[allow(non_snake_case)]
    fn popcnt(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Popcnt, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point comparison.
    ///
    /// Two IEEE 754-2008 floating point numbers, `x` and `y`, relate to each
    /// other in exactly one of four ways:
    ///
    /// ```text
    /// == ==========================================
    /// UN Unordered when one or both numbers is NaN.
    /// EQ When `x = y`. (And `0.0 = -0.0`).
    /// LT When `x < y`.
    /// GT When `x > y`.
    /// == ==========================================
    /// ```
    ///
    /// The 14 `floatcc` condition codes each correspond to a subset of
    /// the four relations, except for the empty set which would always be
    /// false, and the full set which would always be true.
    ///
    /// The condition codes are divided into 7 'ordered' conditions which don't
    /// include UN, and 7 unordered conditions which all include UN.
    ///
    /// ```text
    /// +-------+------------+---------+------------+-------------------------+
    /// |Ordered             |Unordered             |Condition                |
    /// +=======+============+=========+============+=========================+
    /// |ord    |EQ | LT | GT|uno      |UN          |NaNs absent / present.   |
    /// +-------+------------+---------+------------+-------------------------+
    /// |eq     |EQ          |ueq      |UN | EQ     |Equal                    |
    /// +-------+------------+---------+------------+-------------------------+
    /// |one    |LT | GT     |ne       |UN | LT | GT|Not equal                |
    /// +-------+------------+---------+------------+-------------------------+
    /// |lt     |LT          |ult      |UN | LT     |Less than                |
    /// +-------+------------+---------+------------+-------------------------+
    /// |le     |LT | EQ     |ule      |UN | LT | EQ|Less than or equal       |
    /// +-------+------------+---------+------------+-------------------------+
    /// |gt     |GT          |ugt      |UN | GT     |Greater than             |
    /// +-------+------------+---------+------------+-------------------------+
    /// |ge     |GT | EQ     |uge      |UN | GT | EQ|Greater than or equal    |
    /// +-------+------------+---------+------------+-------------------------+
    /// ```
    ///
    /// The standard C comparison operators, `<, <=, >, >=`, are all ordered,
    /// so they are false if either operand is NaN. The C equality operator,
    /// `==`, is ordered, and since inequality is defined as the logical
    /// inverse it is *unordered*. They map to the `floatcc` condition
    /// codes as follows:
    ///
    /// ```text
    /// ==== ====== ============
    /// C    `Cond` Subset
    /// ==== ====== ============
    /// `==` eq     EQ
    /// `!=` ne     UN | LT | GT
    /// `<`  lt     LT
    /// `<=` le     LT | EQ
    /// `>`  gt     GT
    /// `>=` ge     GT | EQ
    /// ==== ====== ============
    /// ```
    ///
    /// This subset of condition codes also corresponds to the WebAssembly
    /// floating point comparisons of the same name.
    ///
    /// When this instruction compares floating point vectors, it returns a
    /// vector with the results of lane-wise comparisons.
    ///
    /// Inputs:
    ///
    /// - Cond: A floating point comparison condition code
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn fcmp<T1: Into<ir::condcodes::FloatCC>>(self, Cond: T1, x: ir::Value, y: ir::Value) -> Value {
        let Cond = Cond.into();
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.FloatCompare(Opcode::Fcmp, ctrl_typevar, Cond, x, y);
        dfg.first_result(inst)
    }

    /// Floating point comparison returning flags.
    ///
    /// Compares two numbers like `fcmp`, but returns floating point CPU
    /// flags instead of testing a specific condition.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - f: CPU flags representing the result of a floating point comparison. These
    /// flags can be tested with a :type:`floatcc` condition code.
    #[allow(non_snake_case)]
    fn ffcmp(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Ffcmp, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point addition.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fadd(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fadd, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point subtraction.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fsub(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fsub, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point multiplication.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fmul(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fmul, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point division.
    ///
    /// Unlike the integer division instructions ` and
    /// `udiv`, this can't trap. Division by zero is infinity or
    /// NaN, depending on the dividend.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fdiv(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fdiv, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point square root.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn sqrt(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Sqrt, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point fused multiply-and-add.
    ///
    /// Computes `a := xy+z` without any intermediate rounding of the
    /// product.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    /// - z: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: Result of applying operator to each lane
    #[allow(non_snake_case)]
    fn fma(self, x: ir::Value, y: ir::Value, z: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(y);
        let (inst, dfg) = self.Ternary(Opcode::Fma, ctrl_typevar, x, y, z);
        dfg.first_result(inst)
    }

    /// Floating point negation.
    ///
    /// Note that this is a pure bitwise operation.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` with its sign bit inverted
    #[allow(non_snake_case)]
    fn fneg(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Fneg, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point absolute value.
    ///
    /// Note that this is a pure bitwise operation.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` with its sign bit cleared
    #[allow(non_snake_case)]
    fn fabs(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Fabs, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Floating point copy sign.
    ///
    /// Note that this is a pure bitwise operation. The sign bit from ``y`` is
    /// copied to the sign bit of ``x``.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` with its sign bit changed to that of ``y``
    #[allow(non_snake_case)]
    fn fcopysign(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fcopysign, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point minimum, propagating NaNs using the WebAssembly rules.
    ///
    /// If either operand is NaN, this returns NaN with an unspecified sign. Furthermore, if
    /// each input NaN consists of a mantissa whose most significant bit is 1 and the rest is
    /// 0, then the output has the same form. Otherwise, the output mantissa's most significant
    /// bit is 1 and the rest is unspecified.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: The smaller of ``x`` and ``y``
    #[allow(non_snake_case)]
    fn fmin(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fmin, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point pseudo-minimum, propagating NaNs.  This behaves differently from ``fmin``.
    /// See <https://github.com/WebAssembly/simd/pull/122> for background.
    ///
    /// The behaviour is defined as ``fmin_pseudo(a, b) = (b < a) ? b : a``, and the behaviour
    /// for zero or NaN inputs follows from the behaviour of ``<`` with such inputs.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: The smaller of ``x`` and ``y``
    #[allow(non_snake_case)]
    fn fmin_pseudo(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::FminPseudo, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point maximum, propagating NaNs using the WebAssembly rules.
    ///
    /// If either operand is NaN, this returns NaN with an unspecified sign. Furthermore, if
    /// each input NaN consists of a mantissa whose most significant bit is 1 and the rest is
    /// 0, then the output has the same form. Otherwise, the output mantissa's most significant
    /// bit is 1 and the rest is unspecified.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: The larger of ``x`` and ``y``
    #[allow(non_snake_case)]
    fn fmax(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Fmax, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Floating point pseudo-maximum, propagating NaNs.  This behaves differently from ``fmax``.
    /// See <https://github.com/WebAssembly/simd/pull/122> for background.
    ///
    /// The behaviour is defined as ``fmax_pseudo(a, b) = (a < b) ? b : a``, and the behaviour
    /// for zero or NaN inputs follows from the behaviour of ``<`` with such inputs.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    /// - y: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: The larger of ``x`` and ``y``
    #[allow(non_snake_case)]
    fn fmax_pseudo(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::FmaxPseudo, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Round floating point round to integral, towards positive infinity.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` rounded to integral value
    #[allow(non_snake_case)]
    fn ceil(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Ceil, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Round floating point round to integral, towards negative infinity.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` rounded to integral value
    #[allow(non_snake_case)]
    fn floor(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Floor, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Round floating point round to integral, towards zero.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` rounded to integral value
    #[allow(non_snake_case)]
    fn trunc(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Trunc, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Round floating point round to integral, towards nearest with ties to
    /// even.
    ///
    /// Inputs:
    ///
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: ``x`` rounded to integral value
    #[allow(non_snake_case)]
    fn nearest(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Nearest, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reference verification.
    ///
    /// The condition code determines if the reference type in question is
    /// null or not.
    ///
    /// Inputs:
    ///
    /// - x: A scalar reference type
    ///
    /// Outputs:
    ///
    /// - a: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn is_null(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::IsNull, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reference verification.
    ///
    /// The condition code determines if the reference type in question is
    /// invalid or not.
    ///
    /// Inputs:
    ///
    /// - x: A scalar reference type
    ///
    /// Outputs:
    ///
    /// - a: An integer type with 8 bits.
    /// WARNING: arithmetic on 8bit integers is incomplete
    #[allow(non_snake_case)]
    fn is_invalid(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::IsInvalid, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Reinterpret the bits in `x` as a different type.
    ///
    /// The input and output types must be storable to memory and of the same
    /// size. A bitcast is equivalent to storing one type and loading the other
    /// type from the same address, both using the specified MemFlags.
    ///
    /// Note that this operation only supports the `big` or `little` MemFlags.
    /// The specified byte order only affects the result in the case where
    /// input and output types differ in lane count/size.  In this case, the
    /// operation is only valid if a byte order specifier is provided.
    ///
    /// Inputs:
    ///
    /// - MemTo (controlling type variable):
    /// - MemFlags: Memory operation flags
    /// - x: Any type that can be stored in memory
    ///
    /// Outputs:
    ///
    /// - a: Bits of `x` reinterpreted
    #[allow(non_snake_case)]
    fn bitcast<T1: Into<ir::MemFlags>>(self, MemTo: crate::ir::Type, MemFlags: T1, x: ir::Value) -> Value {
        let MemFlags = MemFlags.into();
        let (inst, dfg) = self.LoadNoOffset(Opcode::Bitcast, MemTo, MemFlags, x);
        dfg.first_result(inst)
    }

    /// Copies a scalar value to a vector value.  The scalar is copied into the
    /// least significant lane of the vector, and all other lanes will be zero.
    ///
    /// Inputs:
    ///
    /// - TxN (controlling type variable): A SIMD vector type
    /// - s: A scalar value
    ///
    /// Outputs:
    ///
    /// - a: A vector value
    #[allow(non_snake_case)]
    fn scalar_to_vector(self, TxN: crate::ir::Type, s: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::ScalarToVector, TxN, s);
        dfg.first_result(inst)
    }

    /// Convert `x` to an integer mask.
    ///
    /// True maps to all 1s and false maps to all 0s. The result type must have
    /// the same number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): An integer type with the same number of lanes
    /// - x: A scalar or vector whose values are truthy
    ///
    /// Outputs:
    ///
    /// - a: An integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn bmask(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Bmask, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a smaller integer type by discarding
    /// the most significant bits.
    ///
    /// This is the same as reducing modulo `2^n`.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A smaller integer type
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A smaller integer type
    #[allow(non_snake_case)]
    fn ireduce(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Ireduce, IntTo, x);
        dfg.first_result(inst)
    }

    /// Combine `x` and `y` into a vector with twice the lanes but half the integer width while
    /// saturating overflowing values to the signed maximum and minimum.
    ///
    /// The lanes will be concatenated after narrowing. For example, when `x` and `y` are `i32x4`
    /// and `x = [x3, x2, x1, x0]` and `y = [y3, y2, y1, y0]`, then after narrowing the value
    /// returned is an `i16x8`: `a = [y3', y2', y1', y0', x3', x2', x1', x0']`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    /// - y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn snarrow(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Snarrow, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Combine `x` and `y` into a vector with twice the lanes but half the integer width while
    /// saturating overflowing values to the unsigned maximum and minimum.
    ///
    /// Note that all input lanes are considered signed: any negative lanes will overflow and be
    /// replaced with the unsigned minimum, `0x00`.
    ///
    /// The lanes will be concatenated after narrowing. For example, when `x` and `y` are `i32x4`
    /// and `x = [x3, x2, x1, x0]` and `y = [y3, y2, y1, y0]`, then after narrowing the value
    /// returned is an `i16x8`: `a = [y3', y2', y1', y0', x3', x2', x1', x0']`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    /// - y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn unarrow(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Unarrow, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Combine `x` and `y` into a vector with twice the lanes but half the integer width while
    /// saturating overflowing values to the unsigned maximum and minimum.
    ///
    /// Note that all input lanes are considered unsigned: any negative values will be interpreted as unsigned, overflowing and being replaced with the unsigned maximum.
    ///
    /// The lanes will be concatenated after narrowing. For example, when `x` and `y` are `i32x4`
    /// and `x = [x3, x2, x1, x0]` and `y = [y3, y2, y1, y0]`, then after narrowing the value
    /// returned is an `i16x8`: `a = [y3', y2', y1', y0', x3', x2', x1', x0']`.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    /// - y: A SIMD vector type containing integer lanes 16, 32, or 64 bits wide
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn uunarrow(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::Uunarrow, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Widen the low lanes of `x` using signed extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn swiden_low(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::SwidenLow, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Widen the high lanes of `x` using signed extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn swiden_high(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::SwidenHigh, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Widen the low lanes of `x` using unsigned extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn uwiden_low(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::UwidenLow, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Widen the high lanes of `x` using unsigned extension.
    ///
    /// This will double the lane width and halve the number of lanes.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn uwiden_high(self, x: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::UwidenHigh, ctrl_typevar, x);
        dfg.first_result(inst)
    }

    /// Does lane-wise integer pairwise addition on two operands, putting the
    /// combined results into a single vector result. Here a pair refers to adjacent
    /// lanes in a vector, i.e. i*2 + (i*2+1) for i == num_lanes/2. The first operand
    /// pairwise add results will make up the low half of the resulting vector while
    /// the second operand pairwise add results will make up the upper half of the
    /// resulting vector.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    /// - y: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type containing integer lanes 8, 16, or 32 bits wide.
    #[allow(non_snake_case)]
    fn iadd_pairwise(self, x: ir::Value, y: ir::Value) -> Value {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Binary(Opcode::IaddPairwise, ctrl_typevar, x, y);
        dfg.first_result(inst)
    }

    /// Takes corresponding elements in `x` and `y`, performs a sign-extending length-doubling
    /// multiplication on them, then adds adjacent pairs of elements to form the result.  For
    /// example, if the input vectors are `[x3, x2, x1, x0]` and `[y3, y2, y1, y0]`, it produces
    /// the vector `[r1, r0]`, where `r1 = sx(x3) * sx(y3) + sx(x2) * sx(y2)` and
    /// `r0 = sx(x1) * sx(y1) + sx(x0) * sx(y0)`, and `sx(n)` sign-extends `n` to twice its width.
    ///
    /// This will double the lane width and halve the number of lanes.  So the resulting
    /// vector has the same number of bits as `x` and `y` do (individually).
    ///
    /// See <https://github.com/WebAssembly/simd/pull/127> for background info.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type containing 8 integer lanes each 16 bits wide.
    /// - y: A SIMD vector type containing 8 integer lanes each 16 bits wide.
    ///
    /// Outputs:
    ///
    /// - a:
    #[allow(non_snake_case)]
    fn widening_pairwise_dot_product_s(self, x: ir::Value, y: ir::Value) -> Value {
        let (inst, dfg) = self.Binary(Opcode::WideningPairwiseDotProductS, types::INVALID, x, y);
        dfg.first_result(inst)
    }

    /// Convert `x` to a larger integer type by zero-extending.
    ///
    /// Each lane in `x` is converted to a larger integer type by adding
    /// zeroes. The result has the same numerical value as `x` when both are
    /// interpreted as unsigned integers.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and each lane must not have fewer bits that the input lanes. If the
    /// input and output types are the same, this is a no-op.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn uextend(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Uextend, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a larger integer type by sign-extending.
    ///
    /// Each lane in `x` is converted to a larger integer type by replicating
    /// the sign bit. The result has the same numerical value as `x` when both
    /// are interpreted as signed integers.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and each lane must not have fewer bits that the input lanes. If the
    /// input and output types are the same, this is a no-op.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar integer type
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn sextend(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Sextend, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a larger floating point format.
    ///
    /// Each lane in `x` is converted to the destination floating point format.
    /// This is an exact operation.
    ///
    /// Cranelift currently only supports two floating point formats
    /// - `f32` and `f64`. This may change in the future.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and the result lanes must not have fewer bits than the input lanes.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fpromote(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Fpromote, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a smaller floating point format.
    ///
    /// Each lane in `x` is converted to the destination floating point format
    /// by rounding to nearest, ties to even.
    ///
    /// Cranelift currently only supports two floating point formats
    /// - `f32` and `f64`. This may change in the future.
    ///
    /// The result type must have the same number of vector lanes as the input,
    /// and the result lanes must not have more bits than the input lanes.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fdemote(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Fdemote, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Convert `x` to a smaller floating point format.
    ///
    /// Each lane in `x` is converted to the destination floating point format
    /// by rounding to nearest, ties to even.
    ///
    /// Cranelift currently only supports two floating point formats
    /// - `f32` and `f64`. This may change in the future.
    ///
    /// Fvdemote differs from fdemote in that with fvdemote it targets vectors.
    /// Fvdemote is constrained to having the input type being F64x2 and the result
    /// type being F32x4. The result lane that was the upper half of the input lane
    /// is initialized to zero.
    ///
    /// Inputs:
    ///
    /// - x: A SIMD vector type consisting of 2 lanes of 64-bit floats
    ///
    /// Outputs:
    ///
    /// - a: A SIMD vector type consisting of 4 lanes of 32-bit floats
    #[allow(non_snake_case)]
    fn fvdemote(self, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::Fvdemote, types::INVALID, x);
        dfg.first_result(inst)
    }

    /// Converts packed single precision floating point to packed double precision floating point.
    ///
    /// Considering only the lower half of the register, the low lanes in `x` are interpreted as
    /// single precision floats that are then converted to a double precision floats.
    ///
    /// The result type will have half the number of vector lanes as the input. Fvpromote_low is
    /// constrained to input F32x4 with a result type of F64x2.
    ///
    /// Inputs:
    ///
    /// - a: A SIMD vector type consisting of 4 lanes of 32-bit floats
    ///
    /// Outputs:
    ///
    /// - x: A SIMD vector type consisting of 2 lanes of 64-bit floats
    #[allow(non_snake_case)]
    fn fvpromote_low(self, a: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FvpromoteLow, types::INVALID, a);
        dfg.first_result(inst)
    }

    /// Converts floating point scalars to unsigned integer.
    ///
    /// Only operates on `x` if it is a scalar. If `x` is NaN or if
    /// the unsigned integral value cannot be represented in the result
    /// type, this instruction traps.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar only floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_uint(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToUint, IntTo, x);
        dfg.first_result(inst)
    }

    /// Converts floating point scalars to signed integer.
    ///
    /// Only operates on `x` if it is a scalar. If `x` is NaN or if
    /// the unsigned integral value cannot be represented in the result
    /// type, this instruction traps.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar only floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_sint(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToSint, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert floating point to unsigned integer as fcvt_to_uint does, but
    /// saturates the input instead of trapping. NaN and negative values are
    /// converted to 0.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_uint_sat(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToUintSat, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert floating point to signed integer as fcvt_to_sint does, but
    /// saturates the input instead of trapping. NaN values are converted to 0.
    ///
    /// Inputs:
    ///
    /// - IntTo (controlling type variable): A larger integer type with the same number of lanes
    /// - x: A scalar or vector floating point number
    ///
    /// Outputs:
    ///
    /// - a: A larger integer type with the same number of lanes
    #[allow(non_snake_case)]
    fn fcvt_to_sint_sat(self, IntTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtToSintSat, IntTo, x);
        dfg.first_result(inst)
    }

    /// Convert unsigned integer to floating point.
    ///
    /// Each lane in `x` is interpreted as an unsigned integer and converted to
    /// floating point using round to nearest, ties to even.
    ///
    /// The result type must have the same number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fcvt_from_uint(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtFromUint, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Convert signed integer to floating point.
    ///
    /// Each lane in `x` is interpreted as a signed integer and converted to
    /// floating point using round to nearest, ties to even.
    ///
    /// The result type must have the same number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fcvt_from_sint(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtFromSint, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Converts packed signed 32-bit integers to packed double precision floating point.
    ///
    /// Considering only the low half of the register, each lane in `x` is interpreted as a
    /// signed 32-bit integer that is then converted to a double precision float. This
    /// instruction differs from fcvt_from_sint in that it converts half the number of lanes
    /// which are converted to occupy twice the number of bits. No rounding should be needed
    /// for the resulting float.
    ///
    /// The result type will have half the number of vector lanes as the input.
    ///
    /// Inputs:
    ///
    /// - FloatTo (controlling type variable): A scalar or vector floating point number
    /// - x: A scalar or vector integer type
    ///
    /// Outputs:
    ///
    /// - a: A scalar or vector floating point number
    #[allow(non_snake_case)]
    fn fcvt_low_from_sint(self, FloatTo: crate::ir::Type, x: ir::Value) -> Value {
        let (inst, dfg) = self.Unary(Opcode::FcvtLowFromSint, FloatTo, x);
        dfg.first_result(inst)
    }

    /// Split an integer into low and high parts.
    ///
    /// Vectors of integers are split lane-wise, so the results have the same
    /// number of lanes as the input, but the lanes are half the size.
    ///
    /// Returns the low half of `x` and the high half of `x` as two independent
    /// values.
    ///
    /// Inputs:
    ///
    /// - x: An integer type with lanes from `i16` upwards
    ///
    /// Outputs:
    ///
    /// - lo: The low bits of `x`
    /// - hi: The high bits of `x`
    #[allow(non_snake_case)]
    fn isplit(self, x: ir::Value) -> (Value, Value) {
        let ctrl_typevar = self.data_flow_graph().value_type(x);
        let (inst, dfg) = self.Unary(Opcode::Isplit, ctrl_typevar, x);
        let results = &dfg.inst_results(inst)[0..2];
        (results[0], results[1])
    }

UnaryConst(imms=(constant_handle: ir::Constant), vals=0)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 1305)
1303
1304
1305
1306
1307
    fn vconst<T1: Into<ir::Constant>>(self, TxN: crate::ir::Type, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryConst(Opcode::Vconst, TxN, N);
        dfg.first_result(inst)
    }

UnaryGlobalValue(imms=(global_value: ir::GlobalValue), vals=0)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 1016)
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
    fn global_value(self, Mem: crate::ir::Type, GV: ir::GlobalValue) -> Value {
        let (inst, dfg) = self.UnaryGlobalValue(Opcode::GlobalValue, Mem, GV);
        dfg.first_result(inst)
    }

    /// Compute the value of global GV, which is a symbolic value.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - GV: A global value.
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn symbol_value(self, Mem: crate::ir::Type, GV: ir::GlobalValue) -> Value {
        let (inst, dfg) = self.UnaryGlobalValue(Opcode::SymbolValue, Mem, GV);
        dfg.first_result(inst)
    }

    /// Compute the value of global GV, which is a TLS (thread local storage) value.
    ///
    /// Inputs:
    ///
    /// - Mem (controlling type variable): Any type that can be stored in memory
    /// - GV: A global value.
    ///
    /// Outputs:
    ///
    /// - a: Value loaded
    #[allow(non_snake_case)]
    fn tls_value(self, Mem: crate::ir::Type, GV: ir::GlobalValue) -> Value {
        let (inst, dfg) = self.UnaryGlobalValue(Opcode::TlsValue, Mem, GV);
        dfg.first_result(inst)
    }

UnaryIeee32(imms=(imm: ir::immediates::Ieee32), vals=0)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 1268)
1266
1267
1268
1269
1270
    fn f32const<T1: Into<ir::immediates::Ieee32>>(self, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryIeee32(Opcode::F32const, types::INVALID, N);
        dfg.first_result(inst)
    }

UnaryIeee64(imms=(imm: ir::immediates::Ieee64), vals=0)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 1286)
1284
1285
1286
1287
1288
    fn f64const<T1: Into<ir::immediates::Ieee64>>(self, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryIeee64(Opcode::F64const, types::INVALID, N);
        dfg.first_result(inst)
    }

UnaryImm(imms=(imm: ir::immediates::Imm64), vals=0)

Examples found in repository?
/opt/rustwide/target/x86_64-unknown-linux-gnu/debug/build/cranelift-codegen-0715cf9fa7730334/out/inst_builder.rs (line 1250)
1248
1249
1250
1251
1252
    fn iconst<T1: Into<ir::immediates::Imm64>>(self, NarrowInt: crate::ir::Type, N: T1) -> Value {
        let N = N.into();
        let (inst, dfg) = self.UnaryImm(Opcode::Iconst, NarrowInt, N);
        dfg.first_result(inst)
    }

Implementors§

Any type implementing InstBuilderBase gets all the InstBuilder methods for free.