pub enum InstructionData {
Show 40 variants AtomicCas { opcode: Opcode, args: [Value; 3], flags: MemFlags, }, AtomicRmw { opcode: Opcode, args: [Value; 2], flags: MemFlags, op: AtomicRmwOp, }, Binary { opcode: Opcode, args: [Value; 2], }, BinaryImm64 { opcode: Opcode, arg: Value, imm: Imm64, }, BinaryImm8 { opcode: Opcode, arg: Value, imm: Uimm8, }, Branch { opcode: Opcode, args: ValueList, destination: Block, }, BranchTable { opcode: Opcode, arg: Value, destination: Block, table: JumpTable, }, Call { opcode: Opcode, args: ValueList, func_ref: FuncRef, }, CallIndirect { opcode: Opcode, args: ValueList, sig_ref: SigRef, }, CondTrap { opcode: Opcode, arg: Value, code: TrapCode, }, DynamicStackLoad { opcode: Opcode, dynamic_stack_slot: DynamicStackSlot, }, DynamicStackStore { opcode: Opcode, arg: Value, dynamic_stack_slot: DynamicStackSlot, }, FloatCompare { opcode: Opcode, args: [Value; 2], cond: FloatCC, }, FuncAddr { opcode: Opcode, func_ref: FuncRef, }, HeapAddr { opcode: Opcode, arg: Value, heap: Heap, offset: Uimm32, size: Uimm8, }, HeapLoad { opcode: Opcode, arg: Value, heap_imm: HeapImm, }, HeapStore { opcode: Opcode, args: [Value; 2], heap_imm: HeapImm, }, IntAddTrap { opcode: Opcode, args: [Value; 2], code: TrapCode, }, IntCompare { opcode: Opcode, args: [Value; 2], cond: IntCC, }, IntCompareImm { opcode: Opcode, arg: Value, cond: IntCC, imm: Imm64, }, Jump { opcode: Opcode, args: ValueList, destination: Block, }, Load { opcode: Opcode, arg: Value, flags: MemFlags, offset: Offset32, }, LoadNoOffset { opcode: Opcode, arg: Value, flags: MemFlags, }, MultiAry { opcode: Opcode, args: ValueList, }, NullAry { opcode: Opcode, }, Shuffle { opcode: Opcode, args: [Value; 2], imm: Immediate, }, StackLoad { opcode: Opcode, stack_slot: StackSlot, offset: Offset32, }, StackStore { opcode: Opcode, arg: Value, stack_slot: StackSlot, offset: Offset32, }, Store { opcode: Opcode, args: [Value; 2], flags: MemFlags, offset: Offset32, }, StoreNoOffset { opcode: Opcode, args: [Value; 2], flags: MemFlags, }, TableAddr { opcode: Opcode, arg: Value, table: Table, offset: Offset32, }, Ternary { opcode: Opcode, args: [Value; 3], }, TernaryImm8 { opcode: Opcode, args: [Value; 2], imm: Uimm8, }, Trap { opcode: Opcode, code: TrapCode, }, Unary { opcode: Opcode, arg: Value, }, UnaryConst { opcode: Opcode, constant_handle: Constant, }, UnaryGlobalValue { opcode: Opcode, global_value: GlobalValue, }, UnaryIeee32 { opcode: Opcode, imm: Ieee32, }, UnaryIeee64 { opcode: Opcode, imm: Ieee64, }, UnaryImm { opcode: Opcode, imm: Imm64, },
}

Variants§

§

AtomicCas

Fields

§opcode: Opcode
§args: [Value; 3]
§flags: MemFlags
§

AtomicRmw

Fields

§opcode: Opcode
§args: [Value; 2]
§flags: MemFlags
§

Binary

Fields

§opcode: Opcode
§args: [Value; 2]
§

BinaryImm64

Fields

§opcode: Opcode
§arg: Value
§imm: Imm64
§

BinaryImm8

Fields

§opcode: Opcode
§arg: Value
§imm: Uimm8
§

Branch

Fields

§opcode: Opcode
§destination: Block
§

BranchTable

Fields

§opcode: Opcode
§arg: Value
§destination: Block
§table: JumpTable
§

Call

Fields

§opcode: Opcode
§func_ref: FuncRef
§

CallIndirect

Fields

§opcode: Opcode
§sig_ref: SigRef
§

CondTrap

Fields

§opcode: Opcode
§arg: Value
§code: TrapCode
§

DynamicStackLoad

Fields

§opcode: Opcode
§dynamic_stack_slot: DynamicStackSlot
§

DynamicStackStore

Fields

§opcode: Opcode
§arg: Value
§dynamic_stack_slot: DynamicStackSlot
§

FloatCompare

Fields

§opcode: Opcode
§args: [Value; 2]
§cond: FloatCC
§

FuncAddr

Fields

§opcode: Opcode
§func_ref: FuncRef
§

HeapAddr

Fields

§opcode: Opcode
§arg: Value
§heap: Heap
§offset: Uimm32
§size: Uimm8
§

HeapLoad

Fields

§opcode: Opcode
§arg: Value
§heap_imm: HeapImm
§

HeapStore

Fields

§opcode: Opcode
§args: [Value; 2]
§heap_imm: HeapImm
§

IntAddTrap

Fields

§opcode: Opcode
§args: [Value; 2]
§code: TrapCode
§

IntCompare

Fields

§opcode: Opcode
§args: [Value; 2]
§cond: IntCC
§

IntCompareImm

Fields

§opcode: Opcode
§arg: Value
§cond: IntCC
§imm: Imm64
§

Jump

Fields

§opcode: Opcode
§destination: Block
§

Load

Fields

§opcode: Opcode
§arg: Value
§flags: MemFlags
§offset: Offset32
§

LoadNoOffset

Fields

§opcode: Opcode
§arg: Value
§flags: MemFlags
§

MultiAry

Fields

§opcode: Opcode
§

NullAry

Fields

§opcode: Opcode
§

Shuffle

Fields

§opcode: Opcode
§args: [Value; 2]
§

StackLoad

Fields

§opcode: Opcode
§stack_slot: StackSlot
§offset: Offset32
§

StackStore

Fields

§opcode: Opcode
§arg: Value
§stack_slot: StackSlot
§offset: Offset32
§

Store

Fields

§opcode: Opcode
§args: [Value; 2]
§flags: MemFlags
§offset: Offset32
§

StoreNoOffset

Fields

§opcode: Opcode
§args: [Value; 2]
§flags: MemFlags
§

TableAddr

Fields

§opcode: Opcode
§arg: Value
§table: Table
§offset: Offset32
§

Ternary

Fields

§opcode: Opcode
§args: [Value; 3]
§

TernaryImm8

Fields

§opcode: Opcode
§args: [Value; 2]
§imm: Uimm8
§

Trap

Fields

§opcode: Opcode
§code: TrapCode
§

Unary

Fields

§opcode: Opcode
§arg: Value
§

UnaryConst

Fields

§opcode: Opcode
§constant_handle: Constant
§

UnaryGlobalValue

Fields

§opcode: Opcode
§global_value: GlobalValue
§

UnaryIeee32

Fields

§opcode: Opcode
§imm: Ieee32
§

UnaryIeee64

Fields

§opcode: Opcode
§imm: Ieee64
§

UnaryImm

Fields

§opcode: Opcode
§imm: Imm64

Implementations§

Get the opcode of this instruction.

Examples found in repository?
src/simple_gvn.rs (line 28)
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
fn is_load_and_not_readonly(inst_data: &InstructionData) -> bool {
    match *inst_data {
        InstructionData::Load { flags, .. } => !flags.readonly(),
        _ => inst_data.opcode().can_load(),
    }
}

/// Wrapper around `InstructionData` which implements `Eq` and `Hash`
#[derive(Clone)]
struct HashKey<'a, 'f: 'a> {
    inst: InstructionData,
    ty: Type,
    pos: &'a RefCell<FuncCursor<'f>>,
}
impl<'a, 'f: 'a> Hash for HashKey<'a, 'f> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        let pool = &self.pos.borrow().func.dfg.value_lists;
        self.inst.hash(state, pool);
        self.ty.hash(state);
    }
}
impl<'a, 'f: 'a> PartialEq for HashKey<'a, 'f> {
    fn eq(&self, other: &Self) -> bool {
        let pool = &self.pos.borrow().func.dfg.value_lists;
        self.inst.eq(&other.inst, pool) && self.ty == other.ty
    }
}
impl<'a, 'f: 'a> Eq for HashKey<'a, 'f> {}

/// Perform simple GVN on `func`.
///
pub fn do_simple_gvn(func: &mut Function, domtree: &mut DominatorTree) {
    let _tt = timing::gvn();
    debug_assert!(domtree.is_valid());

    // Visit blocks in a reverse post-order.
    //
    // The RefCell here is a bit ugly since the HashKeys in the ScopedHashMap
    // need a reference to the function.
    let pos = RefCell::new(FuncCursor::new(func));

    let mut visible_values: ScopedHashMap<HashKey, Inst> = ScopedHashMap::new();
    let mut scope_stack: Vec<Inst> = Vec::new();

    for &block in domtree.cfg_postorder().iter().rev() {
        {
            // Pop any scopes that we just exited.
            let layout = &pos.borrow().func.layout;
            loop {
                if let Some(current) = scope_stack.last() {
                    if domtree.dominates(*current, block, layout) {
                        break;
                    }
                } else {
                    break;
                }
                scope_stack.pop();
                visible_values.decrement_depth();
            }

            // Push a scope for the current block.
            scope_stack.push(layout.first_inst(block).unwrap());
            visible_values.increment_depth();
        }

        pos.borrow_mut().goto_top(block);
        while let Some(inst) = {
            let mut pos = pos.borrow_mut();
            pos.next_inst()
        } {
            // Resolve aliases, particularly aliases we created earlier.
            pos.borrow_mut().func.dfg.resolve_aliases_in_arguments(inst);

            let func = Ref::map(pos.borrow(), |pos| &pos.func);

            let opcode = func.dfg[inst].opcode();

            if opcode.is_branch() && !opcode.is_terminator() {
                scope_stack.push(func.layout.next_inst(inst).unwrap());
                visible_values.increment_depth();
            }

            if trivially_unsafe_for_gvn(opcode) {
                continue;
            }

            // These are split up to separate concerns.
            if is_load_and_not_readonly(&func.dfg[inst]) {
                continue;
            }

            let ctrl_typevar = func.dfg.ctrl_typevar(inst);
            let key = HashKey {
                inst: func.dfg[inst],
                ty: ctrl_typevar,
                pos: &pos,
            };
            use crate::scoped_hash_map::Entry::*;
            match visible_values.entry(key) {
                Occupied(entry) => {
                    #[allow(clippy::debug_assert_with_mut_call)]
                    {
                        // Clippy incorrectly believes `&func.layout` should not be used here:
                        // https://github.com/rust-lang/rust-clippy/issues/4737
                        debug_assert!(domtree.dominates(*entry.get(), inst, &func.layout));
                    }

                    // If the redundant instruction is representing the current
                    // scope, pick a new representative.
                    let old = scope_stack.last_mut().unwrap();
                    if *old == inst {
                        *old = func.layout.next_inst(inst).unwrap();
                    }
                    // Replace the redundant instruction and remove it.
                    drop(func);
                    let mut pos = pos.borrow_mut();
                    pos.func.dfg.replace_with_aliases(inst, *entry.get());
                    pos.remove_inst_and_step_back();
                }
                Vacant(entry) => {
                    entry.insert(inst);
                }
            }
        }
    }
}
More examples
Hide additional examples
src/inst_predicates.rs (line 44)
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
pub fn has_side_effect(func: &Function, inst: Inst) -> bool {
    let data = &func.dfg[inst];
    let opcode = data.opcode();
    trivially_has_side_effects(opcode) || is_load_with_defined_trapping(opcode, data)
}

/// Does the given instruction have any side-effect as per [has_side_effect], or else is a load,
/// but not the get_pinned_reg opcode?
pub fn has_lowering_side_effect(func: &Function, inst: Inst) -> bool {
    let op = func.dfg[inst].opcode();
    op != Opcode::GetPinnedReg && (has_side_effect(func, inst) || op.can_load())
}

/// Is the given instruction a constant value (`iconst`, `fconst`) that can be
/// represented in 64 bits?
pub fn is_constant_64bit(func: &Function, inst: Inst) -> Option<u64> {
    let data = &func.dfg[inst];
    if data.opcode() == Opcode::Null {
        return Some(0);
    }
    match data {
        &InstructionData::UnaryImm { imm, .. } => Some(imm.bits() as u64),
        &InstructionData::UnaryIeee32 { imm, .. } => Some(imm.bits() as u64),
        &InstructionData::UnaryIeee64 { imm, .. } => Some(imm.bits()),
        _ => None,
    }
}

/// Get the address, offset, and access type from the given instruction, if any.
pub fn inst_addr_offset_type(func: &Function, inst: Inst) -> Option<(Value, Offset32, Type)> {
    let data = &func.dfg[inst];
    match data {
        InstructionData::Load { arg, offset, .. } => {
            let ty = func.dfg.value_type(func.dfg.inst_results(inst)[0]);
            Some((*arg, *offset, ty))
        }
        InstructionData::LoadNoOffset { arg, .. } => {
            let ty = func.dfg.value_type(func.dfg.inst_results(inst)[0]);
            Some((*arg, 0.into(), ty))
        }
        InstructionData::Store { args, offset, .. } => {
            let ty = func.dfg.value_type(args[0]);
            Some((args[1], *offset, ty))
        }
        InstructionData::StoreNoOffset { args, .. } => {
            let ty = func.dfg.value_type(args[0]);
            Some((args[1], 0.into(), ty))
        }
        _ => None,
    }
}

/// Get the store data, if any, from an instruction.
pub fn inst_store_data(func: &Function, inst: Inst) -> Option<Value> {
    let data = &func.dfg[inst];
    match data {
        InstructionData::Store { args, .. } | InstructionData::StoreNoOffset { args, .. } => {
            Some(args[0])
        }
        _ => None,
    }
}

/// Determine whether this opcode behaves as a memory fence, i.e.,
/// prohibits any moving of memory accesses across it.
pub fn has_memory_fence_semantics(op: Opcode) -> bool {
    match op {
        Opcode::AtomicRmw
        | Opcode::AtomicCas
        | Opcode::AtomicLoad
        | Opcode::AtomicStore
        | Opcode::Fence
        | Opcode::Debugtrap => true,
        Opcode::Call | Opcode::CallIndirect => true,
        op if op.can_trap() => true,
        _ => false,
    }
}

/// Visit all successors of a block with a given visitor closure. The closure
/// arguments are the branch instruction that is used to reach the successor,
/// the successor block itself, and a flag indicating whether the block is
/// branched to via a table entry.
pub(crate) fn visit_block_succs<F: FnMut(Inst, Block, bool)>(
    f: &Function,
    block: Block,
    mut visit: F,
) {
    for inst in f.layout.block_likely_branches(block) {
        if f.dfg[inst].opcode().is_branch() {
            visit_branch_targets(f, inst, &mut visit);
        }
    }
}
src/licm.rs (line 151)
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
fn is_unsafe_load(inst_data: &InstructionData) -> bool {
    match *inst_data {
        InstructionData::Load { flags, .. } => !flags.readonly() || !flags.notrap(),
        _ => inst_data.opcode().can_load(),
    }
}

/// Test whether the given instruction is loop-invariant.
fn is_loop_invariant(inst: Inst, dfg: &DataFlowGraph, loop_values: &FxHashSet<Value>) -> bool {
    if trivially_unsafe_for_licm(dfg[inst].opcode()) {
        return false;
    }

    if is_unsafe_load(&dfg[inst]) {
        return false;
    }

    let inst_args = dfg.inst_args(inst);
    for arg in inst_args {
        let arg = dfg.resolve_aliases(*arg);
        if loop_values.contains(&arg) {
            return false;
        }
    }
    true
}
src/ir/dfg.rs (line 627)
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
    pub fn inst_fixed_args(&self, inst: Inst) -> &[Value] {
        let num_fixed_args = self[inst]
            .opcode()
            .constraints()
            .num_fixed_value_arguments();
        &self.inst_args(inst)[..num_fixed_args]
    }

    /// Get the fixed value arguments on `inst` as a mutable slice.
    pub fn inst_fixed_args_mut(&mut self, inst: Inst) -> &mut [Value] {
        let num_fixed_args = self[inst]
            .opcode()
            .constraints()
            .num_fixed_value_arguments();
        &mut self.inst_args_mut(inst)[..num_fixed_args]
    }

    /// Get the variable value arguments on `inst` as a slice.
    pub fn inst_variable_args(&self, inst: Inst) -> &[Value] {
        let num_fixed_args = self[inst]
            .opcode()
            .constraints()
            .num_fixed_value_arguments();
        &self.inst_args(inst)[num_fixed_args..]
    }

    /// Get the variable value arguments on `inst` as a mutable slice.
    pub fn inst_variable_args_mut(&mut self, inst: Inst) -> &mut [Value] {
        let num_fixed_args = self[inst]
            .opcode()
            .constraints()
            .num_fixed_value_arguments();
        &mut self.inst_args_mut(inst)[num_fixed_args..]
    }

    /// Create result values for an instruction that produces multiple results.
    ///
    /// Instructions that produce no result values only need to be created with `make_inst`,
    /// otherwise call `make_inst_results` to allocate value table entries for the results.
    ///
    /// The result value types are determined from the instruction's value type constraints and the
    /// provided `ctrl_typevar` type for polymorphic instructions. For non-polymorphic
    /// instructions, `ctrl_typevar` is ignored, and `INVALID` can be used.
    ///
    /// The type of the first result value is also set, even if it was already set in the
    /// `InstructionData` passed to `make_inst`. If this function is called with a single-result
    /// instruction, that is the only effect.
    pub fn make_inst_results(&mut self, inst: Inst, ctrl_typevar: Type) -> usize {
        self.make_inst_results_reusing(inst, ctrl_typevar, iter::empty())
    }

    /// Create result values for `inst`, reusing the provided detached values.
    ///
    /// Create a new set of result values for `inst` using `ctrl_typevar` to determine the result
    /// types. Any values provided by `reuse` will be reused. When `reuse` is exhausted or when it
    /// produces `None`, a new value is created.
    pub fn make_inst_results_reusing<I>(
        &mut self,
        inst: Inst,
        ctrl_typevar: Type,
        reuse: I,
    ) -> usize
    where
        I: Iterator<Item = Option<Value>>,
    {
        let mut reuse = reuse.fuse();

        self.results[inst].clear(&mut self.value_lists);

        // Get the call signature if this is a function call.
        if let Some(sig) = self.call_signature(inst) {
            // Create result values corresponding to the call return types.
            debug_assert_eq!(
                self.insts[inst].opcode().constraints().num_fixed_results(),
                0
            );
            let num_results = self.signatures[sig].returns.len();
            for res_idx in 0..num_results {
                let ty = self.signatures[sig].returns[res_idx].value_type;
                if let Some(Some(v)) = reuse.next() {
                    debug_assert_eq!(self.value_type(v), ty, "Reused {} is wrong type", ty);
                    self.attach_result(inst, v);
                } else {
                    self.append_result(inst, ty);
                }
            }
            num_results
        } else {
            // Create result values corresponding to the opcode's constraints.
            let constraints = self.insts[inst].opcode().constraints();
            let num_results = constraints.num_fixed_results();
            for res_idx in 0..num_results {
                let ty = constraints.result_type(res_idx, ctrl_typevar);
                if let Some(Some(v)) = reuse.next() {
                    debug_assert_eq!(self.value_type(v), ty, "Reused {} is wrong type", ty);
                    self.attach_result(inst, v);
                } else {
                    self.append_result(inst, ty);
                }
            }
            num_results
        }
    }

    /// Create a `ReplaceBuilder` that will replace `inst` with a new instruction in place.
    pub fn replace(&mut self, inst: Inst) -> ReplaceBuilder {
        ReplaceBuilder::new(self, inst)
    }

    /// Detach the list of result values from `inst` and return it.
    ///
    /// This leaves `inst` without any result values. New result values can be created by calling
    /// `make_inst_results` or by using a `replace(inst)` builder.
    pub fn detach_results(&mut self, inst: Inst) -> ValueList {
        self.results[inst].take()
    }

    /// Clear the list of result values from `inst`.
    ///
    /// This leaves `inst` without any result values. New result values can be created by calling
    /// `make_inst_results` or by using a `replace(inst)` builder.
    pub fn clear_results(&mut self, inst: Inst) {
        self.results[inst].clear(&mut self.value_lists)
    }

    /// Attach an existing value to the result value list for `inst`.
    ///
    /// The `res` value is appended to the end of the result list.
    ///
    /// This is a very low-level operation. Usually, instruction results with the correct types are
    /// created automatically. The `res` value must not be attached to anything else.
    pub fn attach_result(&mut self, inst: Inst, res: Value) {
        debug_assert!(!self.value_is_attached(res));
        let num = self.results[inst].push(res, &mut self.value_lists);
        debug_assert!(num <= u16::MAX as usize, "Too many result values");
        let ty = self.value_type(res);
        self.values[res] = ValueData::Inst {
            ty,
            num: num as u16,
            inst,
        }
        .into();
    }

    /// Replace an instruction result with a new value of type `new_type`.
    ///
    /// The `old_value` must be an attached instruction result.
    ///
    /// The old value is left detached, so it should probably be changed into something else.
    ///
    /// Returns the new value.
    pub fn replace_result(&mut self, old_value: Value, new_type: Type) -> Value {
        let (num, inst) = match ValueData::from(self.values[old_value]) {
            ValueData::Inst { num, inst, .. } => (num, inst),
            _ => panic!("{} is not an instruction result value", old_value),
        };
        let new_value = self.make_value(ValueData::Inst {
            ty: new_type,
            num,
            inst,
        });
        let num = num as usize;
        let attached = mem::replace(
            self.results[inst]
                .get_mut(num, &mut self.value_lists)
                .expect("Replacing detached result"),
            new_value,
        );
        debug_assert_eq!(
            attached,
            old_value,
            "{} wasn't detached from {}",
            old_value,
            self.display_inst(inst)
        );
        new_value
    }

    /// Append a new instruction result value to `inst`.
    pub fn append_result(&mut self, inst: Inst, ty: Type) -> Value {
        let res = self.values.next_key();
        let num = self.results[inst].push(res, &mut self.value_lists);
        debug_assert!(num <= u16::MAX as usize, "Too many result values");
        self.make_value(ValueData::Inst {
            ty,
            inst,
            num: num as u16,
        })
    }

    /// Append a new value argument to an instruction.
    ///
    /// Panics if the instruction doesn't support arguments.
    pub fn append_inst_arg(&mut self, inst: Inst, new_arg: Value) {
        let mut branch_values = self.insts[inst]
            .take_value_list()
            .expect("the instruction doesn't have value arguments");
        branch_values.push(new_arg, &mut self.value_lists);
        self.insts[inst].put_value_list(branch_values)
    }

    /// Get the first result of an instruction.
    ///
    /// This function panics if the instruction doesn't have any result.
    pub fn first_result(&self, inst: Inst) -> Value {
        self.results[inst]
            .first(&self.value_lists)
            .expect("Instruction has no results")
    }

    /// Test if `inst` has any result values currently.
    pub fn has_results(&self, inst: Inst) -> bool {
        !self.results[inst].is_empty()
    }

    /// Return all the results of an instruction.
    pub fn inst_results(&self, inst: Inst) -> &[Value] {
        self.results[inst].as_slice(&self.value_lists)
    }

    /// Return all the results of an instruction as ValueList.
    pub fn inst_results_list(&self, inst: Inst) -> ValueList {
        self.results[inst]
    }

    /// Get the call signature of a direct or indirect call instruction.
    /// Returns `None` if `inst` is not a call instruction.
    pub fn call_signature(&self, inst: Inst) -> Option<SigRef> {
        match self.insts[inst].analyze_call(&self.value_lists) {
            CallInfo::NotACall => None,
            CallInfo::Direct(f, _) => Some(self.ext_funcs[f].signature),
            CallInfo::Indirect(s, _) => Some(s),
        }
    }

    /// Check if `inst` is a branch.
    pub fn analyze_branch(&self, inst: Inst) -> BranchInfo {
        self.insts[inst].analyze_branch(&self.value_lists)
    }

    /// Compute the type of an instruction result from opcode constraints and call signatures.
    ///
    /// This computes the same sequence of result types that `make_inst_results()` above would
    /// assign to the created result values, but it does not depend on `make_inst_results()` being
    /// called first.
    ///
    /// Returns `None` if asked about a result index that is too large.
    pub fn compute_result_type(
        &self,
        inst: Inst,
        result_idx: usize,
        ctrl_typevar: Type,
    ) -> Option<Type> {
        let constraints = self.insts[inst].opcode().constraints();
        let num_fixed_results = constraints.num_fixed_results();

        if result_idx < num_fixed_results {
            return Some(constraints.result_type(result_idx, ctrl_typevar));
        }

        // Not a fixed result, try to extract a return type from the call signature.
        self.call_signature(inst).and_then(|sigref| {
            self.signatures[sigref]
                .returns
                .get(result_idx - num_fixed_results)
                .map(|&arg| arg.value_type)
        })
    }

    /// Get the controlling type variable, or `INVALID` if `inst` isn't polymorphic.
    pub fn ctrl_typevar(&self, inst: Inst) -> Type {
        let constraints = self[inst].opcode().constraints();

        if !constraints.is_polymorphic() {
            types::INVALID
        } else if constraints.requires_typevar_operand() {
            // Not all instruction formats have a designated operand, but in that case
            // `requires_typevar_operand()` should never be true.
            self.value_type(
                self[inst]
                    .typevar_operand(&self.value_lists)
                    .unwrap_or_else(|| {
                        panic!(
                            "Instruction format for {:?} doesn't have a designated operand",
                            self[inst]
                        )
                    }),
            )
        } else {
            self.value_type(self.first_result(inst))
        }
    }
}

/// Allow immutable access to instructions via indexing.
impl Index<Inst> for DataFlowGraph {
    type Output = InstructionData;

    fn index(&self, inst: Inst) -> &InstructionData {
        &self.insts[inst]
    }
}

/// Allow mutable access to instructions via indexing.
impl IndexMut<Inst> for DataFlowGraph {
    fn index_mut(&mut self, inst: Inst) -> &mut InstructionData {
        &mut self.insts[inst]
    }
}

/// basic blocks.
impl DataFlowGraph {
    /// Create a new basic block.
    pub fn make_block(&mut self) -> Block {
        self.blocks.push(BlockData::new())
    }

    /// Get the number of parameters on `block`.
    pub fn num_block_params(&self, block: Block) -> usize {
        self.blocks[block].params.len(&self.value_lists)
    }

    /// Get the parameters on `block`.
    pub fn block_params(&self, block: Block) -> &[Value] {
        self.blocks[block].params.as_slice(&self.value_lists)
    }

    /// Get the types of the parameters on `block`.
    pub fn block_param_types(&self, block: Block) -> impl Iterator<Item = Type> + '_ {
        self.block_params(block).iter().map(|&v| self.value_type(v))
    }

    /// Append a parameter with type `ty` to `block`.
    pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value {
        let param = self.values.next_key();
        let num = self.blocks[block].params.push(param, &mut self.value_lists);
        debug_assert!(num <= u16::MAX as usize, "Too many parameters on block");
        self.make_value(ValueData::Param {
            ty,
            num: num as u16,
            block,
        })
    }

    /// Removes `val` from `block`'s parameters by swapping it with the last parameter on `block`.
    /// Returns the position of `val` before removal.
    ///
    /// *Important*: to ensure O(1) deletion, this method swaps the removed parameter with the
    /// last `block` parameter. This can disrupt all the branch instructions jumping to this
    /// `block` for which you have to change the branch argument order if necessary.
    ///
    /// Panics if `val` is not a block parameter.
    pub fn swap_remove_block_param(&mut self, val: Value) -> usize {
        let (block, num) =
            if let ValueData::Param { num, block, .. } = ValueData::from(self.values[val]) {
                (block, num)
            } else {
                panic!("{} must be a block parameter", val);
            };
        self.blocks[block]
            .params
            .swap_remove(num as usize, &mut self.value_lists);
        if let Some(last_arg_val) = self.blocks[block]
            .params
            .get(num as usize, &self.value_lists)
        {
            // We update the position of the old last arg.
            let mut last_arg_data = ValueData::from(self.values[last_arg_val]);
            if let ValueData::Param {
                num: ref mut old_num,
                ..
            } = &mut last_arg_data
            {
                *old_num = num;
                self.values[last_arg_val] = last_arg_data.into();
            } else {
                panic!("{} should be a Block parameter", last_arg_val);
            }
        }
        num as usize
    }

    /// Removes `val` from `block`'s parameters by a standard linear time list removal which
    /// preserves ordering. Also updates the values' data.
    pub fn remove_block_param(&mut self, val: Value) {
        let (block, num) =
            if let ValueData::Param { num, block, .. } = ValueData::from(self.values[val]) {
                (block, num)
            } else {
                panic!("{} must be a block parameter", val);
            };
        self.blocks[block]
            .params
            .remove(num as usize, &mut self.value_lists);
        for index in num..(self.num_block_params(block) as u16) {
            let packed = &mut self.values[self.blocks[block]
                .params
                .get(index as usize, &self.value_lists)
                .unwrap()];
            let mut data = ValueData::from(*packed);
            match &mut data {
                ValueData::Param { ref mut num, .. } => {
                    *num -= 1;
                    *packed = data.into();
                }
                _ => panic!(
                    "{} must be a block parameter",
                    self.blocks[block]
                        .params
                        .get(index as usize, &self.value_lists)
                        .unwrap()
                ),
            }
        }
    }

    /// Append an existing value to `block`'s parameters.
    ///
    /// The appended value can't already be attached to something else.
    ///
    /// In almost all cases, you should be using `append_block_param()` instead of this method.
    pub fn attach_block_param(&mut self, block: Block, param: Value) {
        debug_assert!(!self.value_is_attached(param));
        let num = self.blocks[block].params.push(param, &mut self.value_lists);
        debug_assert!(num <= u16::MAX as usize, "Too many parameters on block");
        let ty = self.value_type(param);
        self.values[param] = ValueData::Param {
            ty,
            num: num as u16,
            block,
        }
        .into();
    }

    /// Replace a block parameter with a new value of type `ty`.
    ///
    /// The `old_value` must be an attached block parameter. It is removed from its place in the list
    /// of parameters and replaced by a new value of type `new_type`. The new value gets the same
    /// position in the list, and other parameters are not disturbed.
    ///
    /// The old value is left detached, so it should probably be changed into something else.
    ///
    /// Returns the new value.
    pub fn replace_block_param(&mut self, old_value: Value, new_type: Type) -> Value {
        // Create new value identical to the old one except for the type.
        let (block, num) =
            if let ValueData::Param { num, block, .. } = ValueData::from(self.values[old_value]) {
                (block, num)
            } else {
                panic!("{} must be a block parameter", old_value);
            };
        let new_arg = self.make_value(ValueData::Param {
            ty: new_type,
            num,
            block,
        });

        self.blocks[block]
            .params
            .as_mut_slice(&mut self.value_lists)[num as usize] = new_arg;
        new_arg
    }

    /// Detach all the parameters from `block` and return them as a `ValueList`.
    ///
    /// This is a quite low-level operation. Sensible things to do with the detached block parameters
    /// is to put them back on the same block with `attach_block_param()` or change them into aliases
    /// with `change_to_alias()`.
    pub fn detach_block_params(&mut self, block: Block) -> ValueList {
        self.blocks[block].params.take()
    }
}

/// Contents of a basic block.
///
/// Parameters on a basic block are values that dominate everything in the block. All
/// branches to this block must provide matching arguments, and the arguments to the entry block must
/// match the function arguments.
#[derive(Clone, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
struct BlockData {
    /// List of parameters to this block.
    params: ValueList,
}

impl BlockData {
    fn new() -> Self {
        Self {
            params: ValueList::new(),
        }
    }
}

/// Object that can display an instruction.
pub struct DisplayInst<'a>(&'a DataFlowGraph, Inst);

impl<'a> fmt::Display for DisplayInst<'a> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let dfg = self.0;
        let inst = self.1;

        if let Some((first, rest)) = dfg.inst_results(inst).split_first() {
            write!(f, "{}", first)?;
            for v in rest {
                write!(f, ", {}", v)?;
            }
            write!(f, " = ")?;
        }

        let typevar = dfg.ctrl_typevar(inst);
        if typevar.is_invalid() {
            write!(f, "{}", dfg[inst].opcode())?;
        } else {
            write!(f, "{}.{}", dfg[inst].opcode(), typevar)?;
        }
        write_operands(f, dfg, inst)
    }
}

/// Parser routines. These routines should not be used outside the parser.
impl DataFlowGraph {
    /// Set the type of a value. This is only for use in the parser, which needs
    /// to create invalid values for index padding which may be reassigned later.
    #[cold]
    fn set_value_type_for_parser(&mut self, v: Value, t: Type) {
        assert_eq!(
            self.value_type(v),
            types::INVALID,
            "this function is only for assigning types to previously invalid values"
        );
        self.values[v].set_type(t);
    }

    /// Check that the given concrete `Type` has been defined in the function.
    pub fn check_dynamic_type(&mut self, ty: Type) -> Option<Type> {
        debug_assert!(ty.is_dynamic_vector());
        if self
            .dynamic_types
            .values()
            .any(|dyn_ty_data| dyn_ty_data.concrete().unwrap() == ty)
        {
            Some(ty)
        } else {
            None
        }
    }

    /// Create result values for `inst`, reusing the provided detached values.
    /// This is similar to `make_inst_results_reusing` except it's only for use
    /// in the parser, which needs to reuse previously invalid values.
    #[cold]
    pub fn make_inst_results_for_parser(
        &mut self,
        inst: Inst,
        ctrl_typevar: Type,
        reuse: &[Value],
    ) -> usize {
        // Get the call signature if this is a function call.
        if let Some(sig) = self.call_signature(inst) {
            assert_eq!(
                self.insts[inst].opcode().constraints().num_fixed_results(),
                0
            );
            for res_idx in 0..self.signatures[sig].returns.len() {
                let ty = self.signatures[sig].returns[res_idx].value_type;
                if let Some(v) = reuse.get(res_idx) {
                    self.set_value_type_for_parser(*v, ty);
                }
            }
        } else {
            let constraints = self.insts[inst].opcode().constraints();
            for res_idx in 0..constraints.num_fixed_results() {
                let ty = constraints.result_type(res_idx, ctrl_typevar);
                if ty.is_dynamic_vector() {
                    self.check_dynamic_type(ty)
                        .unwrap_or_else(|| panic!("Use of undeclared dynamic type: {}", ty));
                }
                if let Some(v) = reuse.get(res_idx) {
                    self.set_value_type_for_parser(*v, ty);
                }
            }
        }

        self.make_inst_results_reusing(inst, ctrl_typevar, reuse.iter().map(|x| Some(*x)))
    }
src/isa/x64/lower.rs (line 37)
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
fn matches_input(ctx: &mut Lower<Inst>, input: InsnInput, op: Opcode) -> Option<IRInst> {
    let inputs = ctx.get_input_as_source_or_const(input.insn, input.input);
    inputs.inst.as_inst().and_then(|(src_inst, _)| {
        let data = ctx.data(src_inst);
        if data.opcode() == op {
            return Some(src_inst);
        }
        None
    })
}

/// Emits instruction(s) to generate the given 64-bit constant value into a newly-allocated
/// temporary register, returning that register.
fn generate_constant(ctx: &mut Lower<Inst>, ty: Type, c: u64) -> ValueRegs<Reg> {
    let from_bits = ty_bits(ty);
    let masked = if from_bits < 64 {
        c & ((1u64 << from_bits) - 1)
    } else {
        c
    };

    let cst_copy = ctx.alloc_tmp(ty);
    for inst in Inst::gen_constant(cst_copy, masked as u128, ty, |ty| {
        ctx.alloc_tmp(ty).only_reg().unwrap()
    })
    .into_iter()
    {
        ctx.emit(inst);
    }
    non_writable_value_regs(cst_copy)
}

/// Put the given input into possibly multiple registers, and mark it as used (side-effect).
fn put_input_in_regs(ctx: &mut Lower<Inst>, spec: InsnInput) -> ValueRegs<Reg> {
    let ty = ctx.input_ty(spec.insn, spec.input);
    let input = ctx.get_input_as_source_or_const(spec.insn, spec.input);

    if let Some(c) = input.constant {
        // Generate constants fresh at each use to minimize long-range register pressure.
        generate_constant(ctx, ty, c)
    } else {
        ctx.put_input_in_regs(spec.insn, spec.input)
    }
}

/// Put the given input into a register, and mark it as used (side-effect).
fn put_input_in_reg(ctx: &mut Lower<Inst>, spec: InsnInput) -> Reg {
    put_input_in_regs(ctx, spec)
        .only_reg()
        .expect("Multi-register value not expected")
}

/// Determines whether a load operation (indicated by `src_insn`) can be merged
/// into the current lowering point. If so, returns the address-base source (as
/// an `InsnInput`) and an offset from that address from which to perform the
/// load.
fn is_mergeable_load(ctx: &mut Lower<Inst>, src_insn: IRInst) -> Option<(InsnInput, i32)> {
    let insn_data = ctx.data(src_insn);
    let inputs = ctx.num_inputs(src_insn);
    if inputs != 1 {
        return None;
    }

    let load_ty = ctx.output_ty(src_insn, 0);
    if ty_bits(load_ty) < 32 {
        // Narrower values are handled by ALU insts that are at least 32 bits
        // wide, which is normally OK as we ignore upper buts; but, if we
        // generate, e.g., a direct-from-memory 32-bit add for a byte value and
        // the byte is the last byte in a page, the extra data that we load is
        // incorrectly accessed. So we only allow loads to merge for
        // 32-bit-and-above widths.
        return None;
    }

    // SIMD instructions can only be load-coalesced when the loaded value comes
    // from an aligned address.
    if load_ty.is_vector() && !insn_data.memflags().map_or(false, |f| f.aligned()) {
        return None;
    }

    // Just testing the opcode is enough, because the width will always match if
    // the type does (and the type should match if the CLIF is properly
    // constructed).
    if insn_data.opcode() == Opcode::Load {
        let offset = insn_data
            .load_store_offset()
            .expect("load should have offset");
        Some((
            InsnInput {
                insn: src_insn,
                input: 0,
            },
            offset,
        ))
    } else {
        None
    }
}

fn input_to_imm(ctx: &mut Lower<Inst>, spec: InsnInput) -> Option<u64> {
    ctx.get_input_as_source_or_const(spec.insn, spec.input)
        .constant
}

fn emit_vm_call(
    ctx: &mut Lower<Inst>,
    flags: &Flags,
    triple: &Triple,
    libcall: LibCall,
    inputs: &[Reg],
    outputs: &[Writable<Reg>],
) -> CodegenResult<()> {
    let extname = ExternalName::LibCall(libcall);

    let dist = if flags.use_colocated_libcalls() {
        RelocDistance::Near
    } else {
        RelocDistance::Far
    };

    // TODO avoid recreating signatures for every single Libcall function.
    let call_conv = CallConv::for_libcall(flags, CallConv::triple_default(triple));
    let sig = libcall.signature(call_conv);
    let caller_conv = ctx.abi().call_conv(ctx.sigs());

    if !ctx.sigs().have_abi_sig_for_signature(&sig) {
        ctx.sigs_mut()
            .make_abi_sig_from_ir_signature::<X64ABIMachineSpec>(sig.clone(), flags)?;
    }

    let mut abi =
        X64Caller::from_libcall(ctx.sigs(), &sig, &extname, dist, caller_conv, flags.clone())?;

    abi.emit_stack_pre_adjust(ctx);

    assert_eq!(inputs.len(), abi.num_args(ctx.sigs()));

    for (i, input) in inputs.iter().enumerate() {
        for inst in abi.gen_arg(ctx, i, ValueRegs::one(*input)) {
            ctx.emit(inst);
        }
    }

    let mut retval_insts: SmallInstVec<_> = smallvec![];
    for (i, output) in outputs.iter().enumerate() {
        retval_insts.extend(abi.gen_retval(ctx, i, ValueRegs::one(*output)).into_iter());
    }
    abi.emit_call(ctx);
    for inst in retval_insts {
        ctx.emit(inst);
    }
    abi.emit_stack_post_adjust(ctx);

    Ok(())
}

/// Returns whether the given input is a shift by a constant value less or equal than 3.
/// The goal is to embed it within an address mode.
fn matches_small_constant_shift(ctx: &mut Lower<Inst>, spec: InsnInput) -> Option<(InsnInput, u8)> {
    matches_input(ctx, spec, Opcode::Ishl).and_then(|shift| {
        match input_to_imm(
            ctx,
            InsnInput {
                insn: shift,
                input: 1,
            },
        ) {
            Some(shift_amt) if shift_amt <= 3 => Some((
                InsnInput {
                    insn: shift,
                    input: 0,
                },
                shift_amt as u8,
            )),
            _ => None,
        }
    })
}

/// Lowers an instruction to one of the x86 addressing modes.
///
/// Note: the 32-bit offset in Cranelift has to be sign-extended, which maps x86's behavior.
fn lower_to_amode(ctx: &mut Lower<Inst>, spec: InsnInput, offset: i32) -> Amode {
    let flags = ctx
        .memflags(spec.insn)
        .expect("Instruction with amode should have memflags");

    // We now either have an add that we must materialize, or some other input; as well as the
    // final offset.
    if let Some(add) = matches_input(ctx, spec, Opcode::Iadd) {
        debug_assert_eq!(ctx.output_ty(add, 0), types::I64);
        let add_inputs = &[
            InsnInput {
                insn: add,
                input: 0,
            },
            InsnInput {
                insn: add,
                input: 1,
            },
        ];

        // TODO heap_addr legalization generates a uext64 *after* the shift, so these optimizations
        // aren't happening in the wasm case. We could do better, given some range analysis.
        let (base, index, shift) = if let Some((shift_input, shift_amt)) =
            matches_small_constant_shift(ctx, add_inputs[0])
        {
            (
                put_input_in_reg(ctx, add_inputs[1]),
                put_input_in_reg(ctx, shift_input),
                shift_amt,
            )
        } else if let Some((shift_input, shift_amt)) =
            matches_small_constant_shift(ctx, add_inputs[1])
        {
            (
                put_input_in_reg(ctx, add_inputs[0]),
                put_input_in_reg(ctx, shift_input),
                shift_amt,
            )
        } else {
            for i in 0..=1 {
                // Try to pierce through uextend.
                if let Some(uextend) = matches_input(
                    ctx,
                    InsnInput {
                        insn: add,
                        input: i,
                    },
                    Opcode::Uextend,
                ) {
                    if let Some(cst) = ctx.get_input_as_source_or_const(uextend, 0).constant {
                        // Zero the upper bits.
                        let input_size = ctx.input_ty(uextend, 0).bits() as u64;
                        let shift: u64 = 64 - input_size;
                        let uext_cst: u64 = (cst << shift) >> shift;

                        let final_offset = (offset as i64).wrapping_add(uext_cst as i64);
                        if low32_will_sign_extend_to_64(final_offset as u64) {
                            let base = put_input_in_reg(ctx, add_inputs[1 - i]);
                            return Amode::imm_reg(final_offset as u32, base).with_flags(flags);
                        }
                    }
                }

                // If it's a constant, add it directly!
                if let Some(cst) = ctx.get_input_as_source_or_const(add, i).constant {
                    let final_offset = (offset as i64).wrapping_add(cst as i64);
                    if low32_will_sign_extend_to_64(final_offset as u64) {
                        let base = put_input_in_reg(ctx, add_inputs[1 - i]);
                        return Amode::imm_reg(final_offset as u32, base).with_flags(flags);
                    }
                }
            }

            (
                put_input_in_reg(ctx, add_inputs[0]),
                put_input_in_reg(ctx, add_inputs[1]),
                0,
            )
        };

        return Amode::imm_reg_reg_shift(
            offset as u32,
            Gpr::new(base).unwrap(),
            Gpr::new(index).unwrap(),
            shift,
        )
        .with_flags(flags);
    }

    let input = put_input_in_reg(ctx, spec);
    Amode::imm_reg(offset as u32, input).with_flags(flags)
}

//=============================================================================
// Top-level instruction lowering entry point, for one instruction.

/// Actually codegen an instruction's results into registers.
fn lower_insn_to_regs(
    ctx: &mut Lower<Inst>,
    insn: IRInst,
    flags: &Flags,
    isa_flags: &x64_settings::Flags,
    triple: &Triple,
) -> CodegenResult<()> {
    let outputs: SmallVec<[InsnOutput; 2]> = (0..ctx.num_outputs(insn))
        .map(|i| InsnOutput { insn, output: i })
        .collect();

    if let Ok(()) = isle::lower(ctx, triple, flags, isa_flags, &outputs, insn) {
        return Ok(());
    }

    let op = ctx.data(insn).opcode();
    match op {
        Opcode::Iconst
        | Opcode::F32const
        | Opcode::F64const
        | Opcode::Null
        | Opcode::Iadd
        | Opcode::IaddIfcout
        | Opcode::SaddSat
        | Opcode::UaddSat
        | Opcode::Isub
        | Opcode::SsubSat
        | Opcode::UsubSat
        | Opcode::AvgRound
        | Opcode::Band
        | Opcode::Bor
        | Opcode::Bxor
        | Opcode::Imul
        | Opcode::BandNot
        | Opcode::Iabs
        | Opcode::Smax
        | Opcode::Umax
        | Opcode::Smin
        | Opcode::Umin
        | Opcode::Bnot
        | Opcode::Bitselect
        | Opcode::Vselect
        | Opcode::Ushr
        | Opcode::Sshr
        | Opcode::Ishl
        | Opcode::Rotl
        | Opcode::Rotr
        | Opcode::Ineg
        | Opcode::Trap
        | Opcode::ResumableTrap
        | Opcode::Clz
        | Opcode::Ctz
        | Opcode::Popcnt
        | Opcode::Bitrev
        | Opcode::Bswap
        | Opcode::IsNull
        | Opcode::IsInvalid
        | Opcode::Uextend
        | Opcode::Sextend
        | Opcode::Ireduce
        | Opcode::Debugtrap
        | Opcode::WideningPairwiseDotProductS
        | Opcode::Fadd
        | Opcode::Fsub
        | Opcode::Fmul
        | Opcode::Fdiv
        | Opcode::Fmin
        | Opcode::Fmax
        | Opcode::FminPseudo
        | Opcode::FmaxPseudo
        | Opcode::Sqrt
        | Opcode::Fpromote
        | Opcode::FvpromoteLow
        | Opcode::Fdemote
        | Opcode::Fvdemote
        | Opcode::Fma
        | Opcode::Icmp
        | Opcode::Fcmp
        | Opcode::Load
        | Opcode::Uload8
        | Opcode::Sload8
        | Opcode::Uload16
        | Opcode::Sload16
        | Opcode::Uload32
        | Opcode::Sload32
        | Opcode::Sload8x8
        | Opcode::Uload8x8
        | Opcode::Sload16x4
        | Opcode::Uload16x4
        | Opcode::Sload32x2
        | Opcode::Uload32x2
        | Opcode::Store
        | Opcode::Istore8
        | Opcode::Istore16
        | Opcode::Istore32
        | Opcode::AtomicRmw
        | Opcode::AtomicCas
        | Opcode::AtomicLoad
        | Opcode::AtomicStore
        | Opcode::Fence
        | Opcode::FuncAddr
        | Opcode::SymbolValue
        | Opcode::Return
        | Opcode::Call
        | Opcode::CallIndirect
        | Opcode::GetFramePointer
        | Opcode::GetStackPointer
        | Opcode::GetReturnAddress
        | Opcode::Select
        | Opcode::SelectSpectreGuard
        | Opcode::FcvtFromSint
        | Opcode::FcvtLowFromSint
        | Opcode::FcvtFromUint
        | Opcode::FcvtToUint
        | Opcode::FcvtToSint
        | Opcode::FcvtToUintSat
        | Opcode::FcvtToSintSat
        | Opcode::IaddPairwise
        | Opcode::UwidenHigh
        | Opcode::UwidenLow
        | Opcode::SwidenHigh
        | Opcode::SwidenLow
        | Opcode::Snarrow
        | Opcode::Unarrow
        | Opcode::Bitcast
        | Opcode::Fabs
        | Opcode::Fneg
        | Opcode::Fcopysign
        | Opcode::Ceil
        | Opcode::Floor
        | Opcode::Nearest
        | Opcode::Trunc
        | Opcode::StackAddr
        | Opcode::Udiv
        | Opcode::Urem
        | Opcode::Sdiv
        | Opcode::Srem
        | Opcode::Umulhi
        | Opcode::Smulhi
        | Opcode::GetPinnedReg
        | Opcode::SetPinnedReg
        | Opcode::Vconst
        | Opcode::Insertlane
        | Opcode::Shuffle
        | Opcode::Swizzle
        | Opcode::Extractlane
        | Opcode::ScalarToVector
        | Opcode::Splat
        | Opcode::VanyTrue
        | Opcode::VallTrue
        | Opcode::VhighBits
        | Opcode::Iconcat
        | Opcode::Isplit
        | Opcode::TlsValue
        | Opcode::SqmulRoundSat
        | Opcode::Uunarrow
        | Opcode::Nop
        | Opcode::Bmask => {
            let ty = if outputs.len() > 0 {
                Some(ctx.output_ty(insn, 0))
            } else {
                None
            };

            unreachable!(
                "implemented in ISLE: inst = `{}`, type = `{:?}`",
                ctx.dfg().display_inst(insn),
                ty
            )
        }

        Opcode::DynamicStackAddr => unimplemented!("DynamicStackAddr"),

        // Unimplemented opcodes below. These are not currently used by Wasm
        // lowering or other known embeddings, but should be either supported or
        // removed eventually
        Opcode::ExtractVector => {
            unimplemented!("ExtractVector not supported");
        }

        Opcode::Cls => unimplemented!("Cls not supported"),

        Opcode::BorNot | Opcode::BxorNot => {
            unimplemented!("or-not / xor-not opcodes not implemented");
        }

        Opcode::Vsplit | Opcode::Vconcat => {
            unimplemented!("Vector split/concat ops not implemented.");
        }

        // Opcodes that should be removed by legalization. These should
        // eventually be removed if/when we replace in-situ legalization with
        // something better.
        Opcode::Ifcmp | Opcode::Ffcmp => {
            panic!("Should never reach ifcmp/ffcmp as isel root!");
        }

        Opcode::IaddImm
        | Opcode::ImulImm
        | Opcode::UdivImm
        | Opcode::SdivImm
        | Opcode::UremImm
        | Opcode::SremImm
        | Opcode::IrsubImm
        | Opcode::IaddCin
        | Opcode::IaddIfcin
        | Opcode::IaddCout
        | Opcode::IaddCarry
        | Opcode::IaddIfcarry
        | Opcode::IsubBin
        | Opcode::IsubIfbin
        | Opcode::IsubBout
        | Opcode::IsubIfbout
        | Opcode::IsubBorrow
        | Opcode::IsubIfborrow
        | Opcode::UaddOverflowTrap
        | Opcode::BandImm
        | Opcode::BorImm
        | Opcode::BxorImm
        | Opcode::RotlImm
        | Opcode::RotrImm
        | Opcode::IshlImm
        | Opcode::UshrImm
        | Opcode::SshrImm
        | Opcode::IcmpImm
        | Opcode::IfcmpImm => {
            panic!("ALU+imm and ALU+carry ops should not appear here!");
        }

        Opcode::StackLoad
        | Opcode::StackStore
        | Opcode::DynamicStackStore
        | Opcode::DynamicStackLoad => {
            panic!("Direct stack memory access not supported; should have been legalized");
        }

        Opcode::GlobalValue => {
            panic!("global_value should have been removed by legalization!");
        }

        Opcode::HeapLoad | Opcode::HeapStore | Opcode::HeapAddr => {
            panic!("heap access instructions should have been removed by legalization!");
        }

        Opcode::TableAddr => {
            panic!("table_addr should have been removed by legalization!");
        }

        Opcode::Trapz | Opcode::Trapnz | Opcode::ResumableTrapnz => {
            panic!("trapz / trapnz / resumable_trapnz should have been removed by legalization!");
        }

        Opcode::Jump | Opcode::Brz | Opcode::Brnz | Opcode::BrTable => {
            panic!("Branch opcode reached non-branch lowering logic!");
        }
    }
}

//=============================================================================
// Lowering-backend trait implementation.

impl LowerBackend for X64Backend {
    type MInst = Inst;

    fn lower(&self, ctx: &mut Lower<Inst>, ir_inst: IRInst) -> CodegenResult<()> {
        lower_insn_to_regs(ctx, ir_inst, &self.flags, &self.x64_flags, &self.triple)
    }

    fn lower_branch_group(
        &self,
        ctx: &mut Lower<Inst>,
        branches: &[IRInst],
        targets: &[MachLabel],
    ) -> CodegenResult<()> {
        // A block should end with at most two branches. The first may be a
        // conditional branch; a conditional branch can be followed only by an
        // unconditional branch or fallthrough. Otherwise, if only one branch,
        // it may be an unconditional branch, a fallthrough, a return, or a
        // trap. These conditions are verified by `is_ebb_basic()` during the
        // verifier pass.
        assert!(branches.len() <= 2);
        if branches.len() == 2 {
            let op1 = ctx.data(branches[1]).opcode();
            assert!(op1 == Opcode::Jump);
        }

        if let Ok(()) = isle::lower_branch(
            ctx,
            &self.triple,
            &self.flags,
            &self.x64_flags,
            branches[0],
            targets,
        ) {
            return Ok(());
        }

        unreachable!(
            "implemented in ISLE: branch = `{}`",
            ctx.dfg().display_inst(branches[0]),
        );
    }
src/ir/layout.rs (line 615)
610
611
612
613
614
615
616
617
618
619
620
    pub fn canonical_branch_inst(&self, dfg: &DataFlowGraph, block: Block) -> Option<Inst> {
        // Basic blocks permit at most two terminal branch instructions.
        // If two, the former is conditional and the latter is unconditional.
        let last = self.last_inst(block)?;
        if let Some(prev) = self.prev_inst(last) {
            if dfg[prev].opcode().is_branch() {
                return Some(prev);
            }
        }
        Some(last)
    }

Get the controlling type variable operand.

Examples found in repository?
src/ir/dfg.rs (line 905)
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
    pub fn ctrl_typevar(&self, inst: Inst) -> Type {
        let constraints = self[inst].opcode().constraints();

        if !constraints.is_polymorphic() {
            types::INVALID
        } else if constraints.requires_typevar_operand() {
            // Not all instruction formats have a designated operand, but in that case
            // `requires_typevar_operand()` should never be true.
            self.value_type(
                self[inst]
                    .typevar_operand(&self.value_lists)
                    .unwrap_or_else(|| {
                        panic!(
                            "Instruction format for {:?} doesn't have a designated operand",
                            self[inst]
                        )
                    }),
            )
        } else {
            self.value_type(self.first_result(inst))
        }
    }
More examples
Hide additional examples
src/write.rs (line 297)
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
fn type_suffix(func: &Function, inst: Inst) -> Option<Type> {
    let inst_data = &func.dfg[inst];
    let constraints = inst_data.opcode().constraints();

    if !constraints.is_polymorphic() {
        return None;
    }

    // If the controlling type variable can be inferred from the type of the designated value input
    // operand, we don't need the type suffix.
    if constraints.use_typevar_operand() {
        let ctrl_var = inst_data.typevar_operand(&func.dfg.value_lists).unwrap();
        let def_block = match func.dfg.value_def(ctrl_var) {
            ValueDef::Result(instr, _) => func.layout.inst_block(instr),
            ValueDef::Param(block, _) => Some(block),
        };
        if def_block.is_some() && def_block == func.layout.inst_block(inst) {
            return None;
        }
    }

    let rtype = func.dfg.ctrl_typevar(inst);
    assert!(
        !rtype.is_invalid(),
        "Polymorphic instruction must produce a result"
    );
    Some(rtype)
}

Get the value arguments to this instruction.

Examples found in repository?
src/ir/dfg.rs (line 616)
615
616
617
    pub fn inst_args(&self, inst: Inst) -> &[Value] {
        self.insts[inst].arguments(&self.value_lists)
    }

Get mutable references to the value arguments to this instruction.

Examples found in repository?
src/ir/dfg.rs (line 331)
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
    pub fn resolve_aliases_in_arguments(&mut self, inst: Inst) {
        for arg in self.insts[inst].arguments_mut(&mut self.value_lists) {
            let resolved = resolve_aliases(&self.values, *arg);
            if resolved != *arg {
                *arg = resolved;
            }
        }
    }

    /// Turn a value into an alias of another.
    ///
    /// Change the `dest` value to behave as an alias of `src`. This means that all uses of `dest`
    /// will behave as if they used that value `src`.
    ///
    /// The `dest` value can't be attached to an instruction or block.
    pub fn change_to_alias(&mut self, dest: Value, src: Value) {
        debug_assert!(!self.value_is_attached(dest));
        // Try to create short alias chains by finding the original source value.
        // This also avoids the creation of loops.
        let original = self.resolve_aliases(src);
        debug_assert_ne!(
            dest, original,
            "Aliasing {} to {} would create a loop",
            dest, src
        );
        let ty = self.value_type(original);
        debug_assert_eq!(
            self.value_type(dest),
            ty,
            "Aliasing {} to {} would change its type {} to {}",
            dest,
            src,
            self.value_type(dest),
            ty
        );
        debug_assert_ne!(ty, types::INVALID);

        self.values[dest] = ValueData::Alias { ty, original }.into();
    }

    /// Replace the results of one instruction with aliases to the results of another.
    ///
    /// Change all the results of `dest_inst` to behave as aliases of
    /// corresponding results of `src_inst`, as if calling change_to_alias for
    /// each.
    ///
    /// After calling this instruction, `dest_inst` will have had its results
    /// cleared, so it likely needs to be removed from the graph.
    ///
    pub fn replace_with_aliases(&mut self, dest_inst: Inst, src_inst: Inst) {
        debug_assert_ne!(
            dest_inst, src_inst,
            "Replacing {} with itself would create a loop",
            dest_inst
        );
        debug_assert_eq!(
            self.results[dest_inst].len(&self.value_lists),
            self.results[src_inst].len(&self.value_lists),
            "Replacing {} with {} would produce a different number of results.",
            dest_inst,
            src_inst
        );

        for (&dest, &src) in self.results[dest_inst]
            .as_slice(&self.value_lists)
            .iter()
            .zip(self.results[src_inst].as_slice(&self.value_lists))
        {
            let original = src;
            let ty = self.value_type(original);
            debug_assert_eq!(
                self.value_type(dest),
                ty,
                "Aliasing {} to {} would change its type {} to {}",
                dest,
                src,
                self.value_type(dest),
                ty
            );
            debug_assert_ne!(ty, types::INVALID);

            self.values[dest] = ValueData::Alias { ty, original }.into();
        }

        self.clear_results(dest_inst);
    }
}

/// Where did a value come from?
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ValueDef {
    /// Value is the n'th result of an instruction.
    Result(Inst, usize),
    /// Value is the n'th parameter to a block.
    Param(Block, usize),
}

impl ValueDef {
    /// Unwrap the instruction where the value was defined, or panic.
    pub fn unwrap_inst(&self) -> Inst {
        self.inst().expect("Value is not an instruction result")
    }

    /// Get the instruction where the value was defined, if any.
    pub fn inst(&self) -> Option<Inst> {
        match *self {
            Self::Result(inst, _) => Some(inst),
            _ => None,
        }
    }

    /// Unwrap the block there the parameter is defined, or panic.
    pub fn unwrap_block(&self) -> Block {
        match *self {
            Self::Param(block, _) => block,
            _ => panic!("Value is not a block parameter"),
        }
    }

    /// Get the program point where the value was defined.
    pub fn pp(self) -> ir::ExpandedProgramPoint {
        self.into()
    }

    /// Get the number component of this definition.
    ///
    /// When multiple values are defined at the same program point, this indicates the index of
    /// this value.
    pub fn num(self) -> usize {
        match self {
            Self::Result(_, n) | Self::Param(_, n) => n,
        }
    }
}

/// Internal table storage for extended values.
#[derive(Clone, Debug, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
enum ValueData {
    /// Value is defined by an instruction.
    Inst { ty: Type, num: u16, inst: Inst },

    /// Value is a block parameter.
    Param { ty: Type, num: u16, block: Block },

    /// Value is an alias of another value.
    /// An alias value can't be linked as an instruction result or block parameter. It is used as a
    /// placeholder when the original instruction or block has been rewritten or modified.
    Alias { ty: Type, original: Value },
}

/// Bit-packed version of ValueData, for efficiency.
///
/// Layout:
///
/// ```plain
///        | tag:2 |  type:14        |    num:16       | index:32          |
/// ```
#[derive(Clone, Copy, Debug, PartialEq, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
struct ValueDataPacked(u64);

impl ValueDataPacked {
    const INDEX_SHIFT: u64 = 0;
    const INDEX_BITS: u64 = 32;
    const NUM_SHIFT: u64 = Self::INDEX_SHIFT + Self::INDEX_BITS;
    const NUM_BITS: u64 = 16;
    const TYPE_SHIFT: u64 = Self::NUM_SHIFT + Self::NUM_BITS;
    const TYPE_BITS: u64 = 14;
    const TAG_SHIFT: u64 = Self::TYPE_SHIFT + Self::TYPE_BITS;
    const TAG_BITS: u64 = 2;

    const TAG_INST: u64 = 1;
    const TAG_PARAM: u64 = 2;
    const TAG_ALIAS: u64 = 3;

    fn make(tag: u64, ty: Type, num: u16, index: u32) -> ValueDataPacked {
        debug_assert!(tag < (1 << Self::TAG_BITS));
        debug_assert!(ty.repr() < (1 << Self::TYPE_BITS));

        ValueDataPacked(
            (tag << Self::TAG_SHIFT)
                | ((ty.repr() as u64) << Self::TYPE_SHIFT)
                | ((num as u64) << Self::NUM_SHIFT)
                | ((index as u64) << Self::INDEX_SHIFT),
        )
    }

    #[inline(always)]
    fn field(self, shift: u64, bits: u64) -> u64 {
        (self.0 >> shift) & ((1 << bits) - 1)
    }

    #[inline(always)]
    fn ty(self) -> Type {
        let ty = self.field(ValueDataPacked::TYPE_SHIFT, ValueDataPacked::TYPE_BITS) as u16;
        Type::from_repr(ty)
    }

    #[inline(always)]
    fn set_type(&mut self, ty: Type) {
        self.0 &= !(((1 << Self::TYPE_BITS) - 1) << Self::TYPE_SHIFT);
        self.0 |= (ty.repr() as u64) << Self::TYPE_SHIFT;
    }
}

impl From<ValueData> for ValueDataPacked {
    fn from(data: ValueData) -> Self {
        match data {
            ValueData::Inst { ty, num, inst } => {
                Self::make(Self::TAG_INST, ty, num, inst.as_bits())
            }
            ValueData::Param { ty, num, block } => {
                Self::make(Self::TAG_PARAM, ty, num, block.as_bits())
            }
            ValueData::Alias { ty, original } => {
                Self::make(Self::TAG_ALIAS, ty, 0, original.as_bits())
            }
        }
    }
}

impl From<ValueDataPacked> for ValueData {
    fn from(data: ValueDataPacked) -> Self {
        let tag = data.field(ValueDataPacked::TAG_SHIFT, ValueDataPacked::TAG_BITS);
        let ty = data.field(ValueDataPacked::TYPE_SHIFT, ValueDataPacked::TYPE_BITS) as u16;
        let num = data.field(ValueDataPacked::NUM_SHIFT, ValueDataPacked::NUM_BITS) as u16;
        let index = data.field(ValueDataPacked::INDEX_SHIFT, ValueDataPacked::INDEX_BITS) as u32;

        let ty = Type::from_repr(ty);
        match tag {
            ValueDataPacked::TAG_INST => ValueData::Inst {
                ty,
                num,
                inst: Inst::from_bits(index),
            },
            ValueDataPacked::TAG_PARAM => ValueData::Param {
                ty,
                num,
                block: Block::from_bits(index),
            },
            ValueDataPacked::TAG_ALIAS => ValueData::Alias {
                ty,
                original: Value::from_bits(index),
            },
            _ => panic!("Invalid tag {} in ValueDataPacked 0x{:x}", tag, data.0),
        }
    }
}

/// Instructions.
///
impl DataFlowGraph {
    /// Create a new instruction.
    ///
    /// The type of the first result is indicated by `data.ty`. If the instruction produces
    /// multiple results, also call `make_inst_results` to allocate value table entries.
    pub fn make_inst(&mut self, data: InstructionData) -> Inst {
        let n = self.num_insts() + 1;
        self.results.resize(n);
        self.insts.push(data)
    }

    /// Declares a dynamic vector type
    pub fn make_dynamic_ty(&mut self, data: DynamicTypeData) -> DynamicType {
        self.dynamic_types.push(data)
    }

    /// Returns an object that displays `inst`.
    pub fn display_inst<'a>(&'a self, inst: Inst) -> DisplayInst<'a> {
        DisplayInst(self, inst)
    }

    /// Returns an object that displays the given `value`'s defining instruction.
    ///
    /// Panics if the value is not defined by an instruction (i.e. it is a basic
    /// block argument).
    pub fn display_value_inst(&self, value: Value) -> DisplayInst<'_> {
        match self.value_def(value) {
            ir::ValueDef::Result(inst, _) => self.display_inst(inst),
            ir::ValueDef::Param(_, _) => panic!("value is not defined by an instruction"),
        }
    }

    /// Get all value arguments on `inst` as a slice.
    pub fn inst_args(&self, inst: Inst) -> &[Value] {
        self.insts[inst].arguments(&self.value_lists)
    }

    /// Get all value arguments on `inst` as a mutable slice.
    pub fn inst_args_mut(&mut self, inst: Inst) -> &mut [Value] {
        self.insts[inst].arguments_mut(&mut self.value_lists)
    }

Take out the value list with all the value arguments and return it.

This leaves the value list in the instruction empty. Use put_value_list to put the value list back.

Examples found in repository?
src/ir/dfg.rs (line 820)
818
819
820
821
822
823
824
    pub fn append_inst_arg(&mut self, inst: Inst, new_arg: Value) {
        let mut branch_values = self.insts[inst]
            .take_value_list()
            .expect("the instruction doesn't have value arguments");
        branch_values.push(new_arg, &mut self.value_lists);
        self.insts[inst].put_value_list(branch_values)
    }
More examples
Hide additional examples
src/remove_constant_phis.rs (line 381)
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
pub fn do_remove_constant_phis(func: &mut Function, domtree: &mut DominatorTree) {
    let _tt = timing::remove_constant_phis();
    debug_assert!(domtree.is_valid());

    // Phase 1 of 3: for each block, make a summary containing all relevant
    // info.  The solver will iterate over the summaries, rather than having
    // to inspect each instruction in each block.
    let bump =
        Bump::with_capacity(domtree.cfg_postorder().len() * 4 * std::mem::size_of::<Value>());
    let mut summaries =
        SecondaryMap::<Block, BlockSummary>::with_capacity(domtree.cfg_postorder().len());

    for b in domtree.cfg_postorder().iter().rev().copied() {
        let formals = func.dfg.block_params(b);
        let mut summary = BlockSummary::new(&bump, formals);

        for inst in func.layout.block_insts(b) {
            let idetails = &func.dfg[inst];
            // Note that multi-dest transfers (i.e., branch tables) don't
            // carry parameters in our IR, so we only have to care about
            // `SingleDest` here.
            if let BranchInfo::SingleDest(dest, _) = idetails.analyze_branch(&func.dfg.value_lists)
            {
                if let Some(edge) = OutEdge::new(&bump, &func.dfg, inst, dest) {
                    summary.dests.push(edge);
                }
            }
        }

        // Ensure the invariant that all blocks (except for the entry) appear
        // in the summary, *unless* they have neither formals nor any
        // param-carrying branches/jumps.
        if formals.len() > 0 || summary.dests.len() > 0 {
            summaries[b] = summary;
        }
    }

    // Phase 2 of 3: iterate over the summaries in reverse postorder,
    // computing new `AbstractValue`s for each tracked `Value`.  The set of
    // tracked `Value`s is exactly Group A as described above.

    let entry_block = func
        .layout
        .entry_block()
        .expect("remove_constant_phis: entry block unknown");

    // Set up initial solver state
    let mut state = SolverState::new();

    for b in domtree.cfg_postorder().iter().rev().copied() {
        // For each block, get the formals
        if b == entry_block {
            continue;
        }
        let formals = func.dfg.block_params(b);
        for formal in formals {
            let mb_old_absval = state.absvals.insert(*formal, AbstractValue::None);
            assert!(mb_old_absval.is_none());
        }
    }

    // Solve: repeatedly traverse the blocks in reverse postorder, until there
    // are no changes.
    let mut iter_no = 0;
    loop {
        iter_no += 1;
        let mut changed = false;

        for src in domtree.cfg_postorder().iter().rev().copied() {
            let src_summary = &summaries[src];
            for edge in &src_summary.dests {
                assert!(edge.block != entry_block);
                // By contrast, the dst block must have a summary.  Phase 1
                // will have only included an entry in `src_summary.dests` if
                // that branch/jump carried at least one parameter.  So the
                // dst block does take parameters, so it must have a summary.
                let dst_summary = &summaries[edge.block];
                let dst_formals = &dst_summary.formals;
                assert_eq!(edge.args.len(), dst_formals.len());
                for (formal, actual) in dst_formals.iter().zip(edge.args) {
                    // Find the abstract value for `actual`.  If it is a block
                    // formal parameter then the most recent abstract value is
                    // to be found in the solver state.  If not, then it's a
                    // real value defining point (not a phi), in which case
                    // return it itself.
                    let actual_absval = match state.maybe_get(*actual) {
                        Some(pt) => *pt,
                        None => AbstractValue::One(*actual),
                    };

                    // And `join` the new value with the old.
                    let formal_absval_old = state.get(*formal);
                    let formal_absval_new = formal_absval_old.join(actual_absval);
                    if formal_absval_new != formal_absval_old {
                        changed = true;
                        state.set(*formal, formal_absval_new);
                    }
                }
            }
        }

        if !changed {
            break;
        }
    }

    let mut n_consts = 0;
    for absval in state.absvals.values() {
        if absval.is_one() {
            n_consts += 1;
        }
    }

    // Phase 3 of 3: edit the function to remove constant formals, using the
    // summaries and the final solver state as a guide.

    // Make up a set of blocks that need editing.
    let mut need_editing = FxHashSet::<Block>::default();
    for (block, summary) in summaries.iter() {
        if block == entry_block {
            continue;
        }
        for formal in summary.formals {
            let formal_absval = state.get(*formal);
            if formal_absval.is_one() {
                need_editing.insert(block);
                break;
            }
        }
    }

    // Firstly, deal with the formals.  For each formal which is redundant,
    // remove it, and also add a reroute from it to the constant value which
    // it we know it to be.
    for b in &need_editing {
        let mut del_these = SmallVec::<[(Value, Value); 32]>::new();
        let formals: &[Value] = func.dfg.block_params(*b);
        for formal in formals {
            // The state must give an absval for `formal`.
            if let AbstractValue::One(replacement_val) = state.get(*formal) {
                del_these.push((*formal, replacement_val));
            }
        }
        // We can delete the formals in any order.  However,
        // `remove_block_param` works by sliding backwards all arguments to
        // the right of the value it is asked to delete.  Hence when removing more
        // than one formal, it is significantly more efficient to ask it to
        // remove the rightmost formal first, and hence this `rev()`.
        for (redundant_formal, replacement_val) in del_these.into_iter().rev() {
            func.dfg.remove_block_param(redundant_formal);
            func.dfg.change_to_alias(redundant_formal, replacement_val);
        }
    }

    // Secondly, visit all branch insns.  If the destination has had its
    // formals changed, change the actuals accordingly.  Don't scan all insns,
    // rather just visit those as listed in the summaries we prepared earlier.
    for summary in summaries.values() {
        for edge in &summary.dests {
            if !need_editing.contains(&edge.block) {
                continue;
            }

            let old_actuals = func.dfg[edge.inst].take_value_list().unwrap();
            let num_old_actuals = old_actuals.len(&func.dfg.value_lists);
            let num_fixed_actuals = func.dfg[edge.inst]
                .opcode()
                .constraints()
                .num_fixed_value_arguments();
            let dst_summary = &summaries[edge.block];

            // Check that the numbers of arguments make sense.
            assert!(num_fixed_actuals <= num_old_actuals);
            assert_eq!(
                num_fixed_actuals + dst_summary.formals.len(),
                num_old_actuals
            );

            // Create a new value list.
            let mut new_actuals = EntityList::<Value>::new();
            // Copy the fixed args to the new list
            for i in 0..num_fixed_actuals {
                let val = old_actuals.get(i, &func.dfg.value_lists).unwrap();
                new_actuals.push(val, &mut func.dfg.value_lists);
            }

            // Copy the variable args (the actual block params) to the new
            // list, filtering out redundant ones.
            for (i, formal_i) in dst_summary.formals.iter().enumerate() {
                let actual_i = old_actuals
                    .get(num_fixed_actuals + i, &func.dfg.value_lists)
                    .unwrap();
                let is_redundant = state.get(*formal_i).is_one();
                if !is_redundant {
                    new_actuals.push(actual_i, &mut func.dfg.value_lists);
                }
            }
            func.dfg[edge.inst].put_value_list(new_actuals);
        }
    }

    log::debug!(
        "do_remove_constant_phis: done, {} iters.   {} formals, of which {} const.",
        iter_no,
        state.absvals.len(),
        n_consts
    );
}

Put back a value list.

After removing a value list with take_value_list(), use this method to put it back. It is required that this instruction has a format that accepts a value list, and that the existing value list is empty. This avoids leaking list pool memory.

Examples found in repository?
src/ir/dfg.rs (line 823)
818
819
820
821
822
823
824
    pub fn append_inst_arg(&mut self, inst: Inst, new_arg: Value) {
        let mut branch_values = self.insts[inst]
            .take_value_list()
            .expect("the instruction doesn't have value arguments");
        branch_values.push(new_arg, &mut self.value_lists);
        self.insts[inst].put_value_list(branch_values)
    }
More examples
Hide additional examples
src/remove_constant_phis.rs (line 415)
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
pub fn do_remove_constant_phis(func: &mut Function, domtree: &mut DominatorTree) {
    let _tt = timing::remove_constant_phis();
    debug_assert!(domtree.is_valid());

    // Phase 1 of 3: for each block, make a summary containing all relevant
    // info.  The solver will iterate over the summaries, rather than having
    // to inspect each instruction in each block.
    let bump =
        Bump::with_capacity(domtree.cfg_postorder().len() * 4 * std::mem::size_of::<Value>());
    let mut summaries =
        SecondaryMap::<Block, BlockSummary>::with_capacity(domtree.cfg_postorder().len());

    for b in domtree.cfg_postorder().iter().rev().copied() {
        let formals = func.dfg.block_params(b);
        let mut summary = BlockSummary::new(&bump, formals);

        for inst in func.layout.block_insts(b) {
            let idetails = &func.dfg[inst];
            // Note that multi-dest transfers (i.e., branch tables) don't
            // carry parameters in our IR, so we only have to care about
            // `SingleDest` here.
            if let BranchInfo::SingleDest(dest, _) = idetails.analyze_branch(&func.dfg.value_lists)
            {
                if let Some(edge) = OutEdge::new(&bump, &func.dfg, inst, dest) {
                    summary.dests.push(edge);
                }
            }
        }

        // Ensure the invariant that all blocks (except for the entry) appear
        // in the summary, *unless* they have neither formals nor any
        // param-carrying branches/jumps.
        if formals.len() > 0 || summary.dests.len() > 0 {
            summaries[b] = summary;
        }
    }

    // Phase 2 of 3: iterate over the summaries in reverse postorder,
    // computing new `AbstractValue`s for each tracked `Value`.  The set of
    // tracked `Value`s is exactly Group A as described above.

    let entry_block = func
        .layout
        .entry_block()
        .expect("remove_constant_phis: entry block unknown");

    // Set up initial solver state
    let mut state = SolverState::new();

    for b in domtree.cfg_postorder().iter().rev().copied() {
        // For each block, get the formals
        if b == entry_block {
            continue;
        }
        let formals = func.dfg.block_params(b);
        for formal in formals {
            let mb_old_absval = state.absvals.insert(*formal, AbstractValue::None);
            assert!(mb_old_absval.is_none());
        }
    }

    // Solve: repeatedly traverse the blocks in reverse postorder, until there
    // are no changes.
    let mut iter_no = 0;
    loop {
        iter_no += 1;
        let mut changed = false;

        for src in domtree.cfg_postorder().iter().rev().copied() {
            let src_summary = &summaries[src];
            for edge in &src_summary.dests {
                assert!(edge.block != entry_block);
                // By contrast, the dst block must have a summary.  Phase 1
                // will have only included an entry in `src_summary.dests` if
                // that branch/jump carried at least one parameter.  So the
                // dst block does take parameters, so it must have a summary.
                let dst_summary = &summaries[edge.block];
                let dst_formals = &dst_summary.formals;
                assert_eq!(edge.args.len(), dst_formals.len());
                for (formal, actual) in dst_formals.iter().zip(edge.args) {
                    // Find the abstract value for `actual`.  If it is a block
                    // formal parameter then the most recent abstract value is
                    // to be found in the solver state.  If not, then it's a
                    // real value defining point (not a phi), in which case
                    // return it itself.
                    let actual_absval = match state.maybe_get(*actual) {
                        Some(pt) => *pt,
                        None => AbstractValue::One(*actual),
                    };

                    // And `join` the new value with the old.
                    let formal_absval_old = state.get(*formal);
                    let formal_absval_new = formal_absval_old.join(actual_absval);
                    if formal_absval_new != formal_absval_old {
                        changed = true;
                        state.set(*formal, formal_absval_new);
                    }
                }
            }
        }

        if !changed {
            break;
        }
    }

    let mut n_consts = 0;
    for absval in state.absvals.values() {
        if absval.is_one() {
            n_consts += 1;
        }
    }

    // Phase 3 of 3: edit the function to remove constant formals, using the
    // summaries and the final solver state as a guide.

    // Make up a set of blocks that need editing.
    let mut need_editing = FxHashSet::<Block>::default();
    for (block, summary) in summaries.iter() {
        if block == entry_block {
            continue;
        }
        for formal in summary.formals {
            let formal_absval = state.get(*formal);
            if formal_absval.is_one() {
                need_editing.insert(block);
                break;
            }
        }
    }

    // Firstly, deal with the formals.  For each formal which is redundant,
    // remove it, and also add a reroute from it to the constant value which
    // it we know it to be.
    for b in &need_editing {
        let mut del_these = SmallVec::<[(Value, Value); 32]>::new();
        let formals: &[Value] = func.dfg.block_params(*b);
        for formal in formals {
            // The state must give an absval for `formal`.
            if let AbstractValue::One(replacement_val) = state.get(*formal) {
                del_these.push((*formal, replacement_val));
            }
        }
        // We can delete the formals in any order.  However,
        // `remove_block_param` works by sliding backwards all arguments to
        // the right of the value it is asked to delete.  Hence when removing more
        // than one formal, it is significantly more efficient to ask it to
        // remove the rightmost formal first, and hence this `rev()`.
        for (redundant_formal, replacement_val) in del_these.into_iter().rev() {
            func.dfg.remove_block_param(redundant_formal);
            func.dfg.change_to_alias(redundant_formal, replacement_val);
        }
    }

    // Secondly, visit all branch insns.  If the destination has had its
    // formals changed, change the actuals accordingly.  Don't scan all insns,
    // rather just visit those as listed in the summaries we prepared earlier.
    for summary in summaries.values() {
        for edge in &summary.dests {
            if !need_editing.contains(&edge.block) {
                continue;
            }

            let old_actuals = func.dfg[edge.inst].take_value_list().unwrap();
            let num_old_actuals = old_actuals.len(&func.dfg.value_lists);
            let num_fixed_actuals = func.dfg[edge.inst]
                .opcode()
                .constraints()
                .num_fixed_value_arguments();
            let dst_summary = &summaries[edge.block];

            // Check that the numbers of arguments make sense.
            assert!(num_fixed_actuals <= num_old_actuals);
            assert_eq!(
                num_fixed_actuals + dst_summary.formals.len(),
                num_old_actuals
            );

            // Create a new value list.
            let mut new_actuals = EntityList::<Value>::new();
            // Copy the fixed args to the new list
            for i in 0..num_fixed_actuals {
                let val = old_actuals.get(i, &func.dfg.value_lists).unwrap();
                new_actuals.push(val, &mut func.dfg.value_lists);
            }

            // Copy the variable args (the actual block params) to the new
            // list, filtering out redundant ones.
            for (i, formal_i) in dst_summary.formals.iter().enumerate() {
                let actual_i = old_actuals
                    .get(num_fixed_actuals + i, &func.dfg.value_lists)
                    .unwrap();
                let is_redundant = state.get(*formal_i).is_one();
                if !is_redundant {
                    new_actuals.push(actual_i, &mut func.dfg.value_lists);
                }
            }
            func.dfg[edge.inst].put_value_list(new_actuals);
        }
    }

    log::debug!(
        "do_remove_constant_phis: done, {} iters.   {} formals, of which {} const.",
        iter_no,
        state.absvals.len(),
        n_consts
    );
}

Compare two InstructionData for equality.

This operation requires a reference to a ValueListPool to determine if the contents of any ValueLists are equal.

Examples found in repository?
src/simple_gvn.rs (line 49)
47
48
49
50
    fn eq(&self, other: &Self) -> bool {
        let pool = &self.pos.borrow().func.dfg.value_lists;
        self.inst.eq(&other.inst, pool) && self.ty == other.ty
    }

Hash an InstructionData.

This operation requires a reference to a ValueListPool to hash the contents of any ValueLists.

Examples found in repository?
src/simple_gvn.rs (line 42)
40
41
42
43
44
    fn hash<H: Hasher>(&self, state: &mut H) {
        let pool = &self.pos.borrow().func.dfg.value_lists;
        self.inst.hash(state, pool);
        self.ty.hash(state);
    }

Analyzing an instruction.

Avoid large matches on instruction formats by using the methods defined here to examine instructions.

Return information about the destination of a branch or jump instruction.

Any instruction that can transfer control to another block reveals its possible destinations here.

Examples found in repository?
src/ir/dfg.rs (line 862)
861
862
863
    pub fn analyze_branch(&self, inst: Inst) -> BranchInfo {
        self.insts[inst].analyze_branch(&self.value_lists)
    }
More examples
Hide additional examples
src/inst_predicates.rs (line 138)
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
fn visit_branch_targets<F: FnMut(Inst, Block, bool)>(f: &Function, inst: Inst, visit: &mut F) {
    match f.dfg[inst].analyze_branch(&f.dfg.value_lists) {
        BranchInfo::NotABranch => {}
        BranchInfo::SingleDest(dest, _) => {
            visit(inst, dest, false);
        }
        BranchInfo::Table(table, maybe_dest) => {
            if let Some(dest) = maybe_dest {
                // The default block is reached via a direct conditional branch,
                // so it is not part of the table.
                visit(inst, dest, false);
            }
            for &dest in f.jump_tables[table].as_slice() {
                visit(inst, dest, true);
            }
        }
    }
}
src/remove_constant_phis.rs (line 239)
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
pub fn do_remove_constant_phis(func: &mut Function, domtree: &mut DominatorTree) {
    let _tt = timing::remove_constant_phis();
    debug_assert!(domtree.is_valid());

    // Phase 1 of 3: for each block, make a summary containing all relevant
    // info.  The solver will iterate over the summaries, rather than having
    // to inspect each instruction in each block.
    let bump =
        Bump::with_capacity(domtree.cfg_postorder().len() * 4 * std::mem::size_of::<Value>());
    let mut summaries =
        SecondaryMap::<Block, BlockSummary>::with_capacity(domtree.cfg_postorder().len());

    for b in domtree.cfg_postorder().iter().rev().copied() {
        let formals = func.dfg.block_params(b);
        let mut summary = BlockSummary::new(&bump, formals);

        for inst in func.layout.block_insts(b) {
            let idetails = &func.dfg[inst];
            // Note that multi-dest transfers (i.e., branch tables) don't
            // carry parameters in our IR, so we only have to care about
            // `SingleDest` here.
            if let BranchInfo::SingleDest(dest, _) = idetails.analyze_branch(&func.dfg.value_lists)
            {
                if let Some(edge) = OutEdge::new(&bump, &func.dfg, inst, dest) {
                    summary.dests.push(edge);
                }
            }
        }

        // Ensure the invariant that all blocks (except for the entry) appear
        // in the summary, *unless* they have neither formals nor any
        // param-carrying branches/jumps.
        if formals.len() > 0 || summary.dests.len() > 0 {
            summaries[b] = summary;
        }
    }

    // Phase 2 of 3: iterate over the summaries in reverse postorder,
    // computing new `AbstractValue`s for each tracked `Value`.  The set of
    // tracked `Value`s is exactly Group A as described above.

    let entry_block = func
        .layout
        .entry_block()
        .expect("remove_constant_phis: entry block unknown");

    // Set up initial solver state
    let mut state = SolverState::new();

    for b in domtree.cfg_postorder().iter().rev().copied() {
        // For each block, get the formals
        if b == entry_block {
            continue;
        }
        let formals = func.dfg.block_params(b);
        for formal in formals {
            let mb_old_absval = state.absvals.insert(*formal, AbstractValue::None);
            assert!(mb_old_absval.is_none());
        }
    }

    // Solve: repeatedly traverse the blocks in reverse postorder, until there
    // are no changes.
    let mut iter_no = 0;
    loop {
        iter_no += 1;
        let mut changed = false;

        for src in domtree.cfg_postorder().iter().rev().copied() {
            let src_summary = &summaries[src];
            for edge in &src_summary.dests {
                assert!(edge.block != entry_block);
                // By contrast, the dst block must have a summary.  Phase 1
                // will have only included an entry in `src_summary.dests` if
                // that branch/jump carried at least one parameter.  So the
                // dst block does take parameters, so it must have a summary.
                let dst_summary = &summaries[edge.block];
                let dst_formals = &dst_summary.formals;
                assert_eq!(edge.args.len(), dst_formals.len());
                for (formal, actual) in dst_formals.iter().zip(edge.args) {
                    // Find the abstract value for `actual`.  If it is a block
                    // formal parameter then the most recent abstract value is
                    // to be found in the solver state.  If not, then it's a
                    // real value defining point (not a phi), in which case
                    // return it itself.
                    let actual_absval = match state.maybe_get(*actual) {
                        Some(pt) => *pt,
                        None => AbstractValue::One(*actual),
                    };

                    // And `join` the new value with the old.
                    let formal_absval_old = state.get(*formal);
                    let formal_absval_new = formal_absval_old.join(actual_absval);
                    if formal_absval_new != formal_absval_old {
                        changed = true;
                        state.set(*formal, formal_absval_new);
                    }
                }
            }
        }

        if !changed {
            break;
        }
    }

    let mut n_consts = 0;
    for absval in state.absvals.values() {
        if absval.is_one() {
            n_consts += 1;
        }
    }

    // Phase 3 of 3: edit the function to remove constant formals, using the
    // summaries and the final solver state as a guide.

    // Make up a set of blocks that need editing.
    let mut need_editing = FxHashSet::<Block>::default();
    for (block, summary) in summaries.iter() {
        if block == entry_block {
            continue;
        }
        for formal in summary.formals {
            let formal_absval = state.get(*formal);
            if formal_absval.is_one() {
                need_editing.insert(block);
                break;
            }
        }
    }

    // Firstly, deal with the formals.  For each formal which is redundant,
    // remove it, and also add a reroute from it to the constant value which
    // it we know it to be.
    for b in &need_editing {
        let mut del_these = SmallVec::<[(Value, Value); 32]>::new();
        let formals: &[Value] = func.dfg.block_params(*b);
        for formal in formals {
            // The state must give an absval for `formal`.
            if let AbstractValue::One(replacement_val) = state.get(*formal) {
                del_these.push((*formal, replacement_val));
            }
        }
        // We can delete the formals in any order.  However,
        // `remove_block_param` works by sliding backwards all arguments to
        // the right of the value it is asked to delete.  Hence when removing more
        // than one formal, it is significantly more efficient to ask it to
        // remove the rightmost formal first, and hence this `rev()`.
        for (redundant_formal, replacement_val) in del_these.into_iter().rev() {
            func.dfg.remove_block_param(redundant_formal);
            func.dfg.change_to_alias(redundant_formal, replacement_val);
        }
    }

    // Secondly, visit all branch insns.  If the destination has had its
    // formals changed, change the actuals accordingly.  Don't scan all insns,
    // rather just visit those as listed in the summaries we prepared earlier.
    for summary in summaries.values() {
        for edge in &summary.dests {
            if !need_editing.contains(&edge.block) {
                continue;
            }

            let old_actuals = func.dfg[edge.inst].take_value_list().unwrap();
            let num_old_actuals = old_actuals.len(&func.dfg.value_lists);
            let num_fixed_actuals = func.dfg[edge.inst]
                .opcode()
                .constraints()
                .num_fixed_value_arguments();
            let dst_summary = &summaries[edge.block];

            // Check that the numbers of arguments make sense.
            assert!(num_fixed_actuals <= num_old_actuals);
            assert_eq!(
                num_fixed_actuals + dst_summary.formals.len(),
                num_old_actuals
            );

            // Create a new value list.
            let mut new_actuals = EntityList::<Value>::new();
            // Copy the fixed args to the new list
            for i in 0..num_fixed_actuals {
                let val = old_actuals.get(i, &func.dfg.value_lists).unwrap();
                new_actuals.push(val, &mut func.dfg.value_lists);
            }

            // Copy the variable args (the actual block params) to the new
            // list, filtering out redundant ones.
            for (i, formal_i) in dst_summary.formals.iter().enumerate() {
                let actual_i = old_actuals
                    .get(num_fixed_actuals + i, &func.dfg.value_lists)
                    .unwrap();
                let is_redundant = state.get(*formal_i).is_one();
                if !is_redundant {
                    new_actuals.push(actual_i, &mut func.dfg.value_lists);
                }
            }
            func.dfg[edge.inst].put_value_list(new_actuals);
        }
    }

    log::debug!(
        "do_remove_constant_phis: done, {} iters.   {} formals, of which {} const.",
        iter_no,
        state.absvals.len(),
        n_consts
    );
}

Get the single destination of this branch instruction, if it is a single destination branch or jump.

Multi-destination branches like br_table return None.

Examples found in repository?
src/simple_preopt.rs (line 505)
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
fn branch_order(pos: &mut FuncCursor, cfg: &mut ControlFlowGraph, block: Block, inst: Inst) {
    let (term_inst, term_inst_args, term_dest, cond_inst, cond_inst_args, cond_dest, kind) =
        match pos.func.dfg[inst] {
            InstructionData::Jump {
                opcode: Opcode::Jump,
                destination,
                ref args,
            } => {
                let next_block = if let Some(next_block) = pos.func.layout.next_block(block) {
                    next_block
                } else {
                    return;
                };

                if destination == next_block {
                    return;
                }

                let prev_inst = if let Some(prev_inst) = pos.func.layout.prev_inst(inst) {
                    prev_inst
                } else {
                    return;
                };

                let prev_inst_data = &pos.func.dfg[prev_inst];

                if let Some(prev_dest) = prev_inst_data.branch_destination() {
                    if prev_dest != next_block {
                        return;
                    }
                } else {
                    return;
                }

                match prev_inst_data {
                    InstructionData::Branch {
                        opcode,
                        args: ref prev_args,
                        destination: cond_dest,
                    } => {
                        let cond_arg = {
                            let args = pos.func.dfg.inst_args(prev_inst);
                            args[0]
                        };

                        let kind = match opcode {
                            Opcode::Brz => BranchOrderKind::BrzToBrnz(cond_arg),
                            Opcode::Brnz => BranchOrderKind::BrnzToBrz(cond_arg),
                            _ => panic!("unexpected opcode"),
                        };

                        (
                            inst,
                            args.clone(),
                            destination,
                            prev_inst,
                            prev_args.clone(),
                            *cond_dest,
                            kind,
                        )
                    }
                    _ => return,
                }
            }

            _ => return,
        };

    let cond_args = cond_inst_args.as_slice(&pos.func.dfg.value_lists).to_vec();
    let term_args = term_inst_args.as_slice(&pos.func.dfg.value_lists).to_vec();

    match kind {
        BranchOrderKind::BrnzToBrz(cond_arg) => {
            pos.func
                .dfg
                .replace(term_inst)
                .jump(cond_dest, &cond_args[1..]);
            pos.func
                .dfg
                .replace(cond_inst)
                .brz(cond_arg, term_dest, &term_args);
        }
        BranchOrderKind::BrzToBrnz(cond_arg) => {
            pos.func
                .dfg
                .replace(term_inst)
                .jump(cond_dest, &cond_args[1..]);
            pos.func
                .dfg
                .replace(cond_inst)
                .brnz(cond_arg, term_dest, &term_args);
        }
    }

    cfg.recompute_block(pos.func, block);
}

Get a mutable reference to the single destination of this branch instruction, if it is a single destination branch or jump.

Multi-destination branches like br_table return None.

Examples found in repository?
src/ir/function.rs (line 294)
293
294
295
296
297
298
    pub fn change_branch_destination(&mut self, inst: Inst, new_dest: Block) {
        match self.dfg[inst].branch_destination_mut() {
            None => (),
            Some(inst_dest) => *inst_dest = new_dest,
        }
    }

If this is a trapping instruction, get its trap code. Otherwise, return None.

If this is a control-flow instruction depending on an integer condition, gets its condition. Otherwise, return None.

If this is a control-flow instruction depending on a floating-point condition, gets its condition. Otherwise, return None.

If this is a trapping instruction, get an exclusive reference to its trap code. Otherwise, return None.

If this is an atomic read/modify/write instruction, return its subopcode.

If this is a load/store instruction, returns its immediate offset.

Examples found in repository?
src/isa/x64/lower.rs (line 118)
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
fn is_mergeable_load(ctx: &mut Lower<Inst>, src_insn: IRInst) -> Option<(InsnInput, i32)> {
    let insn_data = ctx.data(src_insn);
    let inputs = ctx.num_inputs(src_insn);
    if inputs != 1 {
        return None;
    }

    let load_ty = ctx.output_ty(src_insn, 0);
    if ty_bits(load_ty) < 32 {
        // Narrower values are handled by ALU insts that are at least 32 bits
        // wide, which is normally OK as we ignore upper buts; but, if we
        // generate, e.g., a direct-from-memory 32-bit add for a byte value and
        // the byte is the last byte in a page, the extra data that we load is
        // incorrectly accessed. So we only allow loads to merge for
        // 32-bit-and-above widths.
        return None;
    }

    // SIMD instructions can only be load-coalesced when the loaded value comes
    // from an aligned address.
    if load_ty.is_vector() && !insn_data.memflags().map_or(false, |f| f.aligned()) {
        return None;
    }

    // Just testing the opcode is enough, because the width will always match if
    // the type does (and the type should match if the CLIF is properly
    // constructed).
    if insn_data.opcode() == Opcode::Load {
        let offset = insn_data
            .load_store_offset()
            .expect("load should have offset");
        Some((
            InsnInput {
                insn: src_insn,
                input: 0,
            },
            offset,
        ))
    } else {
        None
    }
}

If this is a load/store instruction, return its memory flags.

Examples found in repository?
src/egraph/stores.rs (line 135)
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    fn update(&mut self, func: &Function, inst: Inst) {
        let opcode = func.dfg[inst].opcode();
        if has_memory_fence_semantics(opcode) {
            self.heap = MemoryState::AfterInst(inst);
            self.table = MemoryState::AfterInst(inst);
            self.vmctx = MemoryState::AfterInst(inst);
            self.other = MemoryState::AfterInst(inst);
        } else if opcode.can_store() {
            if let Some(memflags) = func.dfg[inst].memflags() {
                *self.for_flags(memflags) = MemoryState::Store(inst);
            } else {
                self.heap = MemoryState::AfterInst(inst);
                self.table = MemoryState::AfterInst(inst);
                self.vmctx = MemoryState::AfterInst(inst);
                self.other = MemoryState::AfterInst(inst);
            }
        }
    }
More examples
Hide additional examples
src/alias_analysis.rs (line 95)
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    fn update(&mut self, func: &Function, inst: Inst) {
        let opcode = func.dfg[inst].opcode();
        if has_memory_fence_semantics(opcode) {
            self.heap = inst.into();
            self.table = inst.into();
            self.vmctx = inst.into();
            self.other = inst.into();
        } else if opcode.can_store() {
            if let Some(memflags) = func.dfg[inst].memflags() {
                if memflags.heap() {
                    self.heap = inst.into();
                } else if memflags.table() {
                    self.table = inst.into();
                } else if memflags.vmctx() {
                    self.vmctx = inst.into();
                } else {
                    self.other = inst.into();
                }
            } else {
                self.heap = inst.into();
                self.table = inst.into();
                self.vmctx = inst.into();
                self.other = inst.into();
            }
        }
    }

    fn get_last_store(&self, func: &Function, inst: Inst) -> PackedOption<Inst> {
        if let Some(memflags) = func.dfg[inst].memflags() {
            if memflags.heap() {
                self.heap
            } else if memflags.table() {
                self.table
            } else if memflags.vmctx() {
                self.vmctx
            } else {
                self.other
            }
        } else if func.dfg[inst].opcode().can_load() || func.dfg[inst].opcode().can_store() {
            inst.into()
        } else {
            PackedOption::default()
        }
    }
src/isa/x64/lower.rs (line 109)
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
fn is_mergeable_load(ctx: &mut Lower<Inst>, src_insn: IRInst) -> Option<(InsnInput, i32)> {
    let insn_data = ctx.data(src_insn);
    let inputs = ctx.num_inputs(src_insn);
    if inputs != 1 {
        return None;
    }

    let load_ty = ctx.output_ty(src_insn, 0);
    if ty_bits(load_ty) < 32 {
        // Narrower values are handled by ALU insts that are at least 32 bits
        // wide, which is normally OK as we ignore upper buts; but, if we
        // generate, e.g., a direct-from-memory 32-bit add for a byte value and
        // the byte is the last byte in a page, the extra data that we load is
        // incorrectly accessed. So we only allow loads to merge for
        // 32-bit-and-above widths.
        return None;
    }

    // SIMD instructions can only be load-coalesced when the loaded value comes
    // from an aligned address.
    if load_ty.is_vector() && !insn_data.memflags().map_or(false, |f| f.aligned()) {
        return None;
    }

    // Just testing the opcode is enough, because the width will always match if
    // the type does (and the type should match if the CLIF is properly
    // constructed).
    if insn_data.opcode() == Opcode::Load {
        let offset = insn_data
            .load_store_offset()
            .expect("load should have offset");
        Some((
            InsnInput {
                insn: src_insn,
                input: 0,
            },
            offset,
        ))
    } else {
        None
    }
}

If this instruction references a stack slot, return it

Return information about a call instruction.

Any instruction that can call another function reveals its call signature here.

Examples found in repository?
src/ir/dfg.rs (line 853)
852
853
854
855
856
857
858
    pub fn call_signature(&self, inst: Inst) -> Option<SigRef> {
        match self.insts[inst].analyze_call(&self.value_lists) {
            CallInfo::NotACall => None,
            CallInfo::Direct(f, _) => Some(self.ext_funcs[f].signature),
            CallInfo::Indirect(s, _) => Some(s),
        }
    }
More examples
Hide additional examples
src/verifier/mod.rs (line 1402)
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
    fn typecheck_variable_args(
        &self,
        inst: Inst,
        errors: &mut VerifierErrors,
    ) -> VerifierStepResult<()> {
        match self.func.dfg.analyze_branch(inst) {
            BranchInfo::SingleDest(block, _) => {
                let iter = self
                    .func
                    .dfg
                    .block_params(block)
                    .iter()
                    .map(|&v| self.func.dfg.value_type(v));
                self.typecheck_variable_args_iterator(inst, iter, errors)?;
            }
            BranchInfo::Table(table, block) => {
                if let Some(block) = block {
                    let arg_count = self.func.dfg.num_block_params(block);
                    if arg_count != 0 {
                        return errors.nonfatal((
                            inst,
                            self.context(inst),
                            format!(
                                "takes no arguments, but had target {} with {} arguments",
                                block, arg_count,
                            ),
                        ));
                    }
                }
                for block in self.func.jump_tables[table].iter() {
                    let arg_count = self.func.dfg.num_block_params(*block);
                    if arg_count != 0 {
                        return errors.nonfatal((
                            inst,
                            self.context(inst),
                            format!(
                                "takes no arguments, but had target {} with {} arguments",
                                block, arg_count,
                            ),
                        ));
                    }
                }
            }
            BranchInfo::NotABranch => {}
        }

        match self.func.dfg[inst].analyze_call(&self.func.dfg.value_lists) {
            CallInfo::Direct(func_ref, _) => {
                let sig_ref = self.func.dfg.ext_funcs[func_ref].signature;
                let arg_types = self.func.dfg.signatures[sig_ref]
                    .params
                    .iter()
                    .map(|a| a.value_type);
                self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
            }
            CallInfo::Indirect(sig_ref, _) => {
                let arg_types = self.func.dfg.signatures[sig_ref]
                    .params
                    .iter()
                    .map(|a| a.value_type);
                self.typecheck_variable_args_iterator(inst, arg_types, errors)?;
            }
            CallInfo::NotACall => {}
        }
        Ok(())
    }

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Converts to this type from the input type.

Convert an InstructionData into an InstructionImms.

Feeds this value into the given Hasher. Read more
Feeds a slice of this type into the given Hasher. Read more
This method tests for self and other values to be equal, and is used by ==.
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.